Hug and Gaut BMC Evolutionary Biology (2015) 15:177
DOI 10.1186/512862-015-0457-3

BMC
Evolutionary Biology

RESEARCH ARTICLE Open Access

The phenotypic signature of adaptation to @ e
thermal stress in Escherichia coli

Shaun M. Hug and Brandon S. Gaut’

Abstract

Background: In the short-term, organisms acclimate to stress through phenotypic plasticity, but in the longer term
they adapt to stress genetically. The mutations that accrue during adaptation may contribute to completely novel
phenotypes, or they may instead act to restore the phenotype from a stressed to a pre-stress condition. To better
understand the influence of evolution on the diversity and direction of phenotypic change, we used Biolog
microarrays to assay 94 phenotypes of 115 Escherichia coli clones that had adapted to high temperature (42.2 °C).
We also assayed these same phenotypes in the clones’ ancestor under non-stress (37.0 °C) and stress (42.2 °C)
conditions. We explored associations between Biolog phenotypes and genotypes, and we also investigated
phenotypic differences between clones that have one of two adaptive genetic trajectories: one that is typified by
mutations in the RNA polymerase B-subunit (rpoB) and another that is defined by mutations in the rho termination
factor.

Results: Most (54 %) phenotypic variation was restorative, shifting the phenotype from the acclimated state back

to thermal adaptation encompass different phenotypes.

toward the unstressed state. Novel phenotypes were more rare, comprising between 5 and 18 % of informative
phenotypic variation. Phenotypic variation associated statistically with genetic variation, demonstrating a genetic
basis for phenotypic change. Finally, clones with rpoB mutations differed in phenotype from those with rho
mutations, largely due to differences in chemical sensitivity.

Conclusions: Our results contribute to previous observations showing that a major component of adaptation in
microbial evolution experiments is toward restoration to the unstressed state. In addition, we found that a large
deletion strongly affected phenotypic variation. Finally, we demonstrated that the two genetic trajectories leading

Background

Our understanding of the dynamics of adaptation in pop-
ulations is incomplete [1], particularly with respect to the
repeatability and the direction of adaptation. For repeat-
ability, the major questions are, first, whether replicated
evolutionary events converge on a single adaptive pheno-
type and, second, whether convergent phenotypes are
caused by the same set of underlying genetic changes. For
the direction of adaptation, the major question is whether
adaptation commonly leads to novel phenotypes or in-
stead acts to restore phenotypes to pre-stress states. To
understand this last point, it is important to recognize that
adaptation often begins with a physiological stress in a
new environment. In the short term, there may be
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acclimation to stress through a physiological response, but
genetic and phenotypic adaptation occurs in the longer
term. The question is whether adaptation typically re-
stores phenotypes to a pre-stress state or more often leads
to phenotypic novelty (Fig. 1).

Questions about novelty, restoration, and convergence
have been addressed in the context of experimental evolu-
tion [2—4]. These studies have found that evolution typic-
ally proceeds toward the restoration of the pre-stress
condition. For example, Carroll and Marx [3] evolved
eight replicate bacterial lineages under stress conditions
and then measured gene expression. They found that
93 % of all adaptive changes in gene expression restored
expression from the acclimated (stressed) state back to the
wild-type (pre-stress) condition. Of these restorative
changes, 70 % occurred in parallel across all eight popula-
tions. These studies make the important point that

© 2015 Hug and Gaut. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-015-0457-3&domain=pdf
mailto:bgaut@uci.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hug and Gaut BMC Evolutionary Biology (2015) 15:177

Page 2 of 12

Acclimated Phenotype

Reinforced

Thermal Stress

e |iroduced

Unstressed Phenotype

Phenotypic Response

Unrestored

Partially
Restored

Restored

Over-restored

Generations

Fig. 1 Schematic of acclimation and the potential directional outcomes of adaptation. In addition to restored and unrestored states, which reflect
the phenotype of the unstressed and stressed ancestor, respectively, evolved clones may exhibit partially restored, over-restored or reinforced
phenotypes. Not shown are cases of novelty, in which evolved clones differ from ancestral treatments that do not differ
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characterizing the intermediate acclimation process is es-
sential to understanding the repeatability and direction of
adaptation. However, these studies have also been limited
to a low number (<10) of experimental replicates.

We recently performed a highly replicated experiment
in which Escherichia coli evolved to high temperature [5].
To begin, we inoculated a clone of E. coli strain REL1206
[6] into 115 replicate populations, and then allowed the
populations to evolve independently for 2000 generations
at 42.2 °C. At the end of the experiment, we sequenced
the genomes of single clones from each of the replicates.
Our sequencing efforts revealed a total of 1331 mutations
across a set of 115 evolved clones. Roughly half of these
mutations were shared among two or more clones, with
many falling into one of two different adaptive genetic
trajectories. The first of these includes mutations in rpoB,
which codes for the B-subunit of RNA polymerase, along
with associated mutations in other RNA polymerase sub-
units and the rod genes that define cell shape. The second
trajectory includes mutations in rho, which codes for a
major transcription termination factor, along with muta-
tions in iclR, a transcriptional regulator of the glyoxylate
shunt of the Krebs cycle, and cls, a cardiolipin synthase
gene important for regulating membrane fluidity and per-
meability. Mutations in the rpoB and rho adaptive trajec-
tories are not mutually exclusive, but they are strongly
negatively associated, presumably due to negative epistatic
interactions [5].

