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Abstract

Background: Bayesian MCMC has become a common approach for phylogenetic inference. But the growing size of
molecular sequence data sets has created a pressing need to improve the computational efficiency of Bayesian
phylogenetic inference algorithms.

Results: This paper develops a new algorithm to improve the efficiency of Bayesian phylogenetic inference for
models that include a per-branch rate parameter. In a Markov chain Monte Carlo algorithm, the presented proposal
kernel changes evolutionary rates and divergence times at the same time, under the constraint that the implied
genetic distances remain constant. Specifically, the proposal operates on the divergence time of an internal node and
the three adjacent branch rates. For the root of a phylogenetic tree, there are three strategies discussed, named Simple
Distance, Small Pulley and Big Pulley. Note that Big Pulley is able to change the tree topology, which enables the
operator to sample all the possible rooted trees consistent with the implied unrooted tree. To validate its effectiveness,
a series of experiments have been performed by implementing the proposed operator in the BEAST2 software.

Conclusions: The results demonstrate that the proposed operator is able to improve the performance by giving
better estimates for a given chain length and by using less running time for a given level of accuracy. Measured by
effective samples per hour, use of the proposed operator results in overall mixing more efficient than the current
operators in BEAST2. Especially for large data sets, the improvement is up to half an order of magnitude.

Keywords: Bayesian MCMC, Bayesian phylogenetics, Proposal kernel, Genetic distances, Divergence times,
Evolutionary rates

Background
Bayesian phylogenetics puts an emphasis on estimating
a probability distribution over parameters of interest,
including the phylogenetic tree topology and divergence
times, given the data. The Metropolis-Hastings Markov
chain Monte Carlo (MCMC) [1, 2] algorithm has been
the primary computational tool used in Bayesian phy-
logenetics for sampling from the posterior distribution.
This paper is aimed at improving the performance of the
relaxed clock model in Bayesian phylogenetic analysis.
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Early implementations of Bayesian phylogenetic infer-
ence assumed a strict molecular clock where the evolu-
tionary rates are the same at every branch [3]. This was the
preferred method for estimating divergence times [4, 5].
The introduction of relaxed molecular clocks allowed for
the estimation of divergence times [6] and phylogeny [7] in
the presence of rate heterogeneity among branches. Since
then, the relaxed clock model has been widely applied,
such as the study of Nothofagus [8] and flowering plants
[9]. Many aspects of the performance and accuracy of
relaxed clock models have subsequently been investigated
(e.g. [10, 11]).
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Bayesian phylogenetic inference via MCMC is compu-
tationally intensive for large data sets. Two approaches
to improve efficiency are (i) by making faster likelihood
calculations, and (ii) by incorporating more effective pro-
posal kernels. Calculating the phylogenetic likelihood is
computationally expensive. Hence, researchers have tried
many ways to tackle the computation burden in the like-
lihood calculations, such as detection of repeating sites
[12], approximate methods (e.g. [13, 14]) and the use of
parallelisation strategies (e.g. BEAGLE [15]).
However the overall efficiency of the sampling process

also depends strongly on the construction of the proposal
mechanism. An effective proposal mechanism is profi-
cient at exploring the posterior distribution, and can do
so with fewer steps in the MCMC chain. Therefore fewer
likelihood calculations are required, since each step in the
chain that changes the tree or substitution parameters
requires a likelihood calculation.
A major limitation in Bayesian MCMC analysis of phy-

logeny lies in the efficiency with which operators sample
the tree space [16, 17]. Fast and reliable estimation is
dependent on a good mixture of operators, since the pos-
terior distribution often exhibits correlations between the
tree and other random variables.
In this paper, we present a novel operator that works

alongside standard operators by proposing moves within
a subspace of constant genetic distances. Namely, the pro-
posed operator changes both divergence times of nodes
and neighbouring branch rates so that the implied genetic
distances are not changed. For time-reversible substi-
tution models the phylogenetic likelihood will also be
unchanged under this operation. The proposed operator
has been implemented and tested in BEAST2 [18].

Preliminaries
Bayesian MCMC
Let D, g and � denote the data, phylogenetic time-tree
and a set of evolutionary parameters respectively. The
time-tree g = {E, t} consists of a directed edge graph, E,
defining a rooted tree topology on a set of labelled taxa
and a set of associated divergence times t (for details see
e.g. [19]). The posterior probability density can be calcu-
lated using Eq. 1. It consists of prior distributions for the
tree and the parameters, a phylogenetic likelihood that
conveys information from data, and the posterior distri-
bution to be inferred. These are denoted in the form of
probability densities by p(g), p(�), p(D|g,�), p(g,�|D)

respectively. From a Bayesian perspective, the phyloge-
netic trees and the parameters are random variables
described by a posterior probability distribution given the
observed data D.

p(g,�|D) = p(D|g,�)p(g)p(�)

p(D)
(1)

However, due to the state space being high dimensional
and the marginal likelihood being infeasible to calculate,
MCMC is adopted to sample the posterior distribution.
Specifically, MCMC algorithms construct a Markov chain
whose stationary distribution is the posterior distribu-
tion p(g,�|D), in such a way that the computation of the
marginal likelihood p(D) is avoided.

Tree proposals
We use the term “operator" to describe an algorithm that
can be used to draw a new state θ ′ given an existing state
θ = {g,�} from a specific proposal kernel q(θ ′|θ) and also
return the Hastings-Green ratio for the proposed state
transition [2, 20].
Standard naïve operators such as the randomwalk oper-

ator propose the new state θ ′ by adding a random variate
to a component of the current state θ [21]. Similarly,
scale operators multiply a subset of the current state by
a random scale factor [22]. They are suitable for work-
ing on a single random variable, or a single component of
the model, for example the population size parameter of
the coalescent tree prior. Standard operators for the tree
topology and divergence times include the subtree slide
operator, Wilson-balding and narrow exchange operators
[19, 23].
In this paper, the novelty of the proposed operators lies

in maintaining the genetic distance d while changing the
rate r and divergence time t. The reason is that the likeli-
hood along one branch is constant if its distance is fixed,
i.e. d = r× t, noting that the likelihood is calculated based
on transition probability matrix for each branch of eQdi ,
where di is the branch length in units of substitutions per
site for branch i. In this way, the joint distribution on rates
and divergence times can be explored without propos-
ing states that would adversely affect the phylogenetic
likelihood.

Uncorrelated relaxed clock model
Molecular clocks model how molecular sequences evolve
along branches in the phylogenetic tree, so that a time
tree can be reconciled with the genetic distances between
sequences. In this paper, uncorrelated relaxed clock mod-
els are adopted, where the rates are drawn independently
and identically from a given prior distribution, such as the
log-normal distribution [7]. As a result, the rates can vary
markedly between parent and child branches.
Referring to the Bayesian framework in Eq. (1), the joint

inference of evolutionary rates r and the time tree g can be
obtained by the conditional distribution in Eq. 2:

p(g, r,�|D) = p(D|g, r,�)p(r)p(g)p(�)

p(D)
, (2)

where p(r) is the prior for rates specified in uncorrelated
relaxed clockmodel. In the constructedMarkov chain, the
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Algorithm 1 Proposal for symmetric trees in Big pulley
{Step 1: Identify the two child nodes of the root X,
denoted by L and R. Correspondingly, the node times
are denoted by tX , tL, tR. The child nodes below them
are denoted byH1,H2,H3 andH4.}
Let X be the root of the tree.
Let L and R be the left child and right child of X,
respectively.
{Step 2: Propose a new node time for the root X.}
a ∼ Uniform[-w, +w]
tX ′ ← tX + a
{Step 3: Propose a new node time either for L or R, and
adjust adjacent rates.}
if σ1 ∼ Uniform(0, 1) < 0.5 then

Pick L and propose a new node time by tL′ ← tL+a1,
where a1 ∼ Uniform[-w, +w].
if tR < tL′ < tX ′ then

if σ2 ∼ Uniform(0, 1) < 0.5 then
Apply Exchange (H1, R) and propose tree 1©.

else
Apply Exchange (H2, R) and propose tree 2©.

end if
else

Reject the proposal.
end if

else
PickR and propose a new node time by tR′ ← tR+a2,
where a2 ∼ Uniform[-w, +w].
if tL < tR′ < tX ′ then

if σ3 ∼ Uniform(0, 1) < 0.5 then
Apply Exchange (H3, L) and propose tree 3©.

else
Apply Exchange (H4, L) and propose tree 4©.

end if
else

Reject the proposal.
end if

end if
{Step 4: Update the rates on the corresponding
branches.}
{Step 5: Return the Green ratio αBP.}

operator proposes a new state θ ′ = (r′, g′,�′), from the
original state θ = {r, g,�}.
While the proposed operator is introduced based on

uncorrelated clock models, it could equally be applied to
any other relaxed clock that applies a rate parameter to
each branch, such as autocorrelated clock models [6].

