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Background: Quantifying the conspicuousness of objects against particular backgrounds is key to understanding
the evolution and adaptive value of animal coloration, and in designing effective camouflage. Quantifying
detectability can reveal how colour patterns affect survival, how animals’ appearances influence habitat preferences,
and how receiver visual systems work. Advances in calibrated digital imaging are enabling the capture of objective
visual information, but it remains unclear which methods are best for measuring detectability. Numerous
descriptions and models of appearance have been used to infer the detectability of animals, but these models are
rarely empirically validated or directly compared to one another. We compared the performance of human
‘predators’ to a bank of contemporary methods for quantifying the appearance of camouflaged prey. Background
matching was assessed using several established methods, including sophisticated feature-based pattern analysis,
granularity approaches and a range of luminance and contrast difference measures. Disruptive coloration is a
further camouflage strategy where high contrast patterns disrupt they prey’s tell-tale outline, making it more
difficult to detect. Disruptive camouflage has been studied intensely over the past decade, yet defining and
measuring it have proven far more problematic. We assessed how well existing disruptive coloration measures
predicted capture times. Additionally, we developed a new method for measuring edge disruption based on an
understanding of sensory processing and the way in which false edges are thought to interfere with animal

outlines.

Results: Our novel measure of disruptive coloration was the best predictor of capture times overall, highlighting
the importance of false edges in concealment over and above pattern or luminance matching.

Conclusions: The efficacy of our new method for measuring disruptive camouflage together with its biological
plausibility and computational efficiency represents a substantial advance in our understanding of the
measurement, mechanism and definition of disruptive camouflage. Our study also provides the first test of the
efficacy of many established methods for quantifying how conspicuous animals are against particular backgrounds.
The validation of these methods opens up new lines of investigation surrounding the form and function of
different types of camouflage, and may apply more broadly to the evolution of any visual signal.
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Background

Animal coloration often plays a major role in survival and
reproduction. Consequently, various forms of colora-
tion—from camouflage to mimicry—have long been used
as key examples of evolution by natural selection, and
have provided an important test-bed for evolutionary
thinking [1-3]. More recently, studies of colour patterns
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have made substantial progress in understanding the types
of defensive coloration that exist, and the mechanisms
that make them effective [4—6]. Progress has perhaps been
most marked in the study of concealment, with camou-
flage one of the most common anti-predator strategies in
nature [7, 8]. However, predicting an animal’s detectability
from its visual appearance remains challenging. This is an
important problem because quantifying how well an
animal avoids detection against a particular background is
key to investigating a wide range of evolutionary and
ecological hypotheses surrounding animal signalling and
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survival. Moreover, it will also allow us to design effective
camouflage patterns for human use: to disguise items as
diverse as telephone masts, cameras, buildings and
military equipment and personnel. Indeed, rigorously
quantifying colour patterns in general has been a topic of
considerable recent interest due to both the potential
human applications and the unique opportunity to revolu-
tionise our understanding of animal signalling [9-11].
Regarding camouflage, identifying and assessing the effect-
iveness of a wild animal’s camouflage strategy is essential
for understanding predator—prey interactions in any
system with visually guided predators. Many conspicuous
displays will also be influenced by evolutionary pressure
for greater camouflage, for example, displays that are
aposematic at close quarters can be cryptic from further
away [12], and conversely, an understanding of how
camouflage is achieved can illuminate the mechanisms
that make conspicuous coloration effective [13]. Quantify-
ing an animal’s appearance relative to its background is
therefore essential for investigating sexual, aposematic and
camouflaged displays in a diverse range of fields.

A number of different types of camouflage have been
identified, based on how they hinder detection. The
most ubiquitous camouflage strategy is probably
background matching, where animals match the general
colour, brightness and patterns of their backgrounds [8,
14]. However, one of the key features thought to facili-
tate detection and/or recognition is the overall outline of
an object. Here, high-contrast markings intersecting an
animal’s outline may be used to ‘disrupt’ the viewer’s
ability to discern or detect it [4, 7, 15], a strategy called
disruptive coloration. The most direct way to determine
an animal’s camouflage, and how effective it is, uses
often lengthy behavioural tests or survival experiments
that are difficult to undertake in the wild [16]. Consider-
able effort has therefore pursued computer models that
can quantify how well any two visual samples match
according to different processing or camouflage theories
[17-22]. However, these camouflage models have rarely,
if ever, been directly compared under controlled
conditions, nor using data on observer success in finding
hidden objects. This lack of model validation means that
researchers rarely know which methods they should
adopt when investigating an animal’s appearance.
Furthermore, models that quantify visual signals and
their match (or contrast) with the background have the
potential to greatly inform us regarding the mechanisms
through which colour patterns work, and how they
should be optimised for maximal success (or indeed,
traded-off with other competing functions). If models
that are based on specific or generalised features of
visual processing fit with behavioural data, this can illu-
minate the possible mechanisms through which colour
patterns are made effective [19], and even how changes
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to them might improve the adaptive value of the de-
fence. Where the models are inspired by known or likely
neural architecture this can even reveal likely avenues
for research into the underlying structures performing
the visual processing.

