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Abstract
Background: Coevolution is a selective process of reciprocal adaptation in hosts and parasites or in mutualistic
symbionts. Classic population genetics theory predicts the signatures of selection at the interacting loci of both
species, but not the neutral genome-wide polymorphism patterns. To bridge this gap, we build an eco-evolutionary
model, where neutral genomic changes over time are driven by a single selected locus in hosts and parasites via a
simple biallelic gene-for-gene or matching-allele interaction. This coevolutionary process may lead to cyclic changes
in the sizes of the interacting populations.

Results: We investigate if and when these changes can be observed in the site frequency spectrum of neutral
polymorphisms from host and parasite full genome data. We show that changes of the host population size are too
smooth to be observable in its polymorphism pattern over the course of time. Conversely, the parasite population
may undergo a series of strong bottlenecks occurring on a slower relative time scale, which may lead to observable
changes in a time series sample. We also extend our results to cases with 1) several parasites per host accelerating
relative time, and 2) multiple parasite generations per host generation slowing down rescaled time.

Conclusions: Our results show that time series sampling of host and parasite populations with full genome data are
crucial to understand if and how coevolution occurs. This model provides therefore a framework to interpret and
draw inference from genome-wide polymorphism data of interacting species.
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Introduction
Host-parasite antagonistic interactions are a role model
for observing and studying rapid evolutionary change as
well as feedbacks between ecological and evolutionary
forces and time scales. Coevolution, defined here as the
reciprocal adaptation of hosts and their parasites, typically
generates significant phenotypic and genetic diversity for
host resistance and for parasite infectivity and virulence.
Such changes in the genetic composition of the interacting
species at the key underpinning loci, drive, and are driven
by, short-term epidemiological (ecological) dynamics. To
develop infectious disease epidemiology as a predictive
science, there is thus a need to understand the synergy of
fast evolution andwithin and between populations disease
dynamics [1], the so-called eco-evolutionary feedbacks [2].
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Coevolution as determined by changes in allele fre-
quencies over time at the interacting genes, is observ-
able as coevolutionary cycles driven by negative indirect
frequency-dependent selection [3, 4]. Theory predicts
that a continuum of dynamics of allele frequency cycles
occurs, characterized by their stability, period and ampli-
tude, and ranging between two extremes: the arms race
and the trench warfare dynamics. The arms race is defined
as the recurrent fixation of alleles at these major loci in
host and parasite populations [5, 6], while trench war-
fare maintains cycling over a long period of time [7] (also
called the Red Queen dynamics [6], or Fluctuation Selec-
tion Dynamics [2]). The transition between these types
of dynamics depends on the occurrence and strength of
negative direct frequency-dependent selection [4], which
stabilizes cycles and is generated by several host and
parasite life history traits (reviewed in [8]).
Theory also predicts that the coevolutionary dynamics,

either by arms race or trench warfare, can be observed
in the patterns of polymorphism at these loci, namely
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Živković et al. BMC Evolutionary Biology          (2019) 19:230 Page 2 of 11

in the frequencies of Single Nucleotide Polymorphisms
(SNPs). The arms race is expected to generate recurrent
selective sweeps, while trench warfare generates balanc-
ing selection (but see [9] for more complex but realistic
predictions). These predictions form the basis of scans for
genes under coevolution in host or parasite genomes rely-
ing on the prevalent perception that natural selection acts
only at few loci, while neutral forces, such as demographic
histories, affect the whole genome. Detecting genes under
coevolution entails therefore to disentangle the signatures
of arms race or trench warfare from the polymorphism
patterns observed in genome-wide data.
Besides the allelic coevolutionary cycles at the host and

parasite interacting loci, size fluctuations of host and para-
site populations are also predicted to occur and are indeed
observed and quantified in controlled experiments [10].
These changes in population size over time are induced
by reciprocal selection among the antagonists and are an
inherent property of host-parasite coevolution under epi-
demiological dynamics (such as the Susceptible-Infected
or Susceptible-Infected-Recovered models, [11]) but also
prey-predator (Lotka-Volterra) dynamics. In a more com-
plex coevolutionary system with several host and parasite
genotypes being present at major genes of interaction,
cycles of coevolution do occur, thereby generating a fluc-
tuation of the numbers of hosts and parasites over time
[11] as an epidemiological feedback [2]. Several episodes
of coevolution proceed with increasing and decreasing
disease prevalence depending on the cycling of resis-
tance and infectivity alleles. The epidemiological feedback
generates negative direct frequency-dependent selection,
thus stabilizing the frequencies of alleles and maintaining
long-term diversity at the interacting loci [12]. Coevolu-
tionary models based on Lotka-Volterra dynamics have
similar characteristics [13–16]. Population size changes
due to coevolution should affect the whole genome poly-
morphism of both antagonistic species, an effect which we
term as the co-demographic history. When studying host
and parasite polymorphism data, two sources of demo-
graphic variation generating genetic drift can therefore be
defined: 1) the population or species demographic his-
tory (e.g. colonisation of new habitats or recolonisation),
and 2) the co-demographic history due to coevolution-
ary and epidemiological dynamics. Both types of demo-
graphic events affect the ability to detect genes under
coevolution using scans for arms race or trench war-
fare signatures. Moreover, there is currently no theoreti-
cal prediction regarding the signature of co-demographic
history on genome-wide polymorphism in hosts and
parasites.
Our aim in this study is to propose the first model of
neutral polymorphism generated by the co-demographic
history of host and parasite populations. First, we estab-
lish an epidemiological model describing changes in the