Results
To validate the correctness and determine the efficiency,
we conducted a series of experiments by implementing the
Constant Distance operator in BEAST2 [18].

First, we perform a well-calibrated simulation study,
which tests our operator alongside existing operators.
Correctness was further confirmed by sampling trees
from the prior distribution i.e. without data (Refer to
Appendix 2 section for more details). By comparing effec-
tive sample sizes (ESS) [24] and running times, it is
demonstrated that the performance is improved when
including our proposed operator. Finally, the posterior
correlation of rates and node times are discussed.

Well-calibrated simulation study
A well-calibrated simulation study is a powerful tool
for evaluating and validating the implementation of a
Bayesian model [25].
Figure 1 shows the Bayesian model used in this study,

which includes the evolutionary model and the prior
distributions of parameters. As is shown in the figure,
the sequence alignment is simulated by a phylogenetic
continuous-time Markov chain in BEAST2. It contains a
substitution rate matrix given by the HKY85 [26] model
and a substitution tree determined by an uncorrelated
relaxed clock model and Yule model. More specifically,
base frequencies π follow a Dirichlet distribution and the
transition-transversion ratio κ follows a log-normal prior
distribution. The distribution of node times is described in
a Yule tree ψ with hyperparameter birth rate λ following a
log-normal distribution. The rates ri follow a log-normal
distribution with mean of 1 and standard deviation s1
following a hyperprior distribution.
First, we sampled parameters and trees from the full

model 100 times. The random parameters included: stan-
dard deviation of rates across branchess1, birth rate λ, base
frequencies π and transition-transversion bias κ . Second,
we simulated nucleotide alignments using the simulated
parameters. In total, 100 data sets were simulated, each
with 120 taxa. Third, we used BEAST2 with the Constant
Distance operator to infer the tree and parameters from
each of the 100 simulated data sets in turn. Finally, the
posterior estimates of the parameters were compared with
the real values that were used to simulate the correspond-
ing sequence alignment. The comparisons are shown in
Fig. 2.
These results show that the true values of the parame-

ters are within the 95% highest posterior density (HPD)
interval approximately 95% of the time (Table 1). This
well-calibrated simulation study formed part of the val-
idation of our implementation of the Constant Distance
operator.

Performance comparison
To evaluate the performance of Constant Distance oper-
ator in a Bayesian phylogenetic analysis, we explored the
time required to adequately sample the posterior distri-
bution. This was achieved by examining (i) the total time
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Fig. 1 The models and prior distributions to simulate the sequence data. The sequence alignment (SA) is simulated through a phylogenetic
continuous-time Markov Chain (PhyloCTMC) that consists of a substitution model (HKY) and an uncorrelated relaxed clock model
(UCRelaxedClockModel). The random variables in HKY model construct the mutation rate matrix (Q), including base frequencies
(π = {πA ,πC ,πG ,πT }) and kappa (κ). The time trees (ψ ) and branch rates (ri for each branch i in ψ ) construct the substitution tree (ST). The branch
rates have a LogNormal prior with fixed mean 1 and certain standard deviation (denoted by s1). And the time trees have a Yule model prior with
birth rate (λ) having a LogNormal prior. The other prior distributions include a Dirichlet distributions on π , a LogNormal distribution on κ , and a
LogNormal distribution on s1. For notations in LogNormal distributions, the uppercase letters represent the parameters in real space, and the
lowercase letters represent the parameters in log space. In all the simulations, the number of taxa is fixed at 120 (n = 120)

taken by BEAST2 to complete the MCMC inference (run-
ning time), and (ii) the effective sample size (ESS) of the
sampled parameters. The effective sample size of a param-
eter is the number of effectively independent samples
from the posterior distribution. Larger ESS indicates a
better approximation of the marginal posterior distribu-
tion of the parameter. We used Tracer [24] to compute
ESS.
For each dataset, we compared two operator configura-

tions. 1) Using the current operators in BEAST2 to sample
discrete rate categories (Category). 2) Using the Constant
Distance operator to sample continuous rates specified by
an uncorrelated related clock model (Cons). The Cate-
gory configuration is the default setting in BEAST 2.5. We
aim to compare the performance of the Constant Distance
operator to that of the existing operator schedule. In each
configuration, the data set was analyzed 20 times with the
prior distributions and all other model specifications held
constant. The details of operator weights used are given
in Appendix 3.1. Each setting is benchmarked using an
Intel(R) Xeon(R) Gold 6138 CPU (2.00 GHz).
We performed the analysis on two sets of simulated

sequence alignment (See Appendix 3.2 for more details).

The simulated data sets both have 20 taxa but different
sequence lengths, i.e. one data set containing 500 sites, the
other containing 1,000 sites. Moreover, we used four real
data sets to further evaluate the performance of Constant
Distance operator, including a primate data set [27] and
three other data sets (Anolis [28], RSV2 [29, 30] andHIV-1
[31]) in BEAST2 [32].
The ESS and running time are summarised in Fig. 3

and Table 2. To be more specific, we measure the effi-
ciency by ESS per hour, which is calculated by the ESS
of parameters in one simulation divided by the running
time in hours. Then we compare the efficiency of two
configurations by calculating the ratios of ESS per hour
for simulations in the two configurations. If the ratio is
larger than 1, then ESS per hour of Cons configuration is
larger than that of Category configuration. As is shown
in Fig. 3, the efficiency varies in different data sets and
also depends on what model is used in the analysis. For
Anolis data set (29 taxa and 1456 sites), Category con-
figuration performs better than Cons configuration, since
most ratios of the parameters are slightly below the red
line (which means smaller than 1). Moreover, for RSV2
(129 taxa and 629 sites) and HIV-1 data sets (117 taxa and
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Fig. 2Well-calibrated simulation study with 120 taxa. Each point is a separate simulated dataset

663 sites), some ratios of the parameters, “posterior” and
“prior” in particular, are above the red line (larger than 1),
which indicates that Cons configuration provides larger
ESS per hour. Although there are several parameters sam-
pled by Cons configuration having smaller ESS per hour,
it should be noticed that the ratio is calculated by choos-
ing random simulations in the two configurations (See
Appendix 3.3 for more details). Additionally, it is worth
noting that the efficiency is improved more obviously in
simulated data set having 1000 sites, compared with the
data sets having 500 sites. This indicates that the proposed
operators behave better when sequence length is long.
More specifically, in Primates data set (87 taxa and 19220
sites), the longer molecular sequence provides more
accurate genetic distances, which leads to peaked like-
lihood distributions. In this circumstance, the proposed
operators sample rates and node times that fit the constant
genetic distances more efficiently.
Table 2 lists the average running time of 20 simulations

for each data set. It can be seen that Cons configuration
finished simulations with a little bit more time in most

cases. This is because the continuous rates have to be
adjusted for a new clock standard deviation (See Appendix
Section 4 for more details). Moreover, Table 2 also shows
the parameter that has the smallest ESS in Category con-
figuration, and is compare with the corresponding ESS in
Cons configuration. Although the improvement in ESS is
not obvious for both simulate data sets, it is noticed that
ESS of the parameters are much larger in Cons configura-
tion for all the real data sets. After calculating the ESS per
hour, we conclude that Cons configuration improved the

Table 1 Percentage of real values lying in the 95% HPD in Fig. 2

Parameters Coverage Parameters Coverage

Tree height 89 Ucldstdev 91

Tree length 91 πA 94

Kappa 97 πC 96

Birth rate 99 πG 95

Rate mean 100 πT 97
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Fig. 3 Comparison of ESS and running time. There are 6 data sets analysed, including 4 real data sets and 2 simulated data sets with different
number of sites, as is shown in the legend. The red line represent the position where the ratio of ESS per hour is equal to 1. The horizontal axis
represents the names of sampled parameters

efficiency of the worst estimated parameter in Category
configuration by a factor of 1.55 to 8.53.