Overall, we have observed adaptive genetic convergen-
ce—i.e., mutations in two or more independent clones—in
~80 genes [5], of which the two adaptive trajectories
represent only a subset. We have been left, then, with a
large amount of unexplained genetic diversity that is pre-
sumed to be adaptive at 42.2 °C, hundreds more muta-
tions that are unique to single evolved clones, and the
observation that all 115 of our populations independently
evolved the ability to persist in the same high-temperature

environment. While our study has provided a description
of the breadth of genetic change underpinning an adaptive
response [5], the extent of phenotypic convergence re-
mains unclear, as does the direction of phenotypic
evolution.

In this study, we assess phenotypic diversity among our
115 evolved E. coli clones using high-throughput Biolog
arrays. Biologs are 96-well plates that test metabolic phe-
notypes [7], including 71 carbon utilization assays and 23
chemical sensitivity assays. Biologs have been used to
discover new links in microbial biochemical pathways [8],
to associate genotypes with phenotypes [9, 10], to uncover
a decoupling between genotypic and phenotypic diversity
across E. coli strains [11], and to validate patterns of long-
term phenotypic evolution in diverse groups of bacteria
[12]. They have also been employed in an evolution
experiment to characterize ecological dynamics and niche
displacement in coevolving subpopulations of E. coli [13].

Using Biolog assays, we have measured 94 phenotypes
for each of our 115 evolved clones at 42.2 °C and for
their REL1206 ancestor at two treatment temperatures
(37.0 and 42.2 °C). With this dataset of phenotypes, our
study has four interacting objectives. The first is to as-
sess phenotypic variation among clones based on a Bio-
log ‘fingerprint’. The second is to measure the direction
of phenotypic adaptation in our 115 evolved clones rela-
tive to the stressed (42.2 °C) and non-stressed (37.0 °C)
ancestor. Based on previous studies [2, 3], we hypothesize
that many of the phenotypic changes restore phenotypes
from the stressed toward the pre-stress state. The third
objective is to assess whether phenotypic shifts have a
genetic component—i.e., to ascertain that genetic adapta-
tion has contributed to the observed phenotypic shifts
rather than phenotypic plasticity. Finally, we contrast the
two adaptive trajectories typified by rio and rpoB muta-
tions. Do these two genetic trajectories vary in their result-
ant phenotypes?
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Methods

Evolution to thermal stress

Our thermal stress experiment was reported elsewhere
[5], but we cover the experimental design here for the sake
of clarity. Following previously established methods [14],
we inoculated 10 mL of LB media with a loop taken from
a freezer stock of Arabinose minus E. coli (REL1206), and
the culture was grown overnight at 37.0 °C. A 0.1 mL ali-
quot of this culture was plated onto an LB plate, again at
37.0 °C, and colonies from this plate were used to inocu-
late each of the 115 independent lines for the evolution
experiment. That is, each line was started from a separate
and single bacterial colony. The lines were first grown
overnight at 37.0 °C in a 10 ml LB culture to aid recovery,
and then transferred in a 1:100 dilution to 9.9 ml of Davis
minimal medium supplemented with 25 mg/L glucose
(DM25) and grown overnight at 37.0 °C. Thereafter, each
culture was transferred daily into fresh media via 100-fold
dilution and maintained in a shaking water bath at 42.2 °C.
The experiment continued for 2000 generations after the
application of thermal stress. The ancestral REL1206 clone
had been propagated previously at 37.0 °C for 2000 gener-
ations in DM25 and was thus likely to be well adapted to
the media such that temperature (42.2 °C) was the major
stress.

At the end of the 2000 generation experiment, we
isolated one clone from each of the 115 populations,
and each genome was sequenced. The clones were also
assessed for their fitness relative to the ancestor at
42.2 °C [5]; on average, the evolved clones were ~40 %
more fit than the ancestor. For further details, includ-
ing relative fitness values and a table of genotypes,
please refer to [5].

Biolog assays

We streaked each of the 115 clones from the E. coli ther-
mal stress experiment from frozen glycerol stocks onto
tetrazolium and arabinose (TA) agar plates and grew them
for one day at 37.0 °C. Although the clones had evolved at
42.2 °C in DM25, it is common practice in thermal stress
studies to allow clones to recover from freezing under less
stressful conditions [14—16].

For each clone, we chose colonies to assay on a GEN III
Biolog MicroPlate. To perform the assay, we followed the
manufacturer’s protocol, which included: i) inoculating
bacterial colonies into Inoculating Fluid A (Biolog) to a
turbidity between 97 and 99 % transmittance, as deter-
mined by optical density (OD) at 600 nm on a Synergy H1
Hybrid Multi-Mode Microplate Reader (Biotek); ii) adding
100 pL of inoculum to each of the 96 wells of a Biolog
plate; iif) incubating each plate for 22.25 h at 42.2 °C, and
iv) developing the assay by measuring optical density
(OD) at 590 nm. The OD at 590 nm measured the
amount of reduced tetrazolium redox dye in each well,
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providing a quantitative measurement of respiratory activ-
ity in each well of the plate. We performed three Biolog
assays for each of the 115 evolved clones, for a total of
115 x 3 = 345 plates.

We applied the same Biolog procedures to the REL1206
ancestor, but it was incubated at one of two different treat-
ment temperatures: 37.0 and 42.2 °C. Moreover, for each
temperature we performed two sets of three replicates,
with the replicate sets performed on different days in
order to incorporate potential ‘day effects’ into the experi-
mental design. Thus, we performed 6 x 2 = 12 assays with
the REL1206 ancestor.