Here we set out to address the above issues by
pitting numerous contemporary models of camouflage
directly against one another, using human observers to
compare models to detection times. We tested seven
classes of model that have been previously used for
investigating background matching and disruptive
coloration hypotheses. These models compare prey to
their backgrounds according to three different criteria: i)
luminance matching, ii) pattern matching and iii) disrup-
tive coloration. Luminance (i.e. perceived lightness)
matching is the simplest form of camouflage to measure,
for example calculating the average difference in lumi-
nance between prey and their backgrounds, which is
thought to be important in explaining survival in
peppered moths against mismatching backgrounds [23].
Contrast differences measure how similar the variation in
luminance in the prey is to that of the prey’s background.
This has been found to be important in the survival of
wild ground-nesting bird clutches [16]. Pattern matching
is another important aspect of background-matching
camouflage that has recently been found to predict the
survival of nightjar nests [16]. Pattern matching has been
measured using a number of different methods that vary
in their biological plausibility and complexity. These
methods generally separate images into a series of spatial
scales (e.g. using fast Fourier transforms, or Gabor filters),
then compare the information at these different scales
between the prey and background. Other methods search
for shapes or features found in the prey that are similar to
those in their backgrounds [22, 24]. For an overview see
Table 1 and Additional file 1. The final type of camouflage
measured was disruptive coloration, where contrasting
markings break up an object’s outline and create false
edges [7, 8, 15]. This camouflage strategy has received
considerable investigation in the last decade, and has been
shown to be highly successful in numerous contexts, in-
cluding where stimuli have various contrast and pattern
features manipulated [4, 25-30]. In spite of the clear pro-
tective benefits of artificial disruptive edges, it has proven
far more difficult to measure how disruptive real prey are
against their backgrounds [19, 31]. Recent edge disruption
measures have quantified how many edges are present in
the animal’s outline [32], or have used the Canny edge
detector to measure the number of perceived edges in the
prey’s outline relative to its surroundings [21], or the num-
ber of outline edges relative to those in the object’s centre
[33]. However, these measures do not take into account
the direction of the perceived edges, so cannot distinguish
‘false edges’ (that run at right angles to the prey’s outline
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Table 1 Descriptions of the methods used to measure prey conspicuousness

Basic Description

Camouflage Variable Name Filtering Method
Category
Edge Disruption GabRat Gabor Filter
VisRat Canny Edge Detector
DisRat Canny Edge Detector

Pattern/Object SIFT Difference-of-Gaussians,
detection Hough Transform
HMAX Gabor Filter
Pattern PatternDiff Fourier Bandpass
Euclidean Pattern Fourier Bandpass
Distance
Luminance Mean Backgorund Luminance
Luminance
Mean Luminance Luminance
Difference
LuminanceDiff Luminance
Contrast Difference Luminance

Mean Edge-region
Canny Edges

Edge-intersecting
cluster count

Canny Edge Detector

None

Average ratio of ‘false edges’ (edges at right angles to the prey
outline) to ‘salient edges’ (edges parallel with the prey outline).
See Additional file 1

Proportion of Canny edge pixels in the prey's outline region [21]
Proportion of Canny edge pixels in the prey’s outline region [34]

Proportion of Canny edge pixels in the prey’s outline region.

Count of the number of changes in the pattern around the prey’s
outline [33]

Uses Hough transform to find features in the prey, then counts
how many similar features are found in the background [19, 22]

Breaks down a bank of Gabor Filter outputs into layers that
describe patterns with some invariance to scale and orientation [20]

Sums the absolute difference between the prey’s pattern statistics [42]

Euclidean distance between normalised descriptive pattern statistics
[42]

Mean luminance

Absolute difference between mean prey and mean background
luminance

Sum of absolute luminance histogram bins [16]

Absolute difference of contrast between prey and background,
where contrast is the standard deviation in luminance levels

and should be maximally disruptive [8, 31]) from ‘coherent
edges’ that match the angle of the animal’s outline, making
the prey’s tell-tale shape easier to detect [34]. We therefore
developed a novel edge disruption metric called ‘GabRat’
that uses biologically inspired and angle-sensitive Gabor
filters to measure the ratio of false edges to coherent edges
around a target’s outline (see Fig. 1e) [35-37]. A high ratio
of false edges to coherent edges should be more disrup-
tive, making prey more difficult to detect. Background
complexity is also known to influence detection times
[38]. For example, artificial moths were more difficult to
find for humans and birds alike when the surrounding
bark had higher levels of luminance contrast and edge
orientation changes [24]. However, in this study we aimed
to focus on metrics that investigate the interaction be-
tween target and background, rather than assess the gen-
eral properties of backgrounds that affect concealment.
We tested how the above camouflage models predicted
the performance of human ‘predators’ searching for
camouflaged stimuli against natural background images
on a touch screen monitor. Each prey was unique, gener-
ated from its background using methods that maximised
or minimised the prey’s level of edge disruption, with prey
also varying in their level of background matching. We
used tree-bark backgrounds as these are biologically
relevant backgrounds for a wide range of camouflaged
animals, and they exhibit a degree of background

heterogeneity in contrast and spatial features. Artificial
prey and tree-bark backgrounds such as these have been
used extensively for testing camouflage theories because
they capture the essence of camouflage patterns effectively
without the need to find and take calibrated images of
large numbers of camouflaged prey [4, 27, 28, 32]. These
studies have also demonstrated that human and non-
human visual systems respond similarly to these
camouflage stimuli. We calculated the preys’ camouflage
with a battery of different models to determine which best
predicted capture times. Each prey’s level of camouflage
was measured between their entire background image, or
with the local region within one body length to investigate
whether camouflage is best predicted by local or global
background matching. In addition we tested for
interactions between the most effective luminance-, pat-
tern- and disruption-based camouflage metrics to deter-
mine whether extreme luminance differences render
pattern and disruption strategies ineffective. Finally, we
discuss the effectiveness of the most commonly used
models for assessing an animal’s camouflage and what our
findings reveal about the mechanisms underlying animal
camouflage.