numbers of healthy and infected hosts over time focus-
ing on biallelic gene-for-gene and matching-allele infec-
tions and initially assigning one parasite per host. Second,
we utilize an analytical result [17] for the neutral site
frequency spectrum (SFS) under arbitrary deterministic
population size changes and apply it to the host and par-
asite populations. We show that these population size
changes can be quite drastic in the parasite and occur on
a time scale slow enough to leave a corresponding sig-
nature in the SFS over time. Conversely, changes in the
host size are barely detected in the polymorphism data.
Finally, since such recurrent bottlenecks in parasites cause
a reduced amount of polymorphism, we further discuss
the impacts of multiple parasites per host and multiple
parasite generations per host generation.

Results
Key characteristics of our model
Our model presents three key features to keep in mind.
The first key aspect of our eco-evolutionary framework
is that changes in the population size are a direct con-
sequence of the dynamics of the model (Eqs. (1) and
(2), Additional file 1: SI1-SI3, driven by a single locus
underpinning coevolution, and not assumed to follow an
arbitrarily chosen function of time as in the majority of
the population genetics literature. We assume that there is
no mutation between alleles at the coevolving loci. Note
also that we assume implicitly that host and parasite do
undergo recombination in their genome, so that allele fre-
quencies at neutral loci are not linked to those at the
coevolving loci.
The second crucial point is the definition of the host

and parasite time scales of evolution as determined by
the generation times and the population mutation rates
of the antagonistic species [18]. If viral, bacterial or fun-
gal parasites often have higher mutation rates than their
hosts, their effective population size may not always be
larger than that of the hosts and at the onset of an epi-
demics. The reference population size Nref at the onset of
an epidemics is important because 1) it sets up the ini-
tial available diversity, and 2) it defines the time scale for
genetic drift in host and parasite and the timing of new
neutral mutations occurring with rate θ . In our population
genetics setting, time is scaled in units of Nref genera-
tions, whereas the host-parasite model specified in Eqs.
(1) and (2) runs on arbitrary continuous time reflecting
calendar time (in weeks, months or years). If calendar time
is equivalent for both species, the scaled time based on
Nref defines the changes occurring in the observed poly-
morphism over time. We exemplify the difference in time
scale and its influence on polymorphism data by a sim-
plified bottleneck model. Two populations with different
initial population sizesNref experience a size change of the
same magnitude and for the same number of generations
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on calendar time scale (bottom x-axes) but for different
rescaled time with respect toNref (top x-axes of Fig. 1a and
c). Consequently, a size change of the same magnitude but
based on two different initial population sizes Nref affects
the SFS similarly regarding the course of time but with
very different strength and detectability (y-axes of Fig. 1b
and d). Note that we use the absolute number of single-
tons scaled by θ in Fig. 1 for illustrative purposes, since
the difference among the two different population sizes
is most pronounced. The difference can only be observed
for low-frequency derived variants and eventually van-
ishes for intermediate to high-frequency derived allelic
classes.
The third important feature of our model is the under-

lying assumption regarding genetic drift. The theoretical
result for our SFS computations (Equation 33 in [17],
and Additional file 1: SI4) is based on a continuous
time approximation of the Wright-Fisher model assuming
descendants picking their parents at random from non-
overlapping discrete generations. However, in our model,
there is an overlap of generations in the host and parasite
populations to allow the transmission of disease. A higher
overlap of generations occurs for lower values of the

death rate d. In order to apply the theoretical results, we
therefore focus specifically on scenarios where the death
rate d is close to the birth rate b = 1, so that most of the
population is replaced within a ’generation’ as defined by
1/d. In addition, we build a simulation method that incor-
porates the overlap of generations in hosts and pathogens
during the drawing of the next generation’s allele
frequencies.