Because REL1206 evolved at 37.0 °C in DM25 from a
lab strain of E. coli B, we assumed that 37.0 °C represents
a non-stress condition, while 42.2 °C was a stressful
environment.

Statistical and directional analysis of phenotypes

Each Biolog plate contained 94 assay wells (or ‘tests’) and
two control wells. For each plate, the OD for each test was
normalized to the OD of the appropriate control well. For
example, the 71 tests that measure carbon utilization were
normalized to a negative control lacking any added meta-
bolic substrates, and the 23 tests that measure chemical
sensitivity were normalized to a positive control lacking
an inhibitor but permitting a baseline level of assay devel-
opment. We term the normalized OD values as ‘pheno-
type values, or PVs.

We first examined Pearson correlation coefficients be-
tween all pairs of 94 Biolog tests, based on the average PV
(W) for each clone. Because PV's were highly correlated
among tests, we reduced the dimensionality of log-
transformed PV data using principle components analysis
(PCA). PCA analyses were based on the R [17] module
prcomp, with the flags retx=TRUE, center=TRUE,
and scale=TRUE. Thereafter, we considered only princi-
pal components with significant eigenvectors, as deter-
mined by the ‘random average under permutation” metric
of Peres-Neto et al. [18], which was based on 1000 per-
muted datasets. The significance of loadings was exam-
ined with the bootstrap eigenvector metric of Peres-Neto
et al. [19], based on 1000 resamplings. Both metrics have
been shown to be well behaved on a range of simulated
datasets [18, 19].

For each retained component of the PCA, we compared
the average of scores Sy of each evolved clone x to the
average scores of REL1206 at 37.0 °C (S37+c) and at 42.2 °
C (S4z°c). We used t-tests for these pairwise comparisons,
under the null hypothesis that the REL1206 scores did not
differ from those of an evolved clone. The p-value for indi-
vidual ¢-tests were determined by an empirical null distri-
bution, based on 10° permutations. For each set of
comparisons, the resultant p-values were adjusted using a
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false discover rate (FDR) of ¢<0.01, based on the
p.adjust module of R.

Within each principal component, we categorized the
direction of phenotypic evolution for each evolved clone
by comparing the magnitude and significance of pairwise
comparisons among Ss7oc, Sazec and Sy. Following previ-
ous literature [3], we defined a total of six directional cat-
egories, which represent the phenotypic consequences of
evolution for clone x (Table 1 and Fig. 1).

Hierarchical clustering of clones was based on S, .
Clustering utilized Euclidean distances based on PV
values; an unweighted pair group method with arith-
metic mean (UPGMA) [20] was implemented in
MATLAB. Multivariate analysis of variance (MANOVA)
was used to test for differences in phenotypes between
pre-defined groups of clones. MANOVA analyses used
PV data from each test and each replicate as dependent
variables and the groups as independent variables,
resulting in the model (PVs ~ groups). MANOVA was
implemented in the R function manova, based on the
Pillai test of significance.

Associations between Phenotype and Genotype

To test for associations between phenotypes and genetic
mutations, we grouped mutations found in our evolved
clones into ‘mutational objects.” These groupings arose by
classifying mutations into three broad classes: genic, inter-
genic, and multigenic. Genic mutations included all point
mutations, small indels, and IS insertions that affected a
single gene, and we grouped these into one mutational

Table 1 Categorizations of phenotypic magnitude and

direction
Category Condition® Number®
Partially Restored = = = 155
1y S37c < Sk < Saec
S370c > Sy > Sapec
Reinforced = = = 79
Sx < Sarec < Sz7ec
Sy > Saxec > S37c
Over-restored = = z 30
Sx > S37e¢ > Saxec
Sy < S37°c < Sapec
U tored = ~T = 240
nrestore Sarc =5, < Syec
Sazec =S¢ > S37¢c
Restored = ~T _= 123
S37ec =5 < Smec
S370¢ =S¢ > Sapec
Novel 63

Sapec Z5370¢ > S
Sx < Sazec =S37c
Uninformative ~ o 334
Sapec =54 = S37°¢

Inconsistent All Remaining Relationships® 11

*Throughout the table, the symbol ‘=’ reflects a comparison between two S
values that are similar enough that they do not differ statistically by t-test;
however, ">" and ‘<’ refer to significantly different values.

POf 1035 total comparisons (115 clones x 9 principal components)

“Mostly resulting from non-transitive pairwise significance
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object whose identifier was the name of the affected gene.
For example, an evolved clone possessing a point muta-
tion in the cls gene and another evolved clone possessing
an IS insertion in the cls gene each received a single iden-
tifier, ‘cls, to describe their mutations. Intergenic mutations
comprised point mutations, small indels, and IS insertions
that fell in noncoding regions between two genes, and we
split these into two objects, one associated with each
neighboring gene. Lastly, multigenic mutations comprised
deletions and insertions spanning two or more genes; we
classified these as their own objects whose identifiers were
not associated with any specific gene. All genotypic data
were from Tenaillon et al. [5], which includes a supple-
mentary table of genotypes. We grouped mutations into
objects because most mutations discovered within the
thermal stress experiment were found in only a single
clone, and hence provided no basis for associating geno-
type with phenotype. These groupings likely increased
statistical power but may have had an unintended trade-
off in statistical power if there was allelic heterogeneity.
For each of the mutational objects present in two or
more evolved clones, the PCA scores from each evolved
clone were placed into one of two groups: those posses-
sing the mutational object (the cases), or those lacking the
mutational object (the controls). A t-test assuming equal
variance was used to determine whether the cases and
controls differed significantly in each of the nine principal
components. Results were corrected to g < 0.01.