Results
There were substantial differences between the abilities
of different camouflage metrics to predict capture times,
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Fig. 1 Examples of prey and edge disruption measurements. (a) Sample prey highlighted in blue against its background image. The ‘local’ region
within a radius of one body-length is highlighted in red. (b) Examples of prey generated with the disruptive algorithm (left) and background-matching
algorithm (right). These prey were chosen as their GabRat values were near the upper and lower end of the distribution (see below). (c) lllustration of
the GabRat measurement. Red and yellow false colours indicate the perceived edges run orthogonal to the prey's outline (making disruptive ‘false
edges), blue false colours indicate the perceived edges are parallel to the prey’s outline (making ‘coherent edges’). GabRat values are only measured
on outline-pixels, so these values have been smoothed with a Gaussian filter (o = 3) to illustrate the approximate field of influence. The prey on the feft
has a high GabRat value of 040, while the prey on the right has a low GabRat value (0.20). (d) Canny edges are highlighted in the images. Edges inside
the prey are highlighted in blue, edges in the prey’s outline region are green, and edges outside the prey are red. The VisRat and DisRat disruption
metrics are formed from the ratios of these edges. (e) Gabor filter kernels (sigma = 3), shown in false colour at the different angles measured

see Fig. 2 for full results. Camouflage experiments such movements [32], and the heterogeneous nature of the
as this are expected to entail a very high levels of re- backgrounds. For example, prey that appeared in the
sidual variation in capture times due to the interaction centre of the screen were captured sooner than those
between the location of the prey, the viewers’ eye nearer the edges, explaining 8.75% of model deviance in
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Variable Deviance P Deviance Explained (%)
GabRat;  834% <0007
GabRat, 812% <0.001 RNNAIIIIIINIIINIINNINNNNNN
GabRat, 7.59% <0.001 RNNIIIIIIIIIIHITIIIININNNG
GabRatos  7.22% <0.001 NN
SIFTLocal  5.65% <0.001 [[IIILLLNLELLLLEELLCITEXATLN]
Prey Treatment = 3.71% <0.001
SIFT Global ~ 2.87% <0.001
GabRatss  2.81% <0.001 NN\
Edge-intersecting cluster count* 2.30% <0.001
Mean Luminance Difference Local ~ 0.76% <0.001
HMAX (no rotation) Global ~ 0.58% <0.001
HMAX (no rotation) Local  0.57% <0.001
GabRatss  0.56% <0.001 |
LuminanceDiff Local ~ 0.55% <0.001 | |
HMAX Local  0.54% <0.001
PatternDiff Global ~ 0.53% <0.001
HMAX Global  0.52% <0.001
LuminanceDiff Global ~ 0.40% <0.001
Mean Background Luminance Local  0.23% 0.002 GabRat
Mean Edge-region Canny Edges  0.21%  0.001 SIFT
Contrast Difference Local ~ 0.16% 0.012 Prey Treatment
visRat Global  0.13% 0.011 Disruption Count
Euclidean Pattern Distance Local ~ 0.12%  0.019 Luminance Metrics
PatternDiff Local  0.09%  0.080 HMAX
Euclidean Pattern Distance Global ~ 0.08%  0.057 Fourier-based
VisRat Local 0.02% 0.295 Canny Edge
DisRat 0.00% 0.879
*Based on subset of disruptive prey 0 2 4 6 8
Fig. 2 Capture time prediction accuracy. The predictive performance of camouflage metrics tested in this study ranked from best to worst. All
camouflage metrics were continuous variables using one degree of freedom in each model with the exception of treatment type, which was
categorical, consuming two degrees of freedom. Note that DisRat and VisRat performed better when fitted with a polynomial

the best model, while the random effects of participant
ID and background image ID explained 3.16 and 1.68%
of variance respectively. The best predictor of capture
times was GabRat,;, which measured edge disruption
and explained 8.34% of model deviance (p <0.001). As
an illustration of effect size, prey in the upper 10% of
GabRat,; values took on average 2.23 times longer to
catch than those in the lower 10% of GabRat,; values
(4.447 s as opposed to 1.998 s). This was followed by the
Local SIFT model (measuring pattern/feature similar-
ities, explaining 5.65% deviance, p < 0.001), and together
with other GabRat sigma values (which specify the size
of the filter), these were the only metrics that performed
better than the prey treatment (i.e. whether it was gener-
ated using the background matching or disruptive
algorithm, which explained 3.71% deviance, p <0.001).
The worst metric at predicting capture times was the
Canny edge disruption measurement DisRat, explaining
less than 0.01% of model deviance (p =0.879), although
this was likely due to its non-linear nature, see below.
The full model comparing the best edge disruption,
pattern and luminance predictors contained GabRat,s,
Local SIFT difference and Mean Local Luminance
Difference metrics. Following AIC simplification the
model retained an interaction between GabRat,; and
SIFT local that explained 0.21% deviance, with the main
effect of GabRat,; explaining the majority of deviance
(8.18%) and SIFT local with (3.05%) all terms were sig-
nificant (p < 0.001). The global comparisons model based

on bandpass descriptive statistics performed compara-
tively well, explaining 1.87% of deviance when summed
across all model terms. This model contained four two-
way interactions that retained all five descriptive
variables (full model output is available in Additional
file 1). The local comparisons model using bandpass
descriptive statistics performed less well, retaining just
Dominant Spatial Frequency Difference as a predictor
that explained 0.42% of deviance). While background
complexity measured independently of the prey was
not the focus of this study, a number of metrics
effectively include this information, such as the Mean
edge-region Canny edges (deviance =0.21%, p = 0.001),
and Mean Local Bandpass Energy (deviance =0.19%,
p =0.002).

Gabor-based pattern-matching metrics did not vary
consistently between local and global difference predic-
tors. The bandpass-based pattern matching metrics
performed better when comparing the prey to their global
region than their local region with the exception of the
Euclidean Pattern Distance, which performed better
locally. In contrast, luminance metrics all performed bet-
ter when considering the local rather than global regions.
However this is perhaps to be expected given the way the
background images were normalised, and the way prey
were generated from their backgrounds. Nevertheless, the
Global PatternDiff metric performed substantially better
than the Global Mean Luminance Difference, which as
predicted is non-significant (deviance = 0.04%, p = 0.143).
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Given the striking difference in performance of DisRat
and GabRat metrics we tested how well each of them pre-
dicted prey treatment. As predicted, disruptive prey had a
significantly lower DisRat and higher GabRat,; than
background-matching prey (linear model; DisRat: F; 3517
=1413, p<0.001; GabRat.3: F; 3817=708.2, p<0.001),
demonstrating that both were able to predict treatment
type. When fitted with a quadratic, VisRat local and
DisRat both fitted capture times significantly better (based
on model comparison, p < 0.005), increasing the deviance
explained by these variables to 0.439 and 0.558% respect-
ively. The optimal VisRat local ratio was equal to 0.951,
while the optimum DisRat was 0.903, values higher or
lower resulted in shorter detection times.