Correlation analysis of rates and branch lengths
In this section, we conduct a pairwise comparison
between rates and branch lengths in units of time. We
used a data set of ratite mitochondrial genomes [33]. This
data set includes 7 species of ratites and an alignment of
10767 sites. After analysing the ratites data set in BEAST2
using the Constant Distance operator, we calculated the
Pearson coefficient between the rates and the times across
branches to investigate the posterior correlation of these
parameters.
The results are summarised in Fig. 4. Figure 4a presents

the topology of the maximum clade credibility tree. We
utilised the programme TreeStat2 [34] to obtain the fil-

tered trees that have the same topology as the maximum
clade credibility tree from the sampled trees in MCMC
chain. This means the trees that have different shared
common ancestors of each taxon from the reference tree
are filtered out.
Afterwards, Fig. 4b shows the pairwise comparison of

the 12 branch rates and 12 branch lengths (in time) on
these filtered trees. As can be seen from the diagonal, the
rate on one branch is negatively correlated with the length
of that branch, which indicates that an older divergence
time will lead to a smaller rate. This is because the primary
signal in the data is genetic distance, so that there will be
a range of rates and divergence times that are consistent
with the genetic distances, but the products of these quan-
tities will vary less than the individual parameters. The
consequence is that there will tend to be a negative rela-



Zhang and Drummond BMC Evolutionary Biology           (2020) 20:54 Page 7 of 28

Table 2 Summary of ESS and running time

Data Configuration
Average running

Parameter ESS
time (hour)

Anolis
Category 0.3788

frequency.A
698.95

Cons 0.4212 750.53

RSV2
Category 2.0509

prior
1231.32

Cons 2.6742 3409.88

HIV-1
Category 2.6040

prior
387.83

Cons 3.2680 753.48

Primates
Category 31.4059

rate.mean
71.79

Cons 21.6584 422.24

Simulated data Category 0.0728
frequency.G

819.39

with 500 sites Cons 0.0834 837.50

Simulated data Category 0.4403
frequency.G

2760.41

with 1000 sites Cons 0.4863 2961.67

tionship between rate ri and branch length li i.e. ri = di/li.
At the same time, there will tend to be a positive rela-
tionship between rate ri and its parent’s branch length lip,
since a larger lip leads to a smaller li. Moreover, for cher-
ries that share the same branch length in the tree, they will
tend to have the same correlation pattern. Take ANDI and
DIGI as an example. r1 and l1 are negatively correlated,
but r1 and l8 are positively correlated, which is also the
correlation of r2, l2 and l8.

It is precisely this form of correlation structure in the
posterior that our operator anticipates, and these corre-
lations are the reason that our operator performs better
than naive alternatives.

Sampling a fixed unrooted tree
A limiting case for the relaxedmolecular clockmodel (and
one exploited in some of our validation tests) occurs for
long sequences, when the branch lengths of the unrooted

Fig. 4 Correlation analysis in the ratites tree. l represents the length of a branch, that is the time difference between a parent node and a child node,
where l1 = l2 = t1 − 0, l3 = l4 = t2 − 0, l5 = t3 − 0, l6 = t4 − 0, l7 = T − 0, l8 = t5 − t1, l9 = t3 − t2, l10 = t4 − t3, l11 = t5 − t4 and l12 = T − t5.
The rates and branch lengths are converted into log space and then Pearson’s coefficients are computed, which range from -1 to 1. Blue indicates
positive correlations and red indicates negative correlations. The darker the colour, the stronger the correlation
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tree, in units of expected substitutions per site, become
known without error. With full length genomes now avail-
able, although inferring trees from genomes involves com-
plexities and assumptions such as a good partition scheme
[35], this limiting case might be approached in some data
sets. As a simple test in this paper, this gives rise to an
alternative approach to analysis, where divergence times,
a root position and the branch rates are random vari-
ables, and the data are a set of branch lengths in units of
substitution on a known unrooted tree topology.
Previous work done by Reis and Yang [14] also tried

to approximate the likelihood of such an unrooted tree
in Bayesian phylogenetic inference. Similar researches in
[6, 13] show that these methods can account for rate
changes in a relaxed clockmodel, but the genetic distances
are not fixed, for example Stéphane Guindon used a Gibbs
sampling algorithm [13]. Outside of the Bayesian MCMC
formalism, least-squares criteria [36] andmaximum likeli-
hood [37, 38], can also be applied to estimate substitution
rates and divergence times in unrooted trees.

In this section, we investigated this approach on a fixed
substitution tree reconstructed from whole mitochon-
drial genomes from a set of ratite species [33]. Since no
uncertainty is admitted in the genetic distances and the
proposed operator doesn’t change the genetic distances,
the phylogenetic likelihood is no longer needed and the
unrooted tree becomes the data, rather than a multiple
sequence alignment.
First of all, we used the ratites data set to construct

an unrooted tree with PhyML 3.0 [39, 40]. Figure 5a
shows the unrooted tree with the genetic distances on the
branches which are fixed in the subsequent relaxed clock
analysis in BEAST2.
As an initial starting point, the root is assigned

using the midpoint method. After that, according to the
genetic distances among seven taxa and the position
of the root, consistent divergence times are specified
and assigned to each ancestral node, so that a valid
rooted time tree is obtained. Once divergence times are
determined, rates on the branches are also calculated

Fig. 5 Illustration of sampling a fixed unrooted tree. In subfigure (a), the unrooted tree is obtained from the ratites data set [33] by a maximum
likelihood method [39] and the labeled numbers represent genetic distances. The three unique tree topologies in (b) (c) and (d) are obtained from
the sampled trees by using program TreeTraceAnalysis [41]. The branch rates and node times are summarised by using program TreeAnnotator [42].
The labeled numbers represent the posterior mean of rates on the corresponding branches. The colour of branches from green to red indicates the
rates increasing from small to large, and the blue bars represent the 95% HPD of the corresponding node times
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so that the products match the unrooted substitution
tree.
Then we used Constant Distance operator to sample a

Markov chain initiated by this starting tree. The result-
ing posterior distribution is shown in Fig. 5b-d. As can
be seen, despite that there is some uncertainty in the
root position, the most probable tree in Fig. 5b is con-
sistent with previous analyses of this data (see Figure 2
in Ref. [33]). For large data sets of long sequences, the
proposed operators may prove useful to provide faster
divergence time estimates based on the assumption of
known unrooted topology and branch lengths in units of
expected substitutions per site.

Discussion
Wehave demonstrated that the presented operator is valid
and able to improve the efficiency of phylogenetic MCMC
for relaxed clock models. The overall performance of a
Bayesian phylogenetic analysis will be affected by the pro-
portion of MCMC steps that this operator is chosen to
make the proposal. In the BEAST2 software, this can be
changed by modifying the relative weights operators in
the operator schedule. The ideal proportion is non-trivial
to determine for an arbitrary data set. In this study, we
assigned equal weights on operations to all internal nodes
(including the root). How to assign weights to achieve bet-
ter performance is not studied in this paper, and users may
assign different weights in practice. Hence, an optimal
method of assigning weights still needs further investiga-
tion.
The key idea of the presented operator (to maintain

the genetic distances) shows a novel direction for more
efficient proposals in Bayesian phylogenetic MCMC. For
example, the operations on the internal nodes, in the cur-
rent study, involve one random internal node, one node
time and three branch rates. If two or more nodes are
selected, then more associated rates and node times can
be sampled in one proposal, which may achieve even
better efficiency. Another possible approach is to make
small changes to the genetic distances as well. To min-
imise the number of changes to genetic distances, a two-
dimensional random draw will be used to change four
parameters (one divergence time and one rate changed
directly, the other two rates derived so as to minimise
changes to genetic distances). What’s more, it should be
pointed out that Small Pulley and Big Pulley can only be
applied to reversible continuous-timeMarkov chain mod-
els where unrooted trees can be used in inference, because
these operators require the underlying unrooted tree to be
unchanged. Future work could elaborate a larger class of
operators along these lines.
As data sets have increased in size the impetus to

improve efficiency of Bayesian phylogenetic inference
algorithms has steadily increased. Besides more effec-

tive proposal mechanisms within Metropolis-Hastings
MCMC, completely novel approaches to Bayesian phy-
logenetics have also begun to get some attention. Vari-
ational methods are one alternative for approximating
Bayesian posterior distributions [43]. These approaches
make inference an optimisation problem and take advan-
tage of tractable variational distributions that approx-
imate the posterior distribution, thus decreasing the
computational cost by avoiding high-dimensional inte-
grals in MCMC sampling schemes. Recent work has
investigated the potential for applying variational meth-
ods to phylogenetics [44, 45]. Our improved MCMC
methods provide a performance baseline for these new
approaches.