Results
Phenotypic space
To better understand phenotypic evolution during a previ-
ously published evolution experiment [5], we performed a
total of 357 Biolog assays on 115 evolved clones and two
ancestral treatments. Each assay included 94 discrete tests.
After normalizing OD readings, we first calculated PV
values for each test and each clone and then measured
Pearson pairwise correlations between these tests. Of 8836
(=94 x 94) pairwise comparisons between tests, 20.8 %
(1836) were significantly correlated after sequential Bon-
ferroni correction at o = 0.01 (Additional file 1: Figure S1).
Given substantial correlation between tests, we reduced
the complexity of PV data by PCA transformation into
orthogonal components. The first component of the
PCA represented 31 % of the variance (Additional file 2:
Figure S2), and the eigenvector of the first nine compo-
nents was significant [18]. Each of the first nine compo-
nents had eigenvectors >2.0 and together explained 68.7 %
of variation. We retained the first nine components for
further analysis.

Figure 2 plots the first and second principal compo-
nents and helps convey two pieces of information about
PCA scores. First, the ancestral data were typically well
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Fig. 2 Plot of the first two principal components. The dots
represent scores from the 115 evolved clones, each of which
was replicated three times. The triangles represent the six
replicates of the REL1206 ancestral strain at 42.2 °C; squares
denote the ancestor at 37.0 °C. The arrows at the top of the
plot illustrate directions of change relative to the two ancestral
treatments (see Fig. 1 and Table 1)

differentiated by treatment (37.0 or 42.2 °C). For ex-
ample, the first component visually separated the sets of
six ancestral replicates by treatment (Fig. 2). While the
separation was less obvious for the second component,
t-test comparisons between Siz;oc and Sy indicated
that the two ancestral treatments were significantly dif-
ferentiated in seven of nine principal components (pcl,
pc2, pc5, pc6, pc7, pc8 and pc9; t-test, unequal vari-
ances; sequential Bonferroni correction for o=0.01).
This differentiation represents the phenotypic effects of
acclimation (Fig. 1).

A plot of the first two components also provides an
opportunity to illustrate features of the direction and mag-
nitude of evolutionary change (Fig. 2). In the first principal
component, most score values clustered near the stressed
(422 °C) ancestor, suggesting that most of the evolved
clones were phenotypically unrestored in pcl. However,
the scores of several clones fell intermediate between the
two ancestral treatments or near the unstressed (37.0 °C)
ancestor, indicating partial or full phenotypic restoration,
respectively. We consider the direction of phenotypic
change more formally below.

PCA also estimated loadings on each axis (Additional
file 3: Table S1); these loadings provide information about
individual tests that may have contributed variation to an
axis. We tested for ‘significant’ loadings using a published
bootstrapping heuristic, but none were significant at p <
0.05. The lack of significance reflects the fact that the
loadings were fairly even among tests. For example, in pcl
the highest loading—in terms of the percent of the total
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loading values—was 2.0 % for metabolic activity on ‘glu-
curonamide;, but altogether 31 of 94 tests contributed
between 1.5 and 2 % to loadings in pcl. However, 27 of
these 31 (87 %) were tests that measure OD on sugar
substrates, suggesting that pcl primarily reflects variation
related to carbohydrate metabolism. The top loadings in
pc2 were related primarily to tests either on Krebs cycle
compounds or on amino acids, while the top loadings in
pc3 included assays for chemical sensitivity (Additional
file 3: Table S1).

The direction of adaptation

The two ancestral treatments were significantly differen-
tiated for seven of nine principal components. These ob-
servations lay the foundation for assessing the direction
of evolution—i.e., did evolution tend to restore pheno-
typic traits to the non-stressed (37.0 °C) state, or did it
lead to novel phenotypes?

To assess directionality more formally, we first tested
for differences in S, between an evolved clone and each
of the two ancestral treatments. For example, we com-
pared Sy of each of the 115 clones to Syyc in each of
the nine axes, for a total of 115 x 9 = 1035 contrasts, and
found that 27.2 % (or 282 out of 1035) of tests were sig-
nificant at ¢ < 0.01. There were nonetheless more differ-
ences between the evolved clones and the 37.0 °C
control, because 53.3 % (552 of 1035) of contrasts be-
tween S, and S3;ec were significant (g < 0.01). These re-
sults were similar to Fig. 2 in giving an overall
impression that the evolved clones tended to be more
similar in phenotype to the stressed ancestor than to the
non-stressed ancestor.

We classified the results of t-tests into eight categories
based on the direction and significance of comparisons
among Sy, S37ec and Syyec (Table 1). Of 1035 compari-
sons, the highest number of tests (334 of 1035) fell into
the ‘uninformative’ category, due to a lack of signifi-
cance among comparisons. Among informative categor-
ies, the most comparisons were in the ‘unrestored’ (240)
category, followed by ‘partially restored’ (155), ‘restored’
(123), ‘reinforced’ (79), ‘novel’ (63) and ‘over-restored’
(30) (Table 1).