Effect of the various parameters on the dynamical system
We are only interested in situations where at least one
host and a parasite genotype survive and both popula-
tions coexist. Therefore, we derive first the criteria for the
disease to spread in the population via the reproduction
ratios (Additional file 1: SI2). Then, we scan the parame-
ter space of our epidemiological model to determine the
behavior of the coevolutionary dynamics and the speed
of cycling. We thus eliminate situations where the disease
spreads but the host and parasite populations finally col-
lapse and get extinct or rise jointly in size. The behavior of
the allele frequency cycling is determined by the state of
the fixed point (computed in Additional file 1: SI3 for A =
2). The cycling can be stable (regular cycles as fluctuating

Fig. 1 A simple bottleneck model with an initial population size of 1000 (a) and 10000 (c) is considered, where the population size drops
instantaneously to one tenth of its original size at time zero for 5 generations before recovering again to its original size. Original time in generations
is opposed to time scaled in units of the initial population size on the x-axes and the population size changes are given in absolute and relative
numbers on the y-axes. The absolute number of singletons scaled by θ , f20,1(t)/θ , are illustrated for the respective cases in (b) and (d). The
bottleneck is more apparent in (b) than in (d), where the changes of f20,1(t)/θ stay within a five percent margin. This is due to slower rescaled time
in the first scenario (a), where the population size drop affects polymorphisms prolongedly
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selection) or damp off to the fixed polymorphic state. The
stability behavior of the hosts and the parasites, whose
frequencies are not explicitly given by Eqs. (1) and (2),
cannot be explicitly determined by means of a Jacobian
matrix and only be determined by numerically solving
these equations.
For the stability analysis, the initial conditions were

chosen so thatNW is close to 10,000 and the infected indi-
viduals make up 20% of the healthy ones (H1 = H2 =
4150, I11 = I12 = I21 = I22 = 415). The birth rates b
were fixed to one and cH = cP = 0.05 for the MA model
and cH1 = cP2 = 0.05, cH2 = cP1 = 0 for the GFG model
(see [19, 20] for comparable costs). The remaining param-
eters are given in the color-coded figures of Additional
file 1: SI5. We summarize the results of the stability anal-
ysis as follows. An increasing difference between the birth
and the death rates results in 1) wider parameter ranges
of the mortality δ and the disease transmission rate β for
which cycles may occur, and 2) also increases the num-
ber of cycles over a given time interval. While the number
of cycles generally increases with increasing values of δ,
β affects the number of cycles most distinctly for s = 1,
for which smaller values of β lead to a reduced number
of cycles. The speed of cycling for MA and GFG mod-
els is equivalent, if costs are set to zero. Thus, it may be
unrealistic to aim to infer the model itself (MA or GFG)
based on polymorphism data. In the following, we focus

on the GFG model and present according results for the
MA model in the supplement. As illustrated in Fig. 2,
besides the difference between b(1− cH) and d, the selec-
tion coefficient s is the crucial parameter that determines
the number of cycles per unit of time. A limit cycle is
observed for s = 1, a case defined as castrating parasite.
The cycling appears faster and with quicker damping off
with smaller values of s [2]. Note that applying the param-
eter values from Fig. 2 to the MA model (d = 0.9 and
using the MA specific costs of cH = cP = 0.05) results
in a loss of all parasite alleles for any value of s, while for
a death rate of d = 0.6 a limit cycle occurs for s = 1,
cycling towards the fixed points for s = 0.9 and s = 0.6
but not for s = 0.3. When d = 0.3, a limit cycle does
occur for s = 1 and a cycling towards the fixed point
only for s = 0.9. The occurrence and speed of cycling
is therefore not only determined by the coevolutionary
(s, cH , cP, α) and epidemiological parameters (β , δ), but
also by the ecological characteristics of the species and the
environment controlling the birth b and death d rates. An
example of aMAmodel with a death rate d = 0.9 and slow
cycles that will be studied alongside the GFG example of
Fig. 2 is given in Additional file 1: SI6. Note that chang-
ing the birth rate to values other than one and employing
various initial allele frequencies of healthy and infected
individuals give results that correspond to the ones
presented here.

Fig. 2 Parasite and host alleles of genotype two are plotted against each other for the GFG model over time by numerically solving (1) and (2) for
the following parameter values (being equivalent for both genotypes): b = 1, d = 0.9, δ = 0.01, β = 0.00005, cH1 = cP2 = 0.05 and cH2 = cP1 = 0.
The initial conditions are H1 = H2 = 4150 and I11 = I12 = I21 = I22 = 415. The selection coefficients s are given by a 1, b 0.9, c 0.6 and d 0.3. The
parametric plots are shown for a 100, b 500, c 120 and d 96 time steps, which are the minimum amounts of time to complete one orbit of the final
limit circle (a), come close to the fixed point (b), (c), or to reach the fixed point (d). The initial and fixed points are colored in black and red, respectively