Conclusions
As data sets have increased in size, the need for compu-
tational efficiency of Bayesian phylogenetic analyses has
also increased. In this paper, we have discussed a new
tree proposal that substantially increases the efficiency of
Bayesian phylogenetic inference under a popular class of
relaxed molecular clock models.
We demonstrate the correctness of this algorithmwith a

series of tests including a well-calibrated simulation study.
Based on both simulated and real data sets, the proposed
operator is more efficient than current algorithms imple-
mented in BEAST2 for datasets with long sequences. This
is a desirable property because efficiency is most impor-
tant for larger datasets. The proposed operator is available
for use as a package of BEAST2.

Methods
In this section, we define the Constant Distance Oper-
ator. Figure 6 illustrates the flow chart of the proposed
operators. In a phylogenetic tree, the node to operate
on is denoted by X and the Constant Distance Operator
works differently on internal nodes and the root node. The
details of the operations are introduced step by step in the
following subsections.

Operations on internal nodes
Figure 7 represents the tree (or subtree) with the node X
that is randomly selected from among the internal nodes.
Let g be the tree in the current state. The following steps
propose a new divergence time in g′ and three rates in r′.
Step 1 Identify the parent node and two child nodes of

X, denoted by P, L and R respectively.
Step 2Denote the nodes times of X, P, L and R by tX , tP,

tL, tR respectively. Denote the rates on the branches above
the nodes by rX , rL and rR respectively.
Step 3 Propose a new node time for X by tX ′ ← tX + a,

where a follows a Uniform distribution with a symmetric
window size w, i.e. a ∼ Uniform[-w, +w], for some win-
dow size w. Make sure that the proposed time is valid, i.e.
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Fig. 6 The flow chart of the Constant Distance operator

max{tL, tR} < tX ′ < tP holds. Otherwise, we reject the
proposal.
Step 4 Propose new rates by using Eq. 3.

rX ′ = rX × (tP − tX)

tP − tX ′ rL′ = rL × (tX − tL)

tX ′ − tL

rR′ = rR × (tX − tR)

tX ′ − tR

(3)

Step 5 Return the Green ratio αIN (Refer to Calculating
the Green Ratio in the following subsection).

Operations on the root
We present three strategies for proposing the new rates
and a new divergence time for the special case when X
is the root node. i) The Simple Distance operator only

Fig. 7 Illustration of the operation on an internal node. The operator proposes tX ′ , rX ′ , rL ′ and rR ′ , during which dL , dR , dX are kept constant
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proposes a new root time. ii) Small Pulley adjusts the dis-
tances of branches on both sides of the root. iii) Big Pulley
proposes a new tree topology by rearranging the root,
without perturbing the unrooted tree. As is illustrated in
Fig. 8a, all the operations on the root, including Big Pulley
that changes the tree topology, do not change the underly-
ing unrooted tree. For instance, no matter where the root
X is (either on branch EF or AE), the operators maintain
the distances (dAB, dAC , dAD, dBC , dBD, dCD) and preserve
the unrooted tree at the same time.

Simple distance
Figure 8b, c and d show the trees that are rooted at the
node X. The original tree g in the current state is shown
in Fig. 8b. Similar to the operations on internal nodes, we
will use the following steps to propose a new root time in
g′ and two rates in r′, as is illustrated in Fig. 8c. At the same
time, the genetic distances of two branches linked to the
root, i.e. dL and dR, are kept constant.
Step 1 Identify the child nodes of the root X, denoted

by L and R. Their corresponding node times and branch
rates are tX , tL, tR and rL, rR.
Step 2 Propose a new node time for the root X by tX ′ ←

tX + a, where a ∼ Uniform[-w, +w]. Make sure that tX ′ >

max{tL, tR} holds. Otherwise, we reject the proposal.

Step 3 Propose new rates for branches on both sides of
the root by using Eq. 4.

rL′ = rL × (tX − tL)
tX ′ − tL

rR′ = rR × (tX − tR)
tX ′ − tR

(4)

Step 4 Return the Green ratio αSD.

Small pulley
In contrast to Simple Distance, Small Pulley changes
genetic distances of branches on both sides of the root.
As is illustrated in Fig. 8d, two new rates in r′ are pro-
posed based on those in the original tree g. In order to
maintain the total genetic distance dL + dR of the two
branches linked to the root, after dL′ is proposed, dR will
be adjusted simultaneously. In other words, Small Pulley
keepsD = dL+dR constant. The detailed process includes
the following 4 steps.
Step 1 Identify the child nodes of the root X, denoted by

L andR. Their corresponding node times and branch rates
are tX , tL, tR and rL, rR. The implied genetic distances of
the two branches linked to the root can be calculated by:

dL = rL × (tX − tL) dR = rR × (tX − tR) (5)

Fig. 8 Illustration of operations on root. a An example of a 4-taxa unrooted tree and two possible rooted trees for the operator to sample, during
which the unrooted tree can not be changed. Based on the original tree in b, Simple Distance proposes a node time in g′ and two rates in r′ and
keeps dL , dR constant in c. Small Pulley proposes two rates in r′ and D = dL + dR remains constant in d
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Step 2 Propose a new genetic distance for dL by adding
a random number that follows a Uniform distribution, i.e.
dL′ ← dL + b, where b ∼ Uniform[-v, +v], for some win-
dow size v. Make sure that 0 < dL′ < D holds. Otherwise,
we reject the proposal.
Step 3 Propose new rates for branches on each side of

the root:

rL′ = dL′

tX − tL
rR′ = D − dL′

tX − tR
(6)

Step 4 Return the Green ratio αSP .

Big pulley
Big Pulley resamples the rates and times while maintain-
ing the implied unrooted tree in units of genetic distance.
So the genetic distances between the taxa are held con-
stant, but the location of the root in the time tree is
readjusted.
Before describing the detailed steps, we introduce a

method Exchange that proposes a new root position. In
Fig. 9, let (i)X denote the root of tree g, (ii)C andN denote
the two child nodes of X, (iii) S and M denote the two
child nodes of C. The Exchange(M, N) method involves
the following steps:

• Swap the two nodes by pruning and regrafting, i.e.
cuttingM (N) at its original position and attaching it
to the original position of N (M).

• Propose dC ′ ← dC + b, where b ∼ Uniform[-v, +v].
Make sure that 0 < dC ′ < D holds, where
D = dC + dN . Otherwise, we reject the proposal.

• The distances on the other three branches, i.e. dS, dM
and dN , will be adjusted:

dS ′ = dS dM ′ = dM − dC ′ dN ′ = dN + dC (7)

As can be seen from the above descriptions, the method
Exchange(M, N) swaps two nodes and adjusts distances
(dS, dM, dN and dC) on the four branches so as to main-
tain the implied genetic distances among three taxa S, M
and N.
Additionally, operations in Big Pulley vary depending on

the shape of phylogenetic tree. In Fig. 10, a symmetric tree
is shown on the left, in which both the child nodes of the
root have two child nodes, i.e. L having children H1, H2
and R having childrenH3,H4. But in the asymmetric tree
on the right, only one of the child nodes of the root has two
child nodes below it, i.e. O having children G1, G2. But
the other child node Y doesn’t have any child node, which
is a heterochronous tip. The corresponding operations are
detailed in the following two parts.

