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Abstract
Background: Brain-expressed genes that were created in primate lineage represent obvious
candidates to investigate molecular mechanisms that contributed to neural reorganization and
emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a
pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human
chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of
hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids
to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced
PMCHL RNAs were found in human brain and testis.

Results: Several novel spliced PMCHL transcripts have been characterized in human testis and fetal
brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several
non-human primates allowed to carry out phylogenetic analyses revealing that the initial
retroposition event took place within an intron of the brain cadherin (CDH12) gene, soon after
platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an
AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of
less than 300 bp, with low (VMCH-p8 and protein variants) or no evolutionary conservation.
Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any
protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts.

Conclusion: Our present results improve our knowledge of the gene structure and the
evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple
spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may
function as mRNA-like non-coding RNAs.
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Background
There is an ancient [1] but still active debate in the molec-
ular biologist community about the relative contribution
of structural genomic modifications [2] that could
account for the phenotypic differences observed between
primate species, particularly in the emergence of new
brain structure and functions [3,4]. Very debated results
were found when determining the Ka/Ks ratio, a tentative
indicator of positive Darwinian selection, in the coding
region of genes expressed in the mammalian brain [5-7].
However, genome-wide comparative studies of mamma-
lian promoters suggested an accelerated