Živković et al. BMC Evolutionary Biology          (2019) 19:230 Page 5 of 11

Analyzing the polymorphism patterns of hosts and
parasites
One parasite per host and equal generation times
We provide detailed results for a few examples of GFG
and MA models to highlight the key features regarding
changes in the host and parasite SFS. Mutation rate and
genetic drift occur on different time scales for hosts and
parasites. The population size changes in the parasite
occur on a relatively slower time scale compared to the
host (Fig. 3). Moreover, the amplitude of parasite popula-
tion size fluctuations is much more pronounced than in
the host, the number of infected individuals, i.e. parasites,
fluctuating between about twenty and 13.000 individuals.
The relatively weak and fast fluctuations of the host can-
not be observed in the SFS except for a slight increase
in the number of singletons over time. In contrast, the
strong and relatively slow changes in the parasite pop-
ulation size are clearly reflected by the entire SFS. The
number of singletons decreases first due to the initial
decline in the population size before tending to increase
over time. For intermediate to high-frequency derived
allelic classes, an initial increase in allele frequencies is
followed by a decrease over time. A similar result for
the MA model is given in Additional file 1: SI7. We also
observed that signatures of coevolutionary cycles in the
host and parasite SFS depend mostly on the speed of their
fluctuations in terms of population size scaled genera-
tion times, whereas the magnitude of the population size
changes has a small influence on the SFS (rather appar-
ent in Fig. 2 than in Fig. 3). We also evaluated one of
the slowest cycling examples for a death rate of d =
0.3 shown in the first panel of Figure SI5.2.2 in Addi-
tional file 1: SI5 to illustrate that despite the difference
in time scale in hosts and parasites, cycles are also barely
detectable (even in the singleton class) in the parasite SFS
(Additional file 1: SI8).
To detect changes in the SFS in host and parasite, it

is also important to assess if enough genetic diversity
can be observed over time. We find that the absolute
number of polymorphisms strongly decreases over the
considered time interval. For example in the GFG model
(Fig. 3) the number of segregating sites in the parasite
decreases to about five percent and for the MA model
(Additional file 1: SI7) even down to about one percent
of their initial values. We also contrast two scenarios: 1)
an initial total host population size of 100,000 and 2%
of initial disease prevalence, and 2) an initial population
size of 10,000 with 50% initial prevalence (for GFG and
MA models in Additional file 1: SI9). We observe that
the initial prevalence defining the parasite population size
plays a crucial role. Scenario two shows stronger fluc-
tuations in the relative SFS (exemplified by the number
of parasite singletons in the Figures of Additional file 1:
SI9) and a more drastic decrease in the absolute number

Fig. 3 Population size changes in the host (a) and in the parasite (b)
are generated for the GFG model via the parameters b = 1, d = 0.9,
δ = 0.01, β = 0.00005, cH1 = cP2 = 0.05, cH2 = cP1 = 0, and s = 1.
The initial conditions are H1 = H2 = 4150 and
I11 = I12 = I21 = I22 = 415, so that the reference population sizes Nref
of the host and the parasite are given by 9960 and 1660, respectively,
before their interaction starts at time zero. In both cases, the lower x-
axes show time at the original scale of the dynamical system, whereas
time is scaled by the respective values of Nref · 1/d for the upper
x-axes. The left y-axes denote the absolute values of the changing
population size and the right y-axes denote the relative values as
ρ(t) = N(t)/Nref. We evaluated the SFS for every second generation
(on the original scale) in both cases and plot (c) r20,j(t) for j = 1 (black),
j = 3 (blue) and j = 8 (red) against time for the host (dashed) and the
parasite (solid). Note that the SFS shows similar results for all j ≥ 8



Živković et al. BMC Evolutionary Biology          (2019) 19:230 Page 6 of 11

of segregating sites over time than under scenario one.
This shows that larger fluctuations in the relative SFS
over time, which are in principle detectable in time sam-
ple polymorphism data, go along with a stronger decrease
in the total amount of observed polymorphisms (due to
more drastic population bottlenecks). As a guideline, we
provide an estimate of the possibility to detect changes
in the SFS based on a sufficient number of segregating
sites (the numerical minima and maxima in Figure SI9.1
of Additional file 1: SI9 yield Table 1). Cycles are more
likely observed in parasites with large genome mutation
rates such as fungi or protozoans in contrast to bacteria
(Table 1).
When comparing our computationally advantageous

approach based on the Wright-Fisher model with our
stochastic simulations, we find that polymorphism signa-
tures as exemplarily measured by �20(t) agree in general
for host and parasite over time (Fig. 4). The parasite
sample shows less polymorphism in the simulations with
overlap while for the host this difference is negligible.
The net effect of generation overlap under strong pop-
ulation bottlenecks with more dominant decline than
expansion phases is an even stronger decrease of the
effective population size and thus the amount of polymor-
phism, as seen in the parasite. This is due to less new-
borns contributing fewer novel mutations in the model
with overlap and the different sampling schemes of new-
born and overlapping individuals. Whenever population
size decreases, new offspring individuals are present in
smaller proportions than overlapping ones, whereas the
reverse occurs when population size increases. The frac-
tion of new offspring follows a sampling with replacement
as for the Wright-Fisher model, while the overlap frac-
tion is drawn without replacement. The difference of
these two sampling schemes becomes apparent during
phases of small population sizes. During decline (expan-
sion) phases, the increased fraction of overlapping (new-
born) individuals leads to stronger (lesser) deviations
from the Wright-Fisher expectations. Consequently, as
the parasite population is experiencing a drastic popula-
tion decrease over time and several cycles, the amount of
diversity differs between both approaches in contrast to
the host population experiencing a slight increase in size
over time.