Symmetric tree For the symmetric tree in Fig. 10, the
operations are illustrated in Fig. 11, after which one of the
four possible trees ( 1© 2© 3© 4©) will be proposed. The
detailed process is described in Algorithm 1.
For example, suppose we are going to propose tree 1©.

After the new node times for the root X and L are pro-
posed, we apply the method by Exchange (H1, R), so that
four distances are adjusted, as follows:

dH1
′ = dH1−dL′dH2

′ = dH2dL′ = dL+bdR′ = dL+dR
(8)

Finally, in this example the new rates would be updated
by:

rH1
′ = dH1

′

tX ′ − tH1
rH2

′ = dH2
′

tL′ − tH2
rL′ = dL′

tX ′ − tL′ rR
′ = dR′

tL′ − tR
(9)

Asymmetric tree For an asymmetric tree such as in
Fig. 10 we would operate as illustrated in Fig. 12, in which

Fig. 9 Illustration of Exchange (M,N)method. This method is applied to tree g and proposes g′ by swappingM and N, so that the three distances are
adjusted to maintain the distances among S,M and N. That is, dC ′ = dC + b, dN ′ = dC + dN and dM ′ = dM − dC ′ , where b ∼ U[−v,+v]
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Fig. 10 Two different tree shapes. The symmetric tree is on the left and the asymmetric tree is on the right. The dashed triangles represent the
potential subtrees rooted at the nodes

there are three possible trees ( 5© 6© 7©). The operations
are detailed in Algorithm 2.
To give an example, assume we are going to propose tree

5©. Firstly, tX ′ and tO′ are proposed in Step 3 and Step 4.
Then, in Step 4, the method Exchange (G1, Y) is applied,
after which the four distances are adjusted as follows:

dG1′ = dG1−dO′dG2′ = dG2dO′ = dO+bdY ′ = dY+dO
(10)

And the four rates are updated as follows:

rG1′ = dG1′

tX ′ − tG1
rG2′ = dG2′

tO′ − tG2
rO′ = dO′

tX ′ − tO′ rY
′ = dY ′

tO′ − tY
(11)

Calculating the green ratio
MCMC operators must use reversible proposal distribu-
tions to satisfy the detailed balance requirements of the
MCMC algorithm (Refer to Appendix section 1 for more
details). Therefore, all four of our operators involve a final
step of calculating the Green ratio for the proposal.
According to the third and fourth steps in the oper-

ations for internal nodes, three rates on the branches
linked to the selected internal node are proposed by
one random number a that is used to change the node
time. There are four parameters involved in this pro-
posal, comprised of a 3-dimensional rate space and a
1-dimensional time space. The proposed operator utilises
one random number in time space and makes changes
in both time and rate space, which leads to a dimension-
matching problem. To solve this dimension-matching

problem, as is mentioned in Green’s paper [20], it is nec-
essary to construct the Jacobian matrix. In Eq. (12), J1
deals with the parametric spaces before the proposal in
vector IN =[ tX , rX , rL, rR] and after the proposal in vector
OUT =[ tX ′, rX ′, rL′, rR′].

J1 =
[

∂f
∂tX

∂f
∂rX

∂f
∂rL

∂f
∂rR

]
=

⎡
⎢⎢⎢⎢⎣

∂ f1
∂tX

∂ f1
∂rX

∂ f1
∂rL

∂ f1
∂rR

∂ f2
∂tX

∂ f2
∂rX

∂ f2
∂rL

∂ f2
∂rR

∂ f3
∂tX

∂ f3
∂rX

∂ f3
∂rL

∂ f3
∂rR

∂ f4
∂tX

∂ f4
∂rX

∂ f4
∂rL

∂ f4
∂rR

⎤
⎥⎥⎥⎥⎦
,

(12)

where the functions f1, f2, f3 and f4 represent how the
operator makes a proposal. After substituting Eq. (3) in
Eq. (12), the Green ratio for the internal nodes can be
derived:

αIN = p(−a)
p(a)

|J1| = tP − tX
tP − tX ′ × tX − tL

tX ′ − tL
× tX − tR

tX ′ − tR
, (13)

where the proposal density p(−a) is equal to p(a) since the
random number a is drawn from Uniform distribution.
Likewise, the Green ratio for Simple Distance, Small

Pulley and Big Pulley can be obtained:

αSD = tX − tL
tX ′ − tL

× tX − tR
tX ′ − tR

, (14)

αSP = 1, (15)

αBP = μ × tX ′ − tC
tX ′ − tC ′ × tC − tS

tC ′ − tS
× tC − tN1

tX ′ − tN1
× tX − tN2

tC ′ − tN2
,

(16)
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Fig. 11 Illustration of operations on the symmetric tree in Fig. 10. The proposed operator will propose one of the four possible trees, each with 0.25
probability

where μ = p(g′, g)/p(g, g′) is defined as the proposal
ratio of topology change and is obtained by Algorithm
3. More details of how to calculate the determinant
of the Jacobian matrix are explained in Appendix1
section.

Appendix
1. the green ratio
When developing an operator for MCMC, the proposal
function must be reversible. In other words, the proba-

bility that the operator propose a new state from the
current state is required to be equal to the probability
that the proposed state goes back to current state. To
be specific, let π(x) be the target probability distribu-
tion and p(x, x′) be the transition kernel in the continuous
Markov chain. The reversibility condition requires that
π(x)p(x, x′) = π(x′)p(x′, x). And an operator provides a
proposal q(x, x′) with some probability α(x, x′) that the
proposal is accepted. Thus, the reversibility condition is
rewritten as π(x)q(x, x′)α(x, x′) = π(x′)q(x′, x)α(x′, x).

Fig. 12 Illustration of operations on the asymmetric tree in Fig. 10. The proposed operator will propose one of the three possible trees. If to ′ < tG1,
7© has 1 probability, otherwise 5© and 6© have 0.5 probability each
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Algorithm 2 Proposal for asymmetric trees in Big pulley
{Step 1: Identify the child node of the root X that
has two child nodes below, which is denoted by O.
The other child node of the root, which does not have
any child nodes and means a heterochronous tip, is
denoted by Y. The node times of the root X, Y, O and
its child nodes are denoted by tX , tY , tO, tG1 and tG2
respectively.}
Let X be the root of the tree.
Let O be the child of X that has children, and let Y be
the child of X that does not have children.
{Step 2: Propose a new node time for the root X.}
a ∼ Uniform[-w, +w]
tX ′ ← tX + a
{Step 3: Propose a new node time for the nodeO.}
a3 ∼ Uniform[-w, +w]
tO′ ← tO + a3
if tO′ < tY or tO′ > tX ′ then

Reject the proposal.
end if
{Step 4: Adjust the distances according to the tree
corresponding topologies.}
if tO′ > max{tG1, tG2} or tG1 = tG2 then

if σ4 ∼ Uniform(0, 1) < 0.5 then
Apply Exchange (G1, Y) and propose tree 5©.

else
Apply Exchange (G2, Y) and propose tree 6©.

end if
else ifmin{tG1, tG2} < tO′ < max{tG1, tG2} then

Exchange the older child of O and Y. (For the asym-
metric tree in Fig. 5, we apply Exchange (G1, Y) and
propose tree 7©).

else if tO′ < min{tG1, tG2} then
Reject the proposal.

end if
{Step 4: Update the rates on the corresponding
branches.}
{Step 5: Return the Green ratio αBP.}

Considering the subspace ϕ1 on x and subspace ϕ2 on
x′, it is assumed that there is a symmetric measure on
the combined parametric space ϕ = ϕ1 × ϕ2, so that
π(x)q(x, x′) has a density with respect to a single mea-
sure on ϕ. Then, Green suggested that the reversibility
condition should be satisfied by detailed balance [20], as
represented by Eq. (17). And according to Peskun’ proof,
it is optimal to take Eq. (18) as the acceptance probability
to retain the detailed balance [46].
∫

A
π(x)dx

∫

B
q(x, x′)α(x, x′)dx =

∫

B
π(x′)dx′

∫

A
q(x′, x)α(x′, x)dx′ ,

(17)

Algorithm 3 Calculation of μ for Big pulley
Original tree is symmetric:
if the node that has been exchanged with L or R has
child nodes then

α = β = 0.25
else if tR > tL then

α = 1,β = 0.5
else if tR < tL then

α = 0.5,β = 1
else if tR = tL then

α = β = 1
end if
if Proposed tree belongs to 1© or 2© then

Return μ = α
0.25

end if
if Proposed tree belongs to 3© or 4© then

Return μ = β
0.25

end if

Original tree is asymmetric:
if the node that has been exchanged with O has child
nodes then

γ = 0.25
else

γ = 0.5
end if
if Proposed tree belongs to 5© or 6© then

Return μ = γ
0.5

end if
if Proposed tree belongs to 7© then

Return μ = 0.25
1

end if

where A ∈ ϕ1 and B ∈ ϕ2 are two Borel sets. q(x, x′)
denotes the probability that the operator proposes a new
state x′ given the current state x.