Discussion

The number of studies quantifying the appearance of
animals to test evolutionary and ecological hypotheses is
increasing rapidly with the advancement of imaging
methods, computer models and models of animal vision
[9-11]. However, the methods developed to determine
how conspicuous an animal is against its background
have rarely been validated using behavioural data, let
alone compared to alternative models. This is an issue
that goes beyond simply developing the best techniques
to quantify animal appearances; coupling visual models
to performance, and determining which metrics are
most effective regarding observer behaviour, can also
enable predictions about the optimisation of visual
signals in nature and in applied tasks. By comparing the
performance of a suite of different analysis techniques
we have determined the best methods for quantifying
detectability from appearance.

We found that there were striking differences between
the abilities of different camouflage metrics to predict
the capture times of our computer-generated prey. Our
study broadly validates the use of the majority of camou-
flage models used in the literature to date, however there
were important differences and exceptions, demonstrat-
ing the importance of behavioural validation of these
models. The Gabor Edge Disruption Ratio (GabRat) de-
vised for this study performed substantially better than
all other metrics; prey with high GabRat values were half
as likely to be captured by our human ‘predators’ in a
given time-frame than those with low values, demon-
strating the potential for powerful evolutionary selection
pressures on this metric. Moreover, GabRat was over
twice as effective at predicting capture times as the type
of algorithm used to generate the prey, and over ten
times better than Fourier bandpass, HMAX or lumi-
nance difference metrics. Also striking was the relative
failure of Canny edge detection-based models (e.g. Vis-
Rat and DisRat) to predict capture times when treated as
linear predictors (i.e. testing the hypothesis that lower
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VisRat or DisRat values result in longer capture times).
When VisRat and DisRat were fitted non-linearly, the
optimal ratios were slightly below one in both cases,
where ratios equal to one would fit with a background-
matching strategy, and ratios below one are disruptive.
The non-linear performance of VisRat and DisRat make
them much more difficult to use as predictors of detect-
ability without considerable further investigation of the
optimal ratio, which may even change between study
systems. The fact that the optimal VisRat and DisRat
values were close to one suggests that they are either
not measuring edge disruption effectively, or that the
optimal level of disruption is very close to a
background-matching strategy (which is contradicted by
the GabRat result). DisRat was, however, a good
predictor of treatment type, able to determine whether
prey were generated using the background matching or
disruptive algorithms slightly better than GabRat. This
demonstrates that the Canny edge methods were not
failing due to misidentification of edge artefacts on the
preys outline. In line with our predictions based on
biases in human spatial frequency detection [39], GabRat
was most effective with a sigma of 3 pixels. This also
suggests that the Canny edge metrics should have been
performing optimally for the viewing distance, as they
were also calculated at this scale. Taken together this
suggests that the angle of the perceived edges relative to
the prey’s outline is essential in any model attempting to
describe edge disruption, as this is the primary difference
between the Canny and GabRat methods that were
found to behave so differently in this study. The Canny-
edges shown in Fig. 1d demonstrate why basing metrics
on the presence of edges alone is not sufficient; the dis-
ruptive prey in this example has a large number of
detected edges in its outline region that mostly run at
right angles to the outline.

The success of GabRat in predicting capture times is
all the more striking given the comparatively small area
that it measures (e.g. see Fig. 1c). The local comparison
zone encompassed approximately 92,000 pixels, and the
global camouflage metrics measured 2.1 million pixels.
By contrast, the GabRat,3; kernel has a maximum diam-
eter of just 19 pixels, covering an area of approximately
5500 pixels. Even though GabRat only takes into account
0.26% of the available data in the scene, those data were
found to be far more effective for predicting capture
times than any other data we measured, supporting the
notions of Cott [7] and Thayer [15] that the animal’s
outline tends to give it away, and suggesting our working
definition of edge disruption that takes into account the
difference between perceived edges and body outline [8]
fits with the observed data. In addition, GabRat is one of
the least computationally demanding metrics measured
here, and uses biologically inspired methods. The
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variables required for specifying the model can be based
on neurophysiology [20] without the need for guessing
variables and thresholds, which sets it apart from the
Canny or SIFT-based models [18], or edge-intersecting
patch counts [32]. An alternative conclusion is that the
pattern and luminance-based metrics we have measured
are less effective, perhaps because they fail to model real
visual systems adequately, although these methods have
a substantial track record in supporting hypotheses in
natural systems [16, 22, 40, 41].

In line with Webster et al. [32], we found the Edge-
Intersecting Patch Count was a good predictor of
capture time, indeed it outperformed all pattern- and
luminance-based metrics other than SIFT even though it
is blind to the interaction between prey and their back-
grounds. However, it is also a less useful metric for gen-
eralising to other systems where the edge-intersecting
patches are less easily defined. For example, how should
discrete patches be distinguished in real prey images,
what regions around the prey’s outline should be used,
and what visual processing architecture could reproduce
these counts? Therefore, although this metric is success-
ful in this study where patches are defined by the prey
generation algorithm, we think it an unlikely avenue for
fruitful future research into edge disruption compared to
metrics that more closely match known neural process-
ing methods.