Multiple parasites per host and polycyclic diseases
We extend our predictions for two classic deviations from
our model. First, multiple or even a large number of par-
asites, as denoted by F, often infect a single host. We
assume here the simple case of several strains of the same
species and of the same allele at the interacting loci that
simultaneously infect the host. The parasite strains dif-
fer at the neutral loci along the genomes but do not
interact with each other for the infection, multiplica-
tion and transmission processes. Considering this effect
on the SFS leads to an increased scaled mutation rate
F θ thereby increasing the number of segregating sites
that can be detected by full-genome sequencing. Con-
currently, relative time is sped up by F due to the larger
initial (reference) population size of the parasite. There-
fore, two opposite effects are expected when increasing
the number of parasites per host, an increase in the
amount of polymorphism comes at the cost of a reduced
amount of detectable cycles. Second, host and parasite
generation times may differ from one another with para-
sites often exhibiting smaller generation times especially
for virus, bacteria or fungi. We assume here the sim-
ple case of a pathogen strain of a polycyclic disease,
which undergo several consecutive independent gener-
ations within one host individual before disease trans-
mission. The parasite generations act additively to define
the amount of damage to the host summarized by the
parameters δ and s. We define E parasite generations
per host generation so that the relative time for the par-
asite is slowed down by E. This rescaling is expected
to enhance the detectability of coevolutionary cycles
using the parasite SFS. We investigate the joint impact
of multiple parasites per host and polycyclic diseases in
Additional file 1: SI10.
We compute the SFS over time for the GFG above

(Fig. 3) with nine different combinations of values for E
and F (see Additional file 1: SI10). To evaluate fluctua-
tions in the polymorphism pattern over time, we compute
the relative rate of change of �20(t) at various equidis-
tantly distributed sampling points over time. These points
are chosen to be fixed in time and independent of parasite
generation time, so that the various cases are equivalently
clocked on the original time scale of the dynamical sys-
tem. As illustrated in Additional file 1: SI10more sampling

Table 1 [minimum, maximum] of the number of segregating sites in full genome sequences of parasites following the GFG model
and depending on the initial prevalence and population size

Initial prevalence, Nref parasites Fungi/Trypanosoma/Nematodes, μ = 1 Viruses, μ = 0.1 Bacteria, μ = 0.001

2%, 2000 [ 8232, 14191] [ 823, 1419] [ 8; 14]

20%, 1660 [ 560; 11779] [ 56; 1178] [ 1; 12]

50%, 3332 [ 48; 23642] [ 5; 2364] [ 0; 24]

The minima are determined by the results in Additional file SI9 and the maxima are the initial numbers of segregating sites. The per genome mutation rate, μ, is an
approximation based on genome length and per site mutation rate from different typical estimates [21]
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Fig. 4 Population size changes in host (dashed) and parasite (solid)
are generated for the GFG model with the same parameter set as in
Figure 2. The average number of pairwise differences scaled by θ ,
�20(t)/θ , is plotted against time for our analytical framework based
on the diffusion approximation of the Wright-Fisher model (black)
and for our simulation approach (red) with a fractional overlap of
1 − d (d = 0.9) between successive time steps. For the simulations,
computational time steps are set to 0.001, a genome-wide mutation
rate of μ = 1 is applied, and each value is obtained as an average
over 10 repetitions

points are needed to capture the cycling for multiple par-
asites per host (F), whereas less samples are needed for
polycyclic diseases. We therefore show here that the num-
ber of time samples necessary to recover the number of
cycles can be determined knowing the biology of host and
parasite.

Discussion
We develop here a model to analyze the evolution of neu-
tral genome-wide polymorphism of coevolving host and
parasite populations. Variations in polymorphism reflect
the co-demographic history driven by eco-evolutionary
feedbacks between 1) the frequency changes in host resis-
tance and parasite infectivity over time due to frequency-
dependent selection, and 2) the ecological changes in host
and parasite population sizes. While antagonistic or syn-
ergistic coevolution is a process driven by natural selec-
tion, our approach is the first to provide a description of
the consequences of coevolutionary dynamics on neutral
genome-wide polymorphism.
We demonstrate that using time series sampling data,

i.e. population samples of hosts and parasites at differ-
ent time points, it is possible to track the existence and
speed of eco-evolutionary cycles using polymorphism
data. Our main result states that cycles of coevolution
are detectable in the parasite and barely in the host
population. This is due to a fundamental difference in
the time scale of neutral evolution between interacting
species crucially depending on the initial population size