αH(x, x′) = min
{
1,

π(x′)p(x′, x)
π(x)p(x, x′)

}
, (18)

where p(x′, dx)/p(x, dx′) is known as the Hastings ratio.
However, for operators that do not have a symmetric

measure, it is necessary to include the Jacobian matrix J
in order to deal with the dimension matching problem, as
is discussed in Green’s paper [20]. In this case, Eq. (18) is
extended, as is shown in Eq. (19).

αG(x, x′) = min
{
1,

π(x′)p(x′, x)
π(x)p(x, x′)

|J|
}
, (19)

where J = ∇h(x, x′) represents a vector differential matrix
of deterministic function h. α = p(x′,x)

p(x,x′) |J| is defined as
the Green ratio, and J ensures that the proposal have a
symmetric measure on each subspace in state x and x′.
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1.1 calculating the green ratio for operations on internal
nodes
The Constant Distance Operator firstly proposes a new
time for the randomly selected internal node (Eq. (20a)),
and then proposes three rates by the original distances and
new node times(Eqs. (20b)∼ (20d)).

f1 : tX ’ = tX + a (20a)

f2 : rX ′ = rX × (tP − tX)

tP − tX ′ (20b)

f3 : rL′ = rL × (tX − tL)
tX ′ − tL

(20c)

f4 : rR′ = rR × (tX − t2)
tX ′ − tR

(20d)

Substituting Eq. (20) in the Jacobian matrix J1 (Eq. (12)),
we can get Eq. (21), so that the determinant of J1 can be
obtained by Eq. (22).

J1 =

⎡
⎢⎢⎢⎣

1 0 0 0
−rX

tP−tX ′
tP−tX
tP−tX ′ 0 0

rL
tX ′−tL 0 tX−tL

tX ′−tL 0
rR

tX ′−tR 0 0 tX−tR
tX ′−tR

⎤
⎥⎥⎥⎦ (21)

|J1| = 1 ×

∣∣∣∣∣∣∣

tP−tX
tP−tX ′ 0 0
0 tX−tL

tX ′−tL 0
0 0 tX−tR

tX ′−tR

∣∣∣∣∣∣∣

= tP − tX
tP − tX ′ ×

∣∣∣∣∣
tX−tL
tX ′−tL 0
0 tX−tR

tX ′−tR

∣∣∣∣∣

= tP − tX
tP − tX ′ × tX − tL

tX ′ − tL
× tX − tR

tX ′ − tR

(22)

1.2 calculating the green ratio for simple distance
Simple Distance proposes two rates by using Eqs. (23b)
and (23c), according the new root time in Eq. (23a). So the
Jacobian matrix can be obtained as is shown in Eq. (24).

tX ′ = tX + a (23a)

rL′ = rL × (tX − tL)
tX ′ − tL

(23b)

rR′ = rR × (tX − tR)
tX ′ − tR

(23c)

J2 =
⎡
⎢⎣

∂tX ′
∂tX

∂tX ′
∂rX

∂tX ′
∂rR

∂rL ′
∂tX

∂rL ′
∂rX

∂rL ′
∂rR

∂rX ′
∂tX

∂rX ′
∂rX

∂rX ′
∂rR

⎤
⎥⎦ =

⎡
⎣

1 0 0
rL

tX ′−tL
tX−tL
tX ′−tL 0

rx
tX ′−tR 0 tX−tR

tX ′−tR

⎤
⎦

(24)

So the determinant of J2 is calculated by Eq. (25)

|J2| = tX − tL
tX ′ − tL

× tX − tR
tX ′ − tR

(25)

Calculating the green ratio for small pulley
Small Pulley proposes a new genetic distance of a branch
on one side of the root by adding a random number b,
which is equal to adding a random number b to the origi-
nal product of rate and time on that branch. As a result, a
new rate is proposed by Eq. (26a). Similarly, a new rate on
another branch is proposed by Eq. (26b), because the total
distance of the two branches linked to the root should
remain constant.

rL′ = rL × (tX − tL) + b
tX − tL

(26a)

rR′ = [ rR × (tX − tR) + rL × (tX − tL)]−[ rL × (tX − tL) + b]
tX − tR

= rR × (tX − tR) − b
tX − tR

(26b)

Then, as is illustrated in Eq. (27), the Jacobian matrix J3
is simply obtained, which makes the determinant |J3| = 1.

J3 =
[

∂rL ′
∂rL

∂rL ′
∂rX

∂rR ′
∂rL

∂rX ′
∂rX

]
=

[
1 0
0 1

]
(27)

1.3 calculating the green ratio for big pulley
Two new node times are proposed in Big Pulley. One is
the root time (Eq. (28a)), the other is the node time of the
child node of the root. It can be either children of the root,
i.e. son and dau. So tC ′ is used to denote the node time
proposed, as is seen in Eq. (28b). In addition, the distances
are adjusted by the method Exchange (M, N), dependent
on which nodes are chosen. As a result, the four rates are
proposed, as is shown in Eq. (28c)∼Eq. (28f)

tX ′ = tX + a (28a)

tC ′ = tC + a1,2,3 (28b)

rC ′ = rC × (tX − tC) + b
t′X − tC ′ (28c)

rS ′ = r2 × (tC − tS)
t′C − tS

(28d)

rM ′ = rM × (tC − tM)−[ rC × (tX − tC) + b]
tX ′ − tM

(28e)

rN ′ = rC × (tX − tC) + rN × (tX − tN )

tC ′ − tN
(28f)

where a1,2,3 is the random number to propose a new node
time for the child node of the root. Depending on which
child node is selected, the notation is different, i.e. a1, a2,
a3. Here, to make it a general case, ax is used.
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Therefore, the Jacobian matrix J4 for the six parameters
in Eq. (28) is obtained by Eq. (29). And the determinant of
J4 is calculated shown in Eq. (30).

J4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tX ′
∂tX

∂tX ′
∂tC

∂tX ′
∂rC

∂tX ′
∂rS

∂tX ′
∂rM

∂tX ′
∂rN2

∂tC ′
∂tX

∂tC ′
∂tC

∂tC ′
∂rC

∂tC ′
∂rS

∂tC ′
∂rM

∂tC ′
∂rN2

∂rC ′
∂tX

∂rC ′
∂tC

∂rC ′
∂rC

∂rC ′
∂rS

∂rC ′
∂rM

∂rC ′
∂rN2

∂rS ′
∂tX

∂rS ′
∂tC

∂rS ′
∂rC

∂rS ′
∂rS

∂rS ′
∂rM

∂rS ′
∂rN2

∂rM ′
∂tX

∂rM ′
∂tC

∂rM ′
∂rC

∂rM ′
∂rS

∂rM ′
∂rM

∂rM ′
∂rN

∂tN ′
∂tX

∂tN ′
∂tC

∂tN ′
∂rC

∂tN ′
∂rS

∂tN ′
∂rN

∂tN ′
∂rN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
rC

tX ′−tC ′
−rC

tX ′−tC ′
tX ′−tC
tX ′−tC ′ 0 0 0

0 rS
t′−tS 0 tC−tS

tC ′−tS 0 0
−rC

tX ′−tM
rN1+rC
tX ′−tM

−(tX−tC)
tX ′−tM 0 tC−tM

tX ′−tM 0
rC+rS
tC ′−tN

−(rC+rS)
tC ′−tN

tX−tC
tC ′−tN 0 0 tX−tN

tC ′−tN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

|J4| = tX ′ − tC
tX ′ − tC ′ ×

tC − tS
tC ′ − tS

× tC − tM
tX ′ − tM

× tX − tN
tC ′ − tN

(30)

Last but not least, due to the change of tree topol-
ogy in Exchange (M, N), the probability of the proposed
tree going back to the original tree p(g|g′), as well as the
probability of making the proposal p(g′|g), should be con-
sidered. As the ratio of p(g|g′)/p(g′|g) is defined as μ, the
calculation of μ is detailed in the following algorithm.