Contrary to our expectations based on Moreno et al.
[42], the best method of quantifying pattern difference
was the SIFT model. Although in line with our predic-
tions, prey took longer to capture if they shared more
features with their local background region than their
global background. This result is similar to experiments
demonstrating that captive blue tits Cyanistes caeruleus
took longer to find prey against backgrounds with higher
densities of geometric shapes identical to those on the
prey [43]. Our finding suggests that the same effect
holds true when natural backgrounds rather than re-
peated geometric shapes are used. The SIFT model was
also the only pattern matching model that performed
better than treatment type, which is perhaps surprising
given treatment type was blind to the interaction be-
tween individual prey and their backgrounds. As pre-
dicted, the HMAX models performed better than the
Fourier-based bandpass models. The HMAX models
that forced comparisons to be made between prey and
background without allowing for orientation changes
were more effective, for example demonstrating that
where there were stripes on the prey these offered the
most effective camouflage when they were at the same
orientation as the stripes in their background at a similar
spatial scale. The Fourier-based global PatternDiff metric
performed comparatively well compared to the HMAX
metrics even though it is substantially less computationally
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demanding and less biologically accurate. The other
Fourier-based metrics fared less well, although when the
global pattern descriptive statistics were combined into an
optimal model it predicted capture times well, indeed
performing better than any other HMAX or Fourier-based
method. However, this model is not directly comparable to
the others in that it was adapted to fit the observed data in
this study from a large number of degrees of freedom,
giving it an unfair advantage. Nevertheless, this process is
useful because it highlights those descriptive pattern met-
rics that best predicted capture times in this study, making
it the most useful method for producing information on
the importance of different aspects of pattern matching,
such as whether spatial scale or energy measures are more
important. By contrast the SIFT model provides the least
information on what aspects of the general patterns are
most important, making it less easy to infer what types of
features are most important, how their importance is
weighted, and whether these variables and weightings apply
equally well to non-human visual systems.

Our data suggest that while matching the average
background luminance is important, it is substantially
less important than pattern matching or edge disruption
metrics. We might have expected to find that pattern
and edge disruption should only be important up the
point where the prey become so different in average lu-
minance to their background that they stand out
(switching from inefficient to efficient search strategies
[34]). However, the best luminance predictor (Local
Mean Luminance Difference) was dropped from the final
model of the best predictors, suggesting that this is not
the case. Nor was there autocorrelation between this
luminance metric and the best pattern and edge disrup-
tion metrics, demonstrating—contrary to our expecta-
tion—that prey can mismatch the luminance of their
local background and still have a good SIFT pattern
match and level of GabRat,; edge disruption. Prey in
real-world situations could have a level of luminance
mismatch with their environment beyond those achieved
by our computer display, however most background
matching prey would not be expected to have such a big
luminance difference to their background. The inter-
action in the final model of best predictors between
GabRaty; and Local SIFT pattern match suggest these
metrics can operate in synergy to increase detection
times. Although, the effect size of this interaction was
small compared to the abilities of GabRat,3; and SIFT to
predict capture times on their own.

To our knowledge this study is the first to compare a
wide range of different contemporary methods for test-
ing levels of achromatic camouflage. We have validated
the use of GabRat a novel edge disruption metric, while
the VisRat and DisRat metrics adopted in the literature
to date for investigating edge disruption cannot be used
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as reliable indicators of detectability. Fourier-based
methods were less effective than more complex and bio-
logically plausible methods, they were, however, the
most informative for distinguishing different aspects of a
pattern’s nature, and were still highly significant predic-
tors of capture time. We would still therefore recom-
mend their use in cases where little is known about the
receiver’s visual system. HMAX models, while being the
most biologically plausible for quantifying pattern differ-
ence were not found to be as effective as SIFT for
predicting capture times, indicating that the number of
distinct features shared between two patterns is more
important than the overall scales, angles and contrast
levels. Our use of tree-bark backgrounds photographed
under diffuse lighting conditions may also have influ-
enced our findings, and qualitatively different results
could be possible against alternative backgrounds, and
under different lighting conditions. A number of studies
have demonstrated the importance of background com-
plexity in affecting detectability [24, 38, 43], so our find-
ings may not hold against simple backgrounds with low
levels of achromatic complexity. Xiao and Cuthill found
that feature congestion best predicted human and bird
detection of artificial moths [24]. This metric combines
local achromatic and chromatic changes, and edge
orientation changes. While our study did not consider
colour differences or feature congestion explicitly, it
measured a number of variables similar to those used in
calculating the achromatic components of feature con-
gestion; for example by measuring the number of Canny
edges locally, analysing the local pattern energy, and
HMAX Gabor filtering, which takes into account edge
orientations. While we found that all of these metrics
predicted capture times in line with Xiao & Cuthill, they
were not as effective as other methods, possibly because
they do not consider the prey’s interaction with its back-
ground. Future work should compare the effectiveness
of these models with images of natural prey, and in
wholly natural systems to establish how wide-ranging
these findings are to detection times in alternative
contexts and with non-human visual systems [24]. In
addition, models should be developed that can integrate
chromatic cues; experiments on colour discrimination
typically involve comparisons between flat colour
patches rather than the complex and varied colours en-
countered in natural search tasks.

Conclusions

This study demonstrates how best to measure camou-
flage from appearance, however the same models can
also be used to measure signals that stand out from the
background [13]. The methods tested in this study are
therefore useful for researchers studying the appearance
of wide-ranging signals, from sexual and aposematic
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displays to mimicry and camouflage in fields from evolu-
tionary and sensory ecology to military camouflage and
advertising. Model validation in humans can also help to
reduce the number of costly animal behaviour experi-
ments required for testing visual hypotheses. Our
findings have two main evolutionary implications: first,
that we would expect camouflage to be optimised by
creating false edges at scales linked to the typical
detection distances of the receiver, and second, that
while visual systems should have evolved to overcome
this weak-spot as effectively as possible, recognising the
animal’s outline is still key to detection and/or recogni-
tion. Likewise, signals that have evolved to maximise de-
tection (such as sexual or aposematic displays, [13])
should do the opposite, creating coherent edge cues at
scales relevant to typical viewing distances.

Methods

The performance of different models of camouflage
measurement was assessed in human touch-screen
predation experiments. Although animal vision varies
substantially between taxa, human performance in
touch-screen experiments has been found to agree with
behavioural data from non-humans [27]. Furthermore,
spatial visual processing is thought to be similar between
taxa [17], suggesting the results based on achromatic hu-
man performance should be good indicators of perform-
ance in many other vertebrate species.