at the onset of epidemics (i.e. the start of the coevolu-
tionary history). Furthermore, the parasite population size
fluctuations are more pronounced than that of the host.
This is a universal characteristics of epidemiological (and
Lotka-Volterra) models [14] matching well the observed
experimental patterns [10]. If the parasite evolution time
scale is adequately slow, it is thus easier to observe strong
fluctuations in population size in the SFS than weaker
ones. Note that pathogens with infection rates strongly
determined by environmental conditions (such as plant
pathogens) do show weaker eco-evolutionary feedbacks
[22] and population size fluctuations than in our model.
The time scale of neutral evolution is also determined
by the parasite generation time and number of para-
sites per infected host. We study here one coevolutionary
run starting by the introduction of a parasite population
into a larger host population and generating a dynamics
over several hundreds of generations. If new infectivity
or resistance alleles appear by mutation, the epidemics
and the cycling behavior are affected, and our model
should be reset to evaluate a new run. The time scale
that we investigate is therefore intermediate between the
classic expectations of long coevolution and its signa-
tures at interacting loci [6, 9] and the short-term epi-
demiological dynamics (with susceptible hosts and one
parasite type) [23].
Polymorphism data can be used to detect coevolution-

ary cycles, if such cycles run sufficiently long at adequately
low speed. We indeed predict that long term occurrence
of cycles should be searched for in parasites that strongly
decrease the host fitness due to high disease severity s
(parasite effect on fecundity). For low to moderate disease
transmission and smaller values of s the internal polymor-
phic equilibrium point is a stable attractor, meaning that
cycles damp off quickly towards a polymorphic equilib-
rium at which population size and allele frequencies are
fixed (Fig. 2). For high values of the disease transmis-
sion rate β and parasite virulence δ (effect of parasite on
mortality), the internal polymorphic equilibrium point is
an unstable point [2], and a monomorphic equilibrium
is reached with a fixed population size [12, 14]. Cycles
should be slow enough to be observable in polymorphism
data, and our results challenge the classic assumption that
coevolutionary cycles are too fast for being observed in
the SFS. Interestingly, the speed of cycling dependsmainly
on two ecological parameters, i.e. the birth rate b and
the death rate d of the host, and to a lesser extent on
the coevolutionary parameters (s, costs of resistance and
virulence).
Eco-evolutionary cycles occur and are observable in

polymorphism data, when the effect of the parasite on
host fecundity s is sufficiently strong. We predict that our
results are applicable to many host-parasite systems with
castrating parasites, whose transmission is associated with
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host death (algae-rotifer [24], bacteria–phage [25] and
Daphnia magna–bacterium [26]). For plant pathogens,
cycles may be less observable because the disease sever-
ity can range from low to very high (or even castrating,
[27]), but often depends on abiotic factors [28]. Most
epidemiological studies have focused on the evolution
of virulence (effect of parasite on host mortality) and
disease transmission within the short duration of an epi-
demics. However, to use polymorphism data for the study
of eco-evolutionary dynamics, parasite virulence is not
an essential parameter to be measured or estimated, as
it is more useful to quantify the difference between the
host’s birth and natural death rates. Another practical
reason for favoring hosts with high death rates is that
our SFS computations are based on the Wright-Fisher
model assuming non-overlapping generations [17]. Note
that in epidemiological models [2, 12, 14, 22] overlap-
ping generations in the host are a necessary assumption,
since a disease can only be transmitted among liv-
ing hosts. We wrote a simulation code that explicitly
accounts for less newborns contributing fewer mutations
while generations overlap (and compared to the Wright-
Fisher model) to evaluate the SFS. The simulations show
that our Wright-Fisher approximation is robust with
respect to overlapping generations for hosts with high
death rates.
We only consider neutral sites because arbitrary demo-

graphic changes can be used in the analytic solution for
the SFS as needed to cope with the complex demogra-
phies arising from our dynamical system. The frequency
spectrum for sites under selection can only be com-
puted for piecewise changes in the population size [29].
This approach is not readily applicable for such com-
plex demographies because their discretization would be
computationally cumbersome.
Time sampling is crucial for capturing cycles. These

can be observed in the polymorphism data for several
hundreds of parasite generations, if the genome muta-
tion rate and the effective population size are sufficiently
large (see Table 1) and if SNPs are sampled at appropriate
time points (see Additional file 1: SI10). Combining these
results with those of the stability analysis (see Additional
file 1: SI5), the number of time series samples needed to
capture all cycles decreases with smaller disease severity
s as the dynamics tends to stabilize and exhibits shorter
cycling periods. In the case of castrating parasites, sam-
pling every 20 host generations should cover most cycles.
The less aggressive the parasite, the more time samples
are needed. When the generation overlap in the host is
higher, d = 0.3, cycles can be barely detected in host and
parasite. Using such time sampling data, one can first esti-
mate changes in host and parasite population sizes based
on variation of allele frequencies between time points
[30, 31]. As the second step, we can detect loci driven

by selection [32, 33] in the genomes of the interacting
species.
To test our predictions, time samples can be read-