2. sampling from the prior

In this section, we aim to validate the correctness of
the proposed operators. To be more specific, we firstly
run the simulations by sampling from prior distributions
in BEAST2. Since the prior distributions are determin-
istic, we can analytically calculate the theoretical joint-
distributions of sampled parameters in MCMC chains. By
comparing the sampled distributions with the analytical
results, we demonstrate whether the proposed operators
are able to sample parameters correctly.

In Fig. 13, a tree with three taxa A, B and C (plus one
internal node D, and root E) is used as a small example in
the experiments in this section. In the figure, g1 is set as
the initial tree. Firstly, a LogNormal distribution is used
as the rate prior in the uncorrelated relaxed clock model,
given by Eq. (31).

r = {rA rB rC rD} ∼ LogNormal(m = −3, s = 0.25)
(31)

In addition, a Coalescent model [47] with constant pop-
ulation size (N = 0.3) is used to describe the tree prior.
Hence, for the tree in Fig. 13, the probability of node times
is calculated by Eq. (32).

p(t = {tE , tD}) = (
1
N

×e−
1
N (tE−tD))×(

1
N

×e−
3
N tD) (32)

After the priors are specified, the distribution to sam-
ple can be exactly known, since the samples are drawn
from the prior distributions. In other words, as the rates
are functions of its genetic distance and times, the joint
distribution to sample can be represented by Eq. (33).

p(r, t) = p(tE , tD) × p(rD) × p(rA) × p(rB) × p(rC)

= p(tE , tD) × p
(

dD
tE − tD

)
× p

(
dA

tD − tA

)

× p
(

dB
tD − tB

)
× p

(
dC

tE − tC

)
,

(33)

where p(.) is the probability of certain rate values in the
LogNormal distribution. Therefore, the whole probability
can be obtained by conducting numerical integration on
Eq. (33), which shows the probability distribution over all
the possible values of parameters.

2.1 test the operator on internal nodes
The genetic distances, node times and rates for g1 in
Fig. 13 are given in Table 3. To test roundly, two scenarios
are designed. In each scenario, the genetic distances are
fixed, the node time tD starts from the initial value and will
be changed by the proposed operator during the sampling
process. Essentially, the proposed operator makes node D

Fig. 13 The illustration of sampling from prior. g1 is set to be the original tree where an MCMC chain starts. When testing Big Pulley, the proposed
operator samples the trees among g1, g2 and g3
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Table 3 Initial settings for testing operations on internal nodes

Genetic distances (fixed) tD tE Initial rates

dj dk dx di initial (fixed) rj rk rx ri

Scenario 1 0.1 0.2 0.4 0.27 1 10 0.1 0.2 0.04 0.03

Scenario 2 0.4 0.8 2.4 1.6 0.4 0.8 1 2 3 4

move between node A and E. Besides, to make sure that
the result is robust, two differentMCMC chain lengths are
performed in each scenario, i.e. 10 million and 20 million.
The mean, mean error and the standard deviation of

the MCMC samples are summarised in Table 4. Besides,
according to Eq. (33), the actual joint distribution is
obtained by using Eq. (34), and is used to evaluate the
results, which is also included in Table 4. Moreover, the
histograms of MCMC samples that indicate the sampled
distributions, as well as the curves of the numerical inte-
gration of Eq. (34), are shown in Fig. 14. From Table 4
and Fig. 14, it can be seen that the red curves well fit
the black histograms, and the mean values and standard
deviations are consistent, which makes it safe to conclude
that the proposed operator samples the internal node
correctly.

p(r, t) =
∫ tE

tD=0
p(tE , tD) × p

(
dA
tD

)
× p

(
dB
tD

)

× p
(

dD
tE − tD

)
× p

(
dC
tE

)
dtD

(34)

2.2 test the operator on root
Still starting from g1 in Fig. 13, the initial settings for test-
ing the root are given in Table 5. And the three strategies
are tested separately in the following parts.

2.2.1 Using Simple Distance The root time tE is sam-
pled by Simple Distance, which ranges from 1 to positive
infinity theoretically. Namely, all the genetic distances and
the node time tD are fixed. Similar to Eq. (34), the joint
distribution of tE and rates to sample can be obtained by
Eq. (35).

p(r, t) =
∫ +∞

tE=1
p(tE , tD) × p

(
dA
tD

)
× p

(
dB
tD

)

× p
(

dD
tE − tD

)
× p

(
dC
tE

)
dtE

(35)

The results are given in Table 6 and Fig. 15a. As can
be seen, the mean and the standard deviation of MCMC
samples and numerical integration are close to each other,
which confirms that the two distribution are the same.
Thus, Simple Distance samples the root time and two
branch rates correctly.

2.2.2 Using Small Pulley Although both dx and di are
changed during the sampling process when using Small
Pulley, the sum of dD and dC are kept 0.67 in this test, as
the initial setting shown in Table 5. Tomake it simple, only
dD is compared.
Then, based on Eq. (33), the exact distribution of di

can be obtained by Eq. (36), which is compared with
the sampled distribution in Table 6 and Fig. 15b. Even
though there exist some errors, the sampled param-
eters can be considered to follow the same distribu-
tion. So the Small Pulley is also able to provide correct
samples.

p(r, t) =
∫ 0.67

dD=1
p(tE , tD) × p

(
dA
tD

)
× p

(
dB
tD

)
× p

(
dD

tE − tD

)

× p
(
0.67 − dD

tE

)
ddD

(36)

2.2.3 Using Big Pulley For g1 in Fig. 13, a new tree,
together with the root time tE and node time of its older
child tD, as well as a genetic distance di, is proposed by
Big Pulley. In this case, the initial tree g1 will either go
to g2 or g3, as is shown in Fig. 13. So the samples are
repeatedly drawn from the 3 trees. Besides, according to
the initial settings in Table 5, the genetic distances remain
unchanged during the process, i.e. dAB = 1, dAC = 1 and
dBC = 1 hold. Hence, the distribution we are about to
achieve can be calculated by Eq. (37).

Table 4 Results of sampling the internal node

Chain Length
Sample from MCMC Integral curve Plot

Mean Err St.dev Mean Err St.dev

Scenario 1
10000000 3.2727 8.3e-3 0.5467

3.2669 1.3e-06 0.5553
Fig. 14a

20000000 3.271 6.1e-3 0.5616 Fig. 14b

Scenario 2
10000000 0.4677 3.9e-04 0.0265

0.4667 3.5e-05 0.0262
Fig. 14c

20000000 0.4672 2.8e-04 0.0262 Fig. 14d
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Fig. 14 Sampled parameters in tests of internal nodes. The horizontal axis represents the node time of D in Fig. 13. The two scenarios sample two
trees with different distances specified in Table ??