Backgrounds and prey generation

Photographs of natural tree bark were used as back-
ground images (oak, beech, birch, holly and ash, n=57
images), taken using a Canon 5D MKII with a Nikkor
EL 80 mm lens at F/22 to ensure a deep depth of field.
Photographs were taken under diffuse lighting condi-
tions. Luminance-based vision in humans is thought to
combine both longwave and mediumwave channels [44].
As such we used natural images that measure luminance
over a similar range of wavelengths by combining the
camera’s linear red and green channels. Next the images
were standardised to ensure that they had a similar over-
all mean luminance and contrast (variance in luminance,
see [16]). Images were then cropped and scaled with a
1:1 aspect ratio to the monitor’s resolution of 1920 by
1080 pixels using bilinear interpolation. Images were
log-transformed, resulting in a roughly normal distribu-
tion of luminance values. A histogram of logged pixel
values with 10,000 bins was analysed for each image.
The 1st, 50th (median) and 99th percentile luminance
values were calculated, and their bins modelled with a
quadratic function against the desired values for these
percentiles to ensure the median was half way between
the luminance at the upper and lower limits. The result-
ing images all have an approximately equal mean and
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median luminance, and similar luminance distributions
(contrast), and equal numbers of pixels at the upper and
lower extremes.

Each prey was generated from the background it was
presented against using custom written code similar to
that used previously [28]. This methodology creates
unique two-tone prey that match the general pattern
and luminance of the background (see Fig. 1b). Briefly,
for each prey a triangular section of the background
image was selected from a random location, 126 pixels
wide by 64 pixels high. For disruptive prey the threshold
level was calculated that would split the image into the
desired proportions (60% background to 40% pattern).
For background matching prey a Gaussian gradient was
applied to the edges prior to threshold modelling that
made it less likely that underlying patterns would come
through nearer the edge of the prey. This avoids creating
salient internal lines in the background matching prey
parallel with the prey’s outline, while ensuring no pat-
terns touch the very edges. If the thresholded proportion
was not within 1% of the target limits the process was
repeated. Prey were generated with either dark-on-light
or light-on-dark patterns, and each participant only
received one of these treatments. Dark-on-light prey had
the dark value set to equal the 20th percentile of the
background levels and the light value set to the 70th
percentile. The light-on-dark prey used the 30th and
80th percentiles respectively. The differences between
these two treatments are due to the fact that there is
slightly more background area than pattern, and these
values ensure that the overall perceived luminance of
the two treatments is similar to the median background
luminance, factoring in the 60/40 split of background to
pattern area.

Calculating camouflage metrics

The camouflage metrics measured in this study fall into
seven distinct methodologies, though many of these in
turn provide a number of additional variations: Gabor
edge disruption ratios (GabRat, first proposed in this
study), visual cortex-inspired models based on the
HMAX model [20, 45], SIFT feature detection [18, 22],
edge-intersecting patch count [32], luminance-based
metrics [10, 16], Fourier transform (bandpass) pattern
analysis [10, 16, 41], and edge-detection methods to
quantify disruption [19, 21, 33]. Where possible, we have
used the same terminology for the different metrics as
they are used in the literature. Many of these variables
can be used to compare a prey target to a specific back-
ground region. Therefore, where the metrics allowed, we
compared each prey to its entire background image (the
‘global’ region) and to its ‘local’ region, defined as the
area of background within a radius of one body-length
(126 pixels) of the prey’s outline. The distance of one
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body length is the largest ‘local’ area that would not ex-
ceed the background image limits, because prey were al-
ways presented within one body length of the screen
edge. This also ensured that the shape of the local region
was always uniform, however one body length is also a
flexible unit of scale measurement that could be used in
other animal systems. Measuring two regions allowed us
to test whether a preys local or global camouflage
matching was more important across the different met-
rics (see Fig. 1a). If the prey are a very poor luminance
match to their backgrounds then we might expect them
to stand out enough for the comparatively low acuity
peripheral vision to detect them easily using efficient
search [34]. However, where the prey are a good lumi-
nance and pattern match to their local background they
should be most difficult to detect as this would require
the participant adopt inefficient search strategies, slowly
scanning for the prey. We can make further predictions
on the importance of pattern and edge disruption at spe-
cific spatial scales given humans are most sensitive to
spatial frequencies in the region of around 3-5 cycles
per degree [39]. This scale is equivalent to a Gabor filter
with a sigma between approximately 2—4 pixels.

For clarity we use the term ‘edge’ to refer to perceived
edges based on a given image analysis metric, and ‘out-
line’ to refer to the boundary between prey and back-
ground. Unless otherwise specified, these methods were
implemented using custom written code in Image]. The
GabRat implementation will be made available as part of
our free Image Analysis Toolbox [10], code for all other
metrics is already available in the toolbox, or is available
on request. See Table 1 for an overview of the measure-
ment models.

Gabor edge disruption ratio (GabRat)

Prey were first converted into binary mask images (i.e.
white prey against a black background), a Gabor filter
was then applied to each of the pixels around the edge
of the prey at a range of angles (four in this study; the
Gabor filter settings were identical to those used in the
HMAX model below, and Fig. le). The angle of the
prey’s outline at each point (parallel to the outline) was
the angle with the highest absolute energy (|E|) mea-
sured from the mask image. Each point around the
prey’s outline in the original image was then measured
with a Gabor filter at an angle parallel to, and orthog-
onal (at right angles) to the edge at each point. This
measured the interaction between the prey and its back-
ground. The disruption ratio at each point on the prey’s
outline was then calculated as the absolute orthogonal
energy (|E,|) divided by the sum of absolute orthogonal
and absolute parallel energies (|E,|). Finally, the Gabor
edge disruption ratio (GabRat) was taken as the mean of
these ratios across the whole prey’s outline:
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Consequently, higher GabRat values should imply that
prey are disruptive against their backgrounds (having a
higher ratio of false edges), and lower GabRats imply
that the edges of prey are detectable (see Fig. 1c). This
process was repeated with different sigma values for the
Gabor filter to test for disruption at different spatial
frequencies (sigma values of 1, 2, 3, 4, 8 and 16 were
modelled in this study). It is therefore possible for prey
to be disruptive at one spatial scale or viewing distance,
while having more detectable edges at another.

HMAX models

The HMAX model is biologically inspired, based on an
understanding of neural architecture [20]. It breaks
down images using banks of Gabor filters [37] that are
then condensed using simple steps into visual informa-
tion for object recognition tasks. It was also found to
outperform the SIFT in an object classification compari-
son [42], so we might therefore expect it to perform best
in a camouflage scenario. The HMAX model was devel-
oped in an attempt to emulate complex object recogni-
tion based on a quantitative understanding of the neural
architecture of the ventral stream of the visual cortex
[20, 45]. Our HMAX model first applied a battery of Ga-
bor filters to the prey image, and the local and global
background regions. The Gabor filters were applied at
four angles and ten different scales, with Gamma=1,
phase =2m, frequency of sinusoidal component=4,
minimum sigma = 2, maximum sigma = 20, increasing in
steps of 2. C1 layers were created following Serre et al.
[20] by taking the maximum values over local position
(with a radius of sigma +4) and the neighbouring scale
band. The mean of each scale band in the prey’s C1 was
then calculated as we wished to compare the prey’s over-
all pattern match rather than a perfect template match,
which would test a masquerade rather than background-
matching hypothesis [6]. This C1 template was then
compared to each point in the local surround and entire
(global) background image. The average match between
the prey’s C1 layer and the C1 layers of each region was
saved along with the value of the best match and the
standard deviation in match (a measure of heterogeneity
in background pattern matching). This model was run
both with and without an allowance for the template to
rotate at each point of comparison. When rotation was
allowed the angle that had the best match at each
comparison site was selected. The HMAX model with
rotation describes how well the moth’s average pattern
(i.e. angles, scales and intensities) matches the back-
ground if the prey can rotate to the optimal angle at
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each point. The model without rotation forces the prey
to be compared to its background at the same angles, so
should be a better predictor in this study where the
prey’s angle relative to its background is fixed.

SIFT feature detection

Scale Invariant Feature Transform (SIFT, [18]) models
were primarily developed for object recognition and rap-
idly stitching together images by finding sets of shared
features between them even if they occur at different
scales or angles. Although the SIFT models share some
similarities with known biological image processing and
object recognition at certain stages, such as the inferior
temporal cortex [46], the method as a whole is not
intended to be biologically inspired, although it has been
applied to questions of animal coloration [22].

The SIFT function in Fiji (version 2.0.0 [47]) was used
to extract the number of feature correspondences be-
tween each prey and its local and global background
without attempting to search for an overall template
match. Settings were selected that resulted in a large
enough number of correspondences that the count data
would exhibit a normal rather than Poisson distribution,
but that was not too slow to process. These settings pro-
duced roughly 300 features in the prey, and 300,000 in
the background in a sub-sample run to test the settings.
The initial Gaussian blur was 1, with 8 steps per scale
octave, a feature descriptor size of 4, 8 orientation bins
and a closest to next-closest ratio of 0.96. Prey and their
local background regions were measured in their entir-
ety against a white background. As it stands this meth-
odology might not therefore be suitable for comparing
prey of different shapes and sizes without further modifi-
cation and testing.

Edge-intersecting cluster count

The number of cases where patterns intersected the
preys outline (following [32]) were summed in each prey
using a custom written script. Background matching
prey had no instances of edge intersections, which would
create zero inflation and violate model assumptions. We
therefore analysed a subset of the data containing only
disruptive prey for testing this metric.

Luminance-based metrics

Prey were compared to their local and global back-
ground regions using a number of luminance-based met-
rics that could affect capture times. Luminance was
taken to be pixel intensity values. LuminanceDiff was
calculated as described in Troscianko et al. [10], as the
sum of absolute differences in the counts of pixel num-
bers across 20 intensity bins, essentially the difference in
image luminance histograms. This measure is suitable
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where the luminance values do not fit a normal distribu-
tion, which is the case with our two-tone prey. Mean
luminance difference was the absolute difference in
mean luminance values between prey and background
regions. Contrast difference was calculated as the abso-
lute difference in the standard deviation in luminance
values between prey and background region. Mean local
luminance was simply the mean pixel level of the local
region. This was not calculated for the entire back-
ground image because they had been normalised to have
the same mean luminance values.

Bandpass pattern metrics

Fourier Transform (bandpass) approaches [17, 40] only
loosely approximate the way visual systems split an
image into a number of spatial frequencies, however,
they have a long and successful track record of use in
biological systems, are fast to calculate and provide out-
put that can be used flexibly to test different hypotheses
[16, 41]. Fast-Fourier bandpass energy spectra were cal-
culated for the prey and their local and global back-
ground regions using 13 scale bands, increasing from
2px in multiples of V2 to a maximum of 128px [10]. Pat-
ternDiff values were calculated as the sum of absolute
differences between energy spectra at each spatial band
[10]. This metric describes how similar any two patterns
are in their overall level of contrast at each spatial scale.
Descriptive statistics from the pattern energy spectra
were also calculated, these being: maximum energy,
dominant spatial frequency (the spatial frequency with
the maximum energy), proportion power (the maximum
energy divided by the sum across all spatial frequencies,
mean energy and energy variance (the standard deviation
in pattern energy, a measure of heterogeneity across
spatial scales) [10, 41]. A metric similar to the multidi-
mensional phenotypic space used by Spottiswoode and
Stevens [48] was calculated from these descriptive statis-
tics. However, rather than sum the means of each
descriptive pattern statistic, a Euclidean distance was
calculated after normalising the variables so that each
had a mean of zero and standard deviation of one
(ensuring equal weighting between pattern statistics).
We termed this metric ‘Euclidean Pattern Distance’. In
addition, a full linear mixed model was specified
containing all descriptive pattern statistics and all two-
way interactions between them (the model was specified
in the same form as other linear mixed models in this
study, see statistical methods below). The full model was
then simplified based on AIC model selection.

Canny edge detection methods

Canny edge detection methods were applied following
Lovell et al. [21] and Kang et al. [33], using a Java imple-
mentation of the method [49]. The Canny edge filter
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was applied to each image with the settings specified by
Lovell et al., using a sigma of 3 and a lower threshold of
0.2. The upper threshold required by the Canny edge
detection algorithm was not specified by Lovell et al., so
a value of 0.5 was selected that ensured there would be
no bounding of the data where no edges were detected.
Following Lovell et al., the prey’s outline region was
specified as being four pixels inside the prey’s outline
and 8 pixels outside (see Fig. 1d). As above, two back-
ground regions were measured; local and global,
although the 8px band around the prey’s outline was not
included in the local or global regions. We measured the
mean number of Canny edge contours in each region
(i.e. the number of edge contour pixels in each region
divided by the total number of pixels in each region to
control for the differences in area being measured). It is
unclear whether Lovell et al. applied this control, how-
ever given the areas being measured are fixed in this
experiment (all prey and backgrounds are the same size)
this would not affect the overall outcome. VisRat was
calculated as the mean Canny edge contours found in
the background region (either local or global) divided by
the mean Canny edge contours found in the prey’s out-
line region (termed ContEdge by Kang et al.). DisRat
was calculated following Kang et al. as being the mean
Canny edge contours found inside the prey (termed
MothEdge by Kang et al.) divided by ContEdge. Both
VisRat and DisRat required a log transformation to dem-
onstrate a normal error distribution.

Experimental setup

Prey were presented at a random location against their
background using custom written HTML5/Javascript code
on an Acer T272HL LCD touch-screen monitor. The dis-
play area was 600 mm by 338 mm, 1920 by 1080 pixels.
The monitor’s maximum brightness was 136.2 lux, and
minimum was 0.1 lux, measured using a Jeti Specbos 1211
spectroradiometer. The monitor’s output fitted a standard
Gamma curve where brightness (lux) = 8.362E-4*(x +
25.41)"2.127*exp (—(x + 25.41)/3.840E11), where x is an 8-
bit pixel value. The monitor was positioned in rooms with
standard indoor lighting levels and minimal natural light.
Prey were 39.38 mm wide (126 pixels, approximately
4.59°) by 20.03 mm (64 pixels, approx. 2.30°) high, viewed
from a distance of approximately 500 mm (approx.
27.9 pixels per degree). If participants touched the screen
within the bounds of the prey the code recorded a capture
event to the nearest millisecond, a high-pitched auditory
cue sounded, and a green circle appeared around the prey
for 1 s. If they touched the screen outside the prey’s
bounds a low-pitched auditory cue sounded, and they
were not progressed to the next screen. If the participant
failed to find the prey after 20 s (timeout) a red circle ap-
peared around the moth for 1 s and a low-pitched
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auditory cue sounded, and capture time was set at 20 s
(this occurred in just 3.5% of slides). In addition, for every
successful or failed capture event, or timeout event the lo-
cation of the touch was recorded. Participants started each
session by clicking a box asking them to ‘find the artificial
triangular “moths” as fast as possible, confirming that they
were free to leave at any point, and that it should take less
than 10 min to complete (all trails were under 10 min). A
total of 120 participants were tested, each receiving 32
slides (i.e. 32 potential capture events), creating a total of
3840 unique prey presentations.

Statistics

All statistics were performed in R version 3.2.2 [50]. For
each camouflage metric a linear mixed effects model
was specified using Ime4 (version 1.1-10). The
dependent variable in each model was log capture time.
The main aim of this study was to establish which cam-
ouflage measurement models best predicted human per-
formance, and as such we compared the variance in
capture times explained between models. The multiple
models created here increase the likelihood of making a
type I error, however, alpha correction methods (such as
Bonferroni or Sidék corrections) are not strictly suitable
for these data as many of the models are non-
independent, measuring subtly different versions of the
same effect, and they would increase the likelihood of
type II errors. As such we focused on the level of vari-
ance explained by each variable and its associated effect
sizes for ranking the models. A number of variables
known to affect capture times were included in the
model to reduce the residual variance to be explained by
the camouflage metrics [28]. These were the X and Y
screen coordinates of the prey, each included with quad-
ratic functions and with an interaction between them to
reflect the fact that prey in the centre of the screen were
detected sooner than those at the edges or corners. A
variable was used to distinguish the first slide from all
subsequent slides, describing whether the participant
was naive to the appearance of the prey. Slide number
was fitted to account for learning effects. Random effects
fitted to the model were participant ID and background
image ID, allowing the model to ignore the differences
in capture time between participants or against specific
backgrounds when calculating the fixed effects. Each
camouflage metric was substituted into this model and the
deviance explained by each camouflage metric was
calculated using the pamer function of LMERConvenience-
Functions (version 2.10). All camouflage metrics were
continuous variables transformed where necessary to ex-
hibit a normal error distribution with the exception of treat-
ment type, which was categorical (background matching or
disruptive prey). An additional final model was assembled
based on the best performing edge disruption metric,
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pattern matching metric and luminance matching metric
with two-way interactions between them. These variables
were checked for autocorrelation using Spearman covari-
ance matrices [51]. This full model was them simplified
based on AIC maximum likelihood model selection to
determine whether the best camouflage predictors interact
in synergy to better predict camouflage than any single
metric on its own.

Additional file

Additional file 1: Table S1. Model terms in the simplified model of
bandpass-based descriptive statistics. Prey X and Y screen coordinates are
added with polynomial fits and an interaction. (DOC 140 kb)
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