ily obtained in experimental coevolution set-ups [10, 24,
25], whereas this may be more complex for natural pop-
ulations. Nevertheless, samples from the past can be
obtained for crustaceans (Daphnia, [26]) from dormant
stages deposited in sediments, and for plant species from
seeds in the soil (possibly using ancient DNA recovery
techniques).
Caution should be used when analyzing such data in the

light of our results as these are based on a simple coevo-
lutionary scenario with a single pair of loci driving the
eco-evolutionary dynamics. In many hosts with available
data, the genetic architecture of resistance can, how-
ever, be explained by epistasis between several loci [34–
36] or few genes with major effect in plants [5, 7, 37].
Finally note that we assume implicitly that recombina-
tion occurs in host and parasite genomes so that neutral
loci evolve independently from the coevolutionary loci.
This condition may not be fulfilled in some host or par-
asite species and the SFS can be biased due to linkage
disequilibrium.

Conclusions
We demonstrated that eco-evolutionary cycles occur
and are observable in polymorphism data. We predict
that parasites undergoing several generations per host
generation but producing small amount of pathogen
propagules per host should be the species exhibiting
most clearly the signature of co-demographic dynam-
ics in polymorphism data. Our results pave the way
to use time sample genomic data of hosts and para-
sites from wild or experimental populations, to analyze,
infer and take into account the co-demographic history
of the antagonistic species and scan for genes under
coevolution with greater accuracy. More generally, our
results of tracking the changes in SFS over time can be
extended to other biological systems exhibiting cycling
population sizes at ecological time scales, such as sim-
ple prey-predator or complex trophic (species) network
interactions.

Methods
Modeling a single coevolving locus
We have a haploid one locus model with A alleles in the
host and in the parasite. The infection matrix is given by
� = (αij) with 1 ≤ i, j ≤ A. The entries αij give the
probability that once encountered hosts of genotype i are
infected by parasites of genotype j. Examples of simple
infection matrices for two alleles are given in Table 2.
In analogy to [38] the changes of host and parasite allele

frequencies over time are determined by the following
coupled differential equations:
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Table 2 Infection matrices for four coevolution models

matching-allele inverse matching-allele gene-for-gene inverse gene-for-gene⎛
⎝ 1 0

0 1

⎞
⎠

⎛
⎝ 0 1

1 0

⎞
⎠

⎛
⎝ 0 1

1 1

⎞
⎠

⎛
⎝ 1 0

0 0

⎞
⎠

The infection matrices determine the outcome of the interaction between host genotypes (rows) and parasite genotypes (columns). To keep the illustration simple, the rates
αij are either chosen as one for infection or as zero for resistance. Matching-allele and gene-for-gene models are shown as well as their inverse versions

dHi
dt

= Hi

⎡
⎣bi(1 − cHi) − di −

A∑
j=1

αijβij(1 − cPj)
A∑

k=1
Ikj

⎤
⎦

+ bi(1 − cHi)

A∑
j=1

(1 − sij)Iij, (1)

dIij
dt

= Iij(−di − δij) + Hi

[
αijβij(1 − cPj)

A∑
k=1

Ikj

]
. (2)

In Eqs. (1) and (2), Hi is the number of healthy (i.e.
non-infected) individuals of genotype i, and Iij denotes the
number of host genotype i infected by parasite genotype j.
bi and di are the birth and natural death rates (i.e. indepen-
dent of the disease) of host genotype i, respectively, and δij
is the disease induced death rate caused by pathogen j on
host genotype i (i.e. the effect of pathogen on host mor-
tality [38]). βij is the disease transmission rate between a
parasite of genotype j and a host of genotype i. cHi and
cPj are the costs for the hosts and the parasites of carrying
genotype i and j, respectively. sij with 0 ≤ sij ≤ 1 is the
decrease of reproductive fitness of host genotype i due to
an infection of parasite j, i.e. the effect of pathogen on host
fecundity. Due to the large number of parameters in our
epidemiological model, we investigate a simplified version
with two alleles (A = 2) in the host and in the parasite
except for the evaluation of the host effective population
size over time (Additional file 1: SI1) and the reproduc-
tion ratios (Additional file 1: SI2), which can be computed
for arbitrary A. Due to the purely deterministic setting,
an allele is considered as lost as soon as its count takes
a value below one and cannot be introduced by mutation
according to our model. We only allow rates and costs to
differ among the genotypes in Additional file 1: SI1-2 and
for the calculation of the fixed points (Additional file 1:
SI3) of the dynamical system (1) and (2). Otherwise, we
assume bi = b, di = d, δij = δ, βij = β and sij = s. While
we evaluate the fixed points (Additional file 1: SI3) for
all four coevolutionary models, only the matching-allele
(MA) and the gene-for-gene (GFG)model are investigated
in further detail, since the inverse matching-allele (iMA)
model is symmetric (and therefore equivalent) to the MA
model for A = 2 and the inverse gene-for-gene (iGFG)
model is restricted in its behavior compared to the GFG
model.