Table 5 Initial settings for operations on the root

Strategy
Genetic distances

tD tE
Initial rates

dj dk dx di rj rk rx ri

Simple Distance 0.1 0.2 0.4 0.27 1 10 0.1 0.2 0.04 0.03

Small Pulley 0.1 0.2 0.67 1 10 0.1 0.2 0.04 0.03

Big Pulley 0.5 0.5 0.5 5 10 0.1 0.1 0.03 0.04

Table 6 Results of sampling the root

Strategy Variable
Sample from MCMC Integral curve

Plot
Mean St.dev Mean St.dev

Simple Distance tE 7.8081 1.2884 7.8187 1.2992 Fig. 15a

Small Pulley di 0.3480 0.0492 0.3476 0.0494 Fig. 15b

Big Pulley
di 0.1016 0.0766 0.0960 0.0760 Fig. 15c

tE 3.3017 0.6908 3.3095 0.6912 Fig. 15d
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Fig. 15 Sampled parameters in test of the root. For the trees in Fig. 13, Simple Distance samples the root time tE only, Small Pulley samples the
distance dD only, and Big Pulley samples tE , tD , dD . To make it simple, tE and dD are compared

p(r, t) =
∫ +∞
tE=0

∫ tE

tD=0

∫ 0.5

dD=0
p(tE , tD) × p

(
0.5
tD

)

× p
(
0.5
tD

)
× p

(
dD

tE − tD

)
× p

(
0.5 − dD

tE

)
ddDdtDdtE

(37)

The statistical measurements, i.e. mean and standard
deviation, are compared in Table 6. The histograms of
samples and numerical curves of dD and tE are pictured in
Fig. 15c and d. It is shown that the two distributions are
consistent within the acceptable error range. Therefore,
Big Pulley can also give the right combinations of rates and
node times, under the condition that the genetic distances
among taxa are constant.

3. performance analysis of operators
This section provides the details of the results presented
in Performance comparison section.

3.1 Operator weights
The weights on operators for the simulations when

comparing efficiency are listed in Table 7. Although how
to assign weights to achieve better performance is not
studied in this paper, we maintain the percentage of

weights on three operator class in Category and Cons
configurations. But we modified some weights on the
operators inside the same class, and we assigned different
weights for different data sets.

3.2 Simulated data sets We simulated two sets of
sequence alignment on the same tree with 20 taxa that
is shown in Fig. 16. We used HKY model as substitution
model with κ = 2.4751, and the base frequencies are π =
(0.21930.22680.30070.2531). In the uncorrelated relaxed
clock model, the standard deviation of the branch rates
(Ucldstdev) is 0.1803. The models and prior distributions
are the same as is described in Fig. 1.

3.3 Efficiency measured by ESS per hour
Since we compare the efficiency based on ESS per hour

using two configurations, i.e. Category and Cons, the ratio
of ESS per hour is calculated by a random simulation
in the two configurations, as is shown in Fig. 3. Then
Table 2 lists the average running time and ESS of particu-
lar parameters in the simulations using different data sets.
Here, we present the detailed running time and ESS of
the simulations, which can be seen in Figs. 17, 18, 19, 20,
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Fig. 16 The tree used to simulate sequence alignment. The taxa are denoted by t1 to t20. The divergence times are drawn near the node

and 21. Overall, we conclude that the proposed opera-
tors are able to provide better performance, because the
figures suggest that Cons configuration requires less run-
ning time and have larger ESS formost parameters inmost
simulations. Especially, for those poorly estimated param-
eters in Category configuration, the improvement is more
obvious. For data sets such as primates and simulated data
with 500 sites, the running time is slightly larger in Cons
configuration, but the ESS are much larger, whichmakes it

acceptable to reduce the MCMC chain length and get the
same performance.

3.4 Efficiency measured by proposals The operators
introduced in the paper utilise a random walk proposal
for the new node time, which draws a random number
from a uniform distribution and moves the node uni-
formly on the branch. However, others proposals, such as
a Bactrian proposal [48] and a Beta proposal [49], assign

Fig. 17 Running time and ESS using Anolis data
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Fig. 18 Running time and ESS using RSV2 data

a specific distribution on the new node time so that it is
more probable to move to a certain height on the branch,
either far away from or close to its original position. This
section applied Random walk proposal (the operators in
this paper), Bactrian proposal and Beta proposal to the
three data sets, and the results are compared to those
using Category configuration.

The comparisons are shown in Figs. 22, 23, and 24.
It is indicated that Beta proposal achieved worst perfor-
mance in the three analysed data sets. The performance of
the Constant Distance operator (Random walk) and Bac-
trian proposal achieved similar performance in RSV2 data
set, while Bactrian proposal provided larger ESS per hour
for most parameters in HIV-1 data set. Therefore, it still

Fig. 19 Running time and ESS using HIV-1 data
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Fig. 20 Running time and ESS using primates data

Fig. 21 Running time and ESS using simulated data
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Fig. 22 Efficiency comparison of proposals using Anolis data

needs further investigation to demonstrate the effective-
ness of different proposals when analysing various data
sets. Our current implementation of the operators enables
users to specify which proposal style will be used in Beast2
analysis.

4. ucldstdevScaleOperator: a scale operator on standard
deviation
It should be noted that the proposed ConstantDistance
operator parameterises branch rates as continuous ran-
dom variables, instead of discrete rate categories as is used

Fig. 23 Efficiency comparison of proposals using RSV2 data
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Fig. 24 Efficiency comparison of proposals using HIV-1 data

in current BEAST2 settings. In uncorrelated relaxed clock
model, branch rates are assumed to have a lognormal prior
distribution, where the real mean is fixed to 1 and the
standard deviation (denoted by Ucldstdev) is usually sam-
pled with a hyper prior such as gamma(α = 0.5396,β =
0.3819). When a new Ucldstdev is proposed in one state
during MCMC sampling by normal operators, the proba-
bility of all rates change as well under the new log normal
distribution. Therefore, the authors implemented a sepa-
rate operator working on Ucldstdev, which is able to solve
this problem properly.
The first step is to propose a new Ucldstdev by a scale

operation, which multiplies current Ucldstdev by a ran-
dom factor, as is shown in Eq. (38).

Ucldstdev′ = Ucldstdev × scale (38)

where scale = Factor+ [
ξ × ( 1

Factor−Factor)
]
and ξ is a

random variable from a Uniform(0, 1), Factor is a user-
defined parameter to specify how bold the proposal is.
Secondly, all the branch rates are proposed based on the

new Ucldstdev′, given the probability of original Ucldst-
dev, which is calculated using Eq. (39).

r′i = icdfstdev′
[
cdfstdev(ri)

]
(39)

where the notations cdf (·) and icdf (·) represent the
cumulative and inverse cumulative density function of log
normal distribution. Because of the calculation of cdf (·)
and icdf (·) for each branch rates, the "Cons" configura-
tion requires more running time than "category", as is
discusses in “Performance comparison” section. However,

it is acceptable as ConstantDistance operator gives larger
ESS.
Finally, it is important to return the corrected hastings

ratio, since the proposal is associated with one random
variable,Ucldstdev and (2n− 1) branch rates. As is shown
in Eq. (40), the ratio includes the scale operation and rates
changing under the same probability.

JUcldstdev = 1
scale

×
2n−1∏
i=1

∂icdfUcldstdev′ [ cdfUcldstdev(ri)]
∂ri

(40)

In the comparison of ESS for the clock standard devi-
ation (denoted by ucld.stdev in Fig. 3), we specified a
normal scale operator in “Category" configuration. In
“Cons" configuration, the UcldstdevScaleOperator is used
to sample the clock standard deviation of continuous
rates. To avoid the concern that the difference between
“Category" and “Cons" is a result of how rates are parame-
terised (i.e. discrete or continuous), we set another config-
uration where continuous rates are sampled without using
the ConstantDistance operator (denoted by “NoCons"
configuration). The weights of the operators in “NoCons"
are the same as those in “Category" which is detailed in
Table 7. We ran the analysis using the three real data
sets (Anolis, RSV2 and HIV-1) and the comparison of
ESS per hour between “Category”, “Cons" and “NoCons”
is summarised in Fig. 25. The figure shows ESS per hour
in log10 space of ucld.stdev in 20 independent MCMC
chains. As can be seen, “Cons” configuration gives similar
performance, comparing with “Category”. This indicates
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Fig. 25 Efficiency comparison of clock standard deviation

UcldstdevScaleOperator works properly on continuous
rates. Moreover, ESS per hour is much larger in “Cons"
than in “NoCons”, where both continuous rates are sam-
pled. Therefore, the proposed operators contribute to the
improved performance. However, we noticed that the rate
parameterisation does have somemixing issues inMCMC
chains. In the future, we will further investigate how to
parameterise branch rates to get better performance when
using the proposed operators.
Abbreviations
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