These categorical numbers reflect directionality, but
they do not account for the fact that the nine principle
components explained different proportions of variance
(Additional file 2: Figure S2). To estimate the total pro-
portion of variance explained by each directional cat-
egory, we weighted results by the proportion of variance
explained in each axis (Additional file 4: Table S2). Sum-
ming across all informative comparisons, weighting
revealed that the biggest contributor to phenotypic vari-
ance was ‘partial restoration’ of the unstressed pheno-
type, which explained 36.1 % of observed phenotypic
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variation (Fig. 3). The category of ‘partial restoration’
was followed by the unrestored (28.0 %) and restored
phenotypes (17.7 %). In contrast, novel, over-restored,
and reinforced phenotypes combined to explain 18.2 %
of variation.

Phenotype-genotype associations

The predominant phenotypic response during our experi-
ment was toward the partial or full restoration of the pre-
stress condition. To verify that these shifts in phenotype
had a genetic component—and therefore resulted from
adaptive change rather than phenotypic plasticity—we
used a case—control approach to associate scores with 165
mutational objects. In total, we found 117 significant (g <
0.01) associations with 70 mutational objects distributed
across eight of the nine principal components (Table 2).
We explored the validity of our phenotype-genotype asso-
ciations by performing t-tests on random permutations of
our case/control categories for each Biolog assay. When
the absolute values of the t-statistics obtained from our
observed genotypic groups were sorted and plotted
against those obtained from randomized groups, there
was a strong signal of more extreme ¢-statistics in the
observed data (Additional file 2: Figure S3), suggesting a
biological signal in our results.

Among the many significant genotype-phenotype asso-
ciations (Table 2), a few were especially notable. For
example, a large deletion variant (ECB_00503_large) that
was common to 35 of the 115 evolved lines also had the
lowest p-values in associations to the first two principle
components, suggesting it had a major effect on adaptive

Over-restored

Reinforced
10.2%

Partially Restored
36.1%

Restored
17.7%

UNresiored
2530/

Fig. 3 Pie chart reporting estimates of the proportion of phenotypic
variation attributable to directions of adaptation
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phenotypes. Moreover, rpoB and rho, two genes that
represent the two major adaptive trajectories [5], each
exhibited significant associations to four and five principal
components, respectively.

Contrasting the rho and rpoB trajectories

Like previous experiments [2—-4], we have shown that
most phenotypic variation in our experiment was due to
partial or full restoration of the unstressed phenotype. We
have gone further to show that some of this variation
associates with an underlying genetic component. How-
ever, we have not yet addressed the question as to whether
different adaptive trajectories—particularly those that in-
clude rho and rpoB—differ in phenotype. We used two
approaches to compare these two trajectories.

The first was to test for differences between clones with
rpoB mutations and clones with rio mutations, using
MANOVA applied directly to PV data. The results indicated
that the two groups differ in phenotype (p < 2.2 x 107*).
MANOVA also assessed the significance of individual
tests (or factors) between groups; 23 of the 94 Biolog
assays differed significantly between the rpoB and rho
groups at a=0.01 (sequential Bonferroni correction)
(Table 3). Among these 23 factors, the five with the lowest
p-values were tests of chemical sensitivity.

The second approach was hierarchical clustering of the
115 clones by phenotype, followed by visual examination
of the distribution of rko and rpoB mutants on the
dendrogram. We reasoned clones should group phenotyp-
ically according to genetic trajectory if the rpoB and rho
trajectories lead to different Biolog phenotypes. The
results were intriguing, if not completely clear (Fig. 4).
The dendrogram showed that clones with either muta-
tional object fell into clusters; that is, clones with rpoB
mutations clustered into discrete groups, and likewise for
clones bearing rho mutations. In addition, the clusters of
rho- and rpoB clones tended to be mutually exclusive, as
expected given that few clones carried mutations in both
genes [5]. However, for each mutational object, there were
multiple clusters, without a clear delineation between the
two genetic groups.

Discussion

Adaptation moves an organism toward a phenotypic
optimum, but the question remains as to whether there
is a single or several genetic trajectories to one or several
optima. Previously, we evolved 115 separate E. coli lines
under thermal stress (42.2 °C) for approximately one
year (2000 generations), with the intent to measure the
diversity of an adaptive response. This experiment re-
vealed that each of the experimental lines improved in
fitness by an average of 40 % across clones isolated from
each line, fueled by the accumulation of ~11 mutations
per clone on average [5]. The most frequently mutated
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Table 2 Significant (g < 0.01) associations between genetic and phenotypic variation

Principal Associated mutational objects (Number of affected clones)®

component

1 ECB_00503_large (35), ESCRE1901 (13), trkD (3), dctA (5), yhjK (5), folM (2), yccE (2), metB (2)

2 ECB_00503_large (35), hokE_large (3), rpoB (76), rssB (10), yral (2), rho (45), pta (5), fop (7), cls (56), oppD_large (3), rpsR (5), ilvL (30),
iclR (37), sdaC (2), kpsD (13), nth (3)

3 (none)

4 mrdA (23), ECB_00503_large (35), rpoB (76), fbaB (26), gatY (26), yhdJ (2), rho (45), lon (4), gmr (2), mb (2), ygjF (6), cysH (2), fis (5),
rpoH (2), ompR (6), pta (5), kpsE (11), metA (4), ECB_00503_small (9)

5 dnaG (15), ompF (10), rpoD (36), trkD (3), atoC (2), asnS (8), hokE_large (3), dctA (5), yhjK (5), ESCRE1902 (3), yebO (3), nusA (12),
IS150_insJ (4), ECB_00503_large (35), yghD (2), yccE (2), mrdA (23), cls (56)

6 cls (56), rpoB (76), rho (45), glpF (13), mreB (12), rpsA (3), ECB_00503_large (35), IS3_insF (3), iclR (37), kpsM (7), pta (5), ygjF (6), kpsE
(11), ycbC (2), nusA (12)

7 fop (7), ompF (10), asnS (8), gipF (13), cysB (6), dctA (5), yhjK (5), dnaG (15), cpsG_large (21), dusB (4), ECB_00503_large (35), dnaA (4),
IST_insB (2)

8 fop (7), rosR (5), mreB (12), rho (45), folM (2), rssB (10)

9 dctA (5), yhjK (5), rho (45), uspA (8), rssB (10), cls (56), gltP (7), nrfG (7), icIR (37), gipT (8), kpsD (13), yifB (25), rhoL (2), ilvL (30),

ECB_01993 (2), ECB_01994 (2), IS186_insL (2), ycbC (2), rpoB (76), ompF (10), IS150_insK (2), glyS (2)

“Mutational objects are organized by p-value, in ascending order

genes were related to DNA transcription, particularly
the rpoB and rho genes. Mutations within these two
genes tended to be negatively associated.

It is an open question whether these two adaptive
trajectories—or indeed, the >1200 mutations observed

during the experiment—lead to convergent phenotypes
beyond an increased ability to grow at 42.2 °C. Accord-
ingly, this study has been designed to measure
phenotypic diversity among these 115 E. coli clones
using Biolog plates. These plates assess phenotypic

Table 3 Individual Biolog tests that contribute significantly to differences between clones that contain rpoB vs. rho mutations

Biolog Test p-value Category

4 % NaCl 1.04E-25 Chemical Sensitivity

Sodium Butyrate 2.85E-22 Chemical Sensitivity

Lincomycin 161E-18 Chemical Sensitivity

Tetrazolium Blue 2.34E-14 Chemical Sensitivity

Nalidixic Acid 4.49E-10 Chemical Sensitivity
p-Hydroxy-Phenylacetic Acid 6.83E-10 Carboxylic Acids, Esters, Fatty Acids
Gelatin 1.53E-09 Amino Acids

D-Sorbitol 3.72E-08 Carbohydrates, Carbohydrate Derivatives
D-Salicin 9.24E-07 Carbohydrates, Carbohydrate Derivatives
Beta-Hydroxy-D,L-Butyric Acid 1.08E-06 Carboxylic Acids, Esters, Fatty Acids
Aztreonam 1.46E-06 Chemical Sensitivity

L-Arginine 1.57E-06 Amino Acids

D-Malic Acid 1.62E-06 Carboxylic Acids, Esters, Fatty Acids
Quinic Acid 1.90E-06 Carbohydrates, Carbohydrate Derivatives
L-Histidine 2.05E-06 Amino Acids

Inosine 3.17E-06 Carbohydrates, Carbohydrate Derivatives
L-Pyroglutamic Acid 5.92E-06 Amino Acids

N-Acetyl-Neuraminic Acid 6.21E-06 Carbohydrates, Carbohydrate Derivatives
pH 5 7.78E-06 Chemical Sensitivity

Tween 40 1.01E-05 Carboxylic Acids, Esters, Fatty Acids
D-Raffinose 2.70E-05 Carbohydrates, Carbohydrate Derivatives
Bromo-Succinic Acid 3.85E-05 Carboxylic Acids, Esters, Fatty Acids
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Fig. 4 Hierarchical clustering of evolved lines by phenotypes. Dendrograms are labeled with the presence (black) or absence (white) of each of
mutation in the rho gene, the rpoB gene and the large deletion (ECB_00503_large)

characteristics by assaying metabolic activities and
chemical sensitivities, but they have at least three im-
portant limitations. The first is that many of the pheno-
types measured by Biolog plates may not have a direct
relationship to fitness during the evolutionary experi-
ment; they may represent pleiotropic effects. It is none-
theless an important task to characterize the phenotypic
diversity generated during an adaptive response, as di-
versity may impact evolvability [21-23]. The second is
that many of the assays are not independent (Additional
file 1: Figure S1). The lack of independence necessitated
orthogonal transformation of the data, but these trans-
formations resulted in the loss of information and less-
ened the ability to associate a discrete phenotype (i.e., a
specific Biolog test) to a causative genotype. Lastly,
although Biolog technology measures utilization of car-
bon sources and resistance to inhibitors, bacterial
growth and metabolism are complex and environment-
dependent; as a result, changes in OD (or a lack thereof)
are not always reliable indicators of bacterial growth and
metabolism in each assay [24]. Nonetheless, changes in
OD are consistent within our system, both across repli-
cates and on different days, making the Biolog data a
useful indicator of a phenotypic ‘fingerprint.’

Restoration, not novelty, predominates in our experiment
Previous experiments have found that a major compo-
nent of adaptation to a stressful state is the restoration
of phenotypes to a non-stressed state [2—4]. Similar to
these experiments, we find that the predominant
phenotypic shift in our experiment was toward a re-
stored state like that of the 37.0 °C ancestor. Together,
full and partial restoration of phenotypes represent
53.8 % of the phenotypic variation among our evolved
clones (Fig. 3).

In contrast, evolutionary novelty is less common, but the
proportion of novel phenotypic variation varies by defin-
ition. Writ narrowly, novelty may be defined as an evolved
state that differs from ancestral treatments that do not dif-
fer from each other (Table 1). Under this definition, nov-
elty accounts for 5.0 % of phenotypic variation (Fig. 3).
However, novelty can also be described more broadly as a
phenotype beyond the limits of the two ancestral treat-
ments, so that over-restoration and reinforcement also en-
compass novelty (Fig. 1). With this broader definition,
novelty encompasses 18.2 % of variation but is still dwarfed
by both partial and full restoration.

This general result—i.e., that novelty is a less fre-
quent component of adaptation than restoration—is
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also consistent with previous studies. For example,
Sandberg et al. [4] have found that just 13 % (101/804)
of parallel gene expression shifts in their thermal stress
experiment are reinforcements, a classification that
can be considered a type of novelty in their system.
Likewise, Carroll and Marx [3] have documented that
cases of parallel novelty are rare in their gene expres-
sion data, occurring in just five out of thousands of
genes.

Generalizing across studies, the predominant effect
within microbial evolution experiments appears to be
restoration, at least in the short term. As such, this direc-
tional response likely indicates pressure to compensate for
the metabolic and energy requirements of the stress re-
sponse. In the case of E. coli thermal stress, the immediate
response to thermal stress—i.e., the heat shock response
(HSR)—has been well characterized. The HSR up-
regulates expression of the transcription factor o
thereby driving increased expression of heat shock and
other chaperone proteins [25] that then help to guide
proper folding of crucial cellular proteins at high
temperature [26]. However, while there are myriad studies
of HSR in the short term (i.e., on the scale of minutes),
the sets of genes that contribute to E. coli thermal accli-
mation over the space of hours and days are not well
known. Acclimation may prove to be a distinct physio-
logical state, with specific energetic costs that merit
further study.

Genetic associations and the effects of a large deletion
To assess whether phenotypic variation is driven by gen-
etic variation that accrued during our adaptation experi-
ment, we have associated genotypes with phenotypes.
Our association analyses do not find a consequent
phenotype for all of the mutational objects. For example,
the gene ybal, which was mutated in 65 of 115 lines,
does not associate with any phenotypic axes. Nonethe-
less, we do find 117 genetic associations across eight
PCA axes (Table 2), providing compelling evidence that
at least some of the measured phenotypic variation has
underlying genetic causations.

Among the many associations, the ECB_00503_large
deletion is particularly surprising, because it is the major
associate with the first two principal components of
variation. In total, it associates with six of the nine prin-
cipal components under study (Table 2), and it exhibits
a strong signal of phenotypic differentiation when
evolved clones are clustered hierarchically (Fig. 4). The
ECB_00503_large deletion is also unique because it is
the most common single mutation from the thermal
evolution experiment; 35 of 115 evolved clones share
this mutation. We previously speculated that the dele-
tion has a high mutation rate due to homologous
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recombination between flanking IS insertions [5]. No
matter the mutation rate, it is likely to have been under
strong selection to reach high frequency in 35 independ-
ent populations.

The ECB_00503_large deletion is 71 kb in length and
removes 64 genes (Fig. 5). These genes include the cus
operon, which has been shown to be down-regulated in
response to osmotic and heat stress [27], as well as the
fep and ent operons, which regulate iron acquisition and
are regulated by the iron-dependent master transcrip-
tional regulator Fur [28]. Interestingly, Fur also regulates
enzymes of glycolysis and the Krebs cycle, as well as
enzymes that combat oxidative stress [29]. It seems pos-
sible that the deletion of iron acquisition genes and their
Fur binding sites could, in theory, lead to pleiotropic
effects by affecting the activation state of Fur or its titra-
tion on remaining binding sites. Single genes in the re-
gion could also play a role in the stress response, such as
the transcription factors encoded by appY and envY; and
the heat shock protease encoded by ompT (Fig. 5).

The ECB_00503_large deletion is one in a series of four
overlapping deletions that permit preliminary dissection
of the phenotypic effects of the appY/envY/ompT cluster,
the cus operon, and the fep/ent operons (Fig. 5). For
example, the hokE_large mutation removes the fep/ent
operons, and this mutation associates with both pc2 and
pc5 (Table 2). Hence, deletion of the fep/ent operon ap-
pears to be sufficient to generate some of the phenotypic
variation caused by the larger deletion. Similarly, the
ECB_00503_small mutation associates with pc4 (Table 2),
suggesting that the region near appY/envY/ompT also
contributes to phenotypic variation in our system.

Because the ECB_00503_large deletion has a large-
effect on phenotype and also because deletions in this
region were common among the complete set of 115
clones, we wondered whether the deletions could be
solely responsible for the overall signal of restoration
and convergence. To address this issue, we removed
from our dataset all of the clones with deletions in the
ECB_00503_large region and then estimated the propor-
tion and direction of adaptation for the remaining 67
clones. We applied the same analytical procedures to
this subset as to the entire dataset — i.e., we performed
a PCA, assessed the number of significant eigenvectors
(8 instead of 9 for the subset), performed ¢-tests on
scores, counted the directionality of individual tests
(Additional file 4: Table S2) and then calculated the pro-
portion of variation attributable to each direction of
adaptation. In this subset of clones, we find that full and
partial restorations explain 44.7 and 14.8 % of observed
phenotypic variation, respectively. Hence, the predomin-
ant directional signal is toward restoration of the pre-
stress phenotype, even within clones that have not had a
deletion in the ECB_00503_large region.
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A
ECB_00503_large (35), 64 genes
547,700 619,116
\ J | J | J
I
appY/envY/ompT cus operon fep and ent operons
cluster
B
ECB_00503_small (9), 38 genes
547,700 588,493
C
ECB_00503_very_small (1), 18 genes
547,700 568,848
D
hokE_large (3), 24 genes
590,476 619,116
Fig. 5 Schematic of the four overlapping deletion events found during the thermal evolution experiments. a The largest deletion
(ECB_00503_large) removes 64 genes and was found in 35 of 115 evolved clones. b The smaller deletion (ECB_00503_small) was found in 9 of
115 clones and removed 38 genes. ¢ An even smaller variant was found in 1 of 115 clones and removed 18 genes. d The hokE_large mutation
removed 24 genes and was found in 3 of 115 clones. All variants are described in Tenaillon et al. [5]. In all diagrams, numbers at the 5" and 3’
end of the schematic represent the base position on the reference genome [35]

Two adaptive trajectories: rho vs. rpoB

One of our motivating questions is whether the two
adaptive trajectories defined by rko and rpoB lead to
identical phenotypes and fitness optima. To that end,
Rodriguez-Verdugo et al. [16] have documented that
the two trajectories (as well as single mutations in the
rho and rpoB genes) lead to different fitness trade-offs
at low temperatures. Thus, the two trajectories do differ
in phenotype in a low temperature environment. How-
ever, Rodriguez-Verdugo et al.(2014) were also not able
to detect a difference in relative fitnesses between the
two sets of clones at 42.2 °C, suggesting that the two
trajectories may ascend ‘fitness peaks’ of similar height
under thermal stress.

To better understand differences between the two tra-
jectories, we applied MANOVA to our phenotypic data.
The analyses revealed significant overall differences be-
tween the rko and rpoB trajectories and also identified
factors that contribute to the difference. Based on these
factors, the two trajectories appear to differ most sub-
stantially in chemical sensitivity but also in other aspects
(Table 3).

Unfortunately, we cannot at this point infer the molecu-
lar causes of these phenotypic differences. We can, how-
ever, posit reasonable hypotheses. For example, the rko
and rpoB trajectories differ in their associations with the
cls gene; 23 of 30 clones with mutations in rko also con-
tain a c¢/s mutation, most of which interrupt cls function.
In contrast, mutations within cls and rpoB are associated

less often than expected by chance [5]; only 19 of 60 rpoB
clones contain a c/s mutation. These associations may be
important because the cls gene produces a membrane
lipid [30], and changes in membrane lipid composition are
known to alter sensitivity to antibiotics and other chemi-
cals [31, 32]. Hence, the two trajectories may differ in
chemical sensitivity assays in part because of their differ-
ent level of association with cls mutations. We note, how-
ever, that we have no insights as to why mutations within
the rho and cls genes are statistically positively associated
while mutations in rpoB and cls are not [5].

Another reasonable explanation for differences between
the rho and rpoB trajectories is pleiotropy, because rho
and rpoB mutations are expected to have different pleio-
tropic effects [16]. rpoB mutants have the capacity to
affect the expression of every gene, but rho influences
termination in only a subset of genes [33, 34]. Even if the
two trajectories do differ in pleiotropic effects, the pheno-
typic differences we have documented here may not affect
fitness under the conditions of the initial thermal stress
experiment. However, they are likely to have consequential
fitness effects in other environments, such as has been
shown at low temperature [16].

Conclusions

Overall, our data reveal that phenotypes converged pre-
dominantly toward states like those of the unstressed
ancestor during our evolution experiment. This observation
supports previous studies, which also document that
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adaptation in laboratory experiments consists largely of
restorations toward the wild-type, pre-stress phenotype.
Either plasticity or adaptation could drive phenotypic
shifts, but phenotype-genotype associations confirm that
at least some of the phenotypic change has a genetic com-
ponent. In contrast to restoration, phenotypic novelty was
less common but did explain as much as ~18 % of pheno-
typic variation. It remains an open question whether such
novelty is merely a pleiotropic side effect of restorative
evolution, or whether it provides some adaptive function
of its own. Finally, our contrast of the rho and rpoB adap-
tive trajectories shows that the two represent different
phenotypic spaces, but the interpretation of their effects is
complicated by the compounded effects of several over-
lapping deletions as well as genetic mutations associated
with each trajectory.

Availability of supporting data

The PV values from the biolog assays (PV_Data_Ta-
ble.xlsx), as well as the raw spectrophotometric mea-
surements (Raw_Data_Table.xlsx), are available on the
LabArchives database: dx.doi.org/10.6070/H4Nv9G79.
The genotyping data for the clones was published pre-
viously and is available as an excel file (Additional file
4: Table S2xls): http://www.sciencemag.org/content/
335/6067/457/suppl/DC1

Additional files

Additional file 1: Figure S1. Correlations between tests on the Biolog
plates. A) The Pearson correlation coefficient between individual tests
across all measured clones. B) The corresponding p-value for correlation
coefficients. For both graphs, the axes represent the 94 tests on the
Biolog plates. (PDF 212 kb)

Additional file 2: Figure S2. Scree plot of the percent of variation
explained by each principal component. The line corresponds to
significance level, as determined by a bootstrapping heuristic. (PDF 5 kb)

Additional file 3: Table S1. The loadings for each Biolog test in the
first nine principal component. (XLS 58 kb)

Additional file 4: Table S2. The number of directional comparisons in
each principal component, along with the percent variation explained by
each component. (DOCX 114 kb)

Additional file 5: Figure S3. Q-Q plots for the results of association
analyses. Each line represents one of the nine principal components. The
diagonal represents the line for which there is no enrichment for tests
with low p-values and therefore no evident biological signal. (PDF 157 kb)
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