For the MA model symmetric costs are chosen and
(except for Additional file 1: SI1-3) assumed to be inde-
pendent of the host (cHi = cH ) and the parasite (cPj = cP)
genotype. For the GFG model costs are chosen asymmet-
rically as follows (except for the choice of arbitrary costs
in Additional file 1: SI1-3). SinceH1 defends itself success-
fully against P1, and P2 can infect both host genotypes,
only H1 and P2 are assumed to carry realistically small
costs cH1 and cP2 (cH2 = cP1 = 0, see [4]).
The total number of hosts of genotype i is given byWi =

Hi + ∑A
j=1 Iij. The number Pj of parasites of genotype j

is only implicitly given in Eqs. (1) and (2) by the number
of infected individuals; assuming one parasite per infected
genotype we have Pj = ∑A

i=1 Iij. The change in the effec-
tive population size of the host over time NW = ∑A

i=1Wi
is obtained by numerically solving (1) and (2). The respec-
tive differential equation and a condition for obtaining a
constant population size are given in Additional file 1: SI1.
The effective population size of the parasite is obtained as
NP = ∑A

j=1 Pj (as we assume first one parasite per host).

Assessing the effect of the coevolving locus on neutral
polymorphism patterns
To evaluate the impact of host-parasite interactions on
neutrally evolving and genome-wide distributed SNPs
over time for interesting cases, we utilize the SFS (Addi-
tional file 1: SI4), which is the distribution fn,i(t) of the
number of times i a mutant allele is observed across sites
in a sample of n DNA sequences at time t. While fn,i(t)
takes allele counts in absolute numbers, its relative ver-
sion rn,i(t) = fn,i(t)/

∑n−1
k=1 fn,k(t) is normalized by the

total number of segregating sites. For this purpose, the
deterministic trajectories of time-varying host and par-
asite population sizes are employed into the analytical
result [17] for the neutral SFS. This application requires
an appropriate scaling: we define a relative population
size function ρ(t) as the ratio of the population size N(t)
at time t scaled by the reference population size Nref at
the time of the infection, which initiates the coevolu-
tionary history, i.e. ρ(t) = N(t)/Nref, and denote the
population mutation rate as θ = 2Nref μ. We compute
the changes in frequencies of neutral alleles generated by
the co-demographic scenario in terms of the SFS (also in
relative numbers) and the average number of pairwise dif-
ferences �n(t) = 1/

(n
2
) ∑n−1

k=1 k(n − k)fn,k(t) for n = 20
hosts and parasites (Additional file 1: SI4). Our forward
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approach is adequately suited for the analysis of time-
series data in contrast to the corresponding coalescent
result for the neutral allelic spectrum [39, 40], where
only a single time point can be immediately evaluated for
a given demographic history. Note also that we assume
implicitly that host and parasite do undergo recombina-
tion in their genome, so that neutral loci are not in linkage
disequilibrium with the coevolving loci.

Modeling overlapping generations
A simulation protocol (code in C available from the
authors upon request) was designed that accounts for the
effect of overlapping generations in the stochastic sam-
pling of the host and parasite SFS. The differential Eqs. (1)
and (2) are discretized by choosing a sufficiently small
value for 	t (its infinitesimal version being dt) ensuring
that the coevolutionary dynamics match the numerical
evaluations from Mathematica. At every discrete genera-
tion τ , the current population size Nτ consists of No(τ ) =
(1 − d) N(τ − 1) individuals that did not die and there-
fore overlap and Nb = N(τ ) − No(τ ) newborns (i.e.
newly infected hosts in case of the parasite). As before,
we assume that the SFS of both populations is in equi-
librium at start of the infection, i.e. the population SFS
at time zero is given by fx(0) = θ/x with θ = 2Nref μ
and μ being the per generation mutation rate of an entire
genome. The SFS of each population is recursively eval-
uated as follows. For a fixed generation τ0, the N(τ0)
alleles are sampled from the pool of size N(τ0 − 1) and
according to the allele frequencies at generation τ0 − 1.
The newborns and the overlap fraction are, respectively,
obtained via sampling with andwithout replacement. New
mutants arising only in newborns and as a single copy at
a previously monomorphic site are obtained per genera-
tion as a Poisson random variable with mean 2Nb μ and
added to the singleton class of the SFS. Once the pop-
ulation SFS fx(t) is computed for a given time interval,
its sample version fn,i(t) is readily obtained via bino-
mial sampling. Note that the number of novel mutations
and therefore the amount of polymorphism over time is
reduced by definition in this model with overlap com-
pared to the Wright-Fisher model, where all individuals
are newborns when descendants replace their parental
generation.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/s12862-019-1556-3.

Additional file 1: In the Supplementary Information, we provide
additional methodological details as well as analytical and computational
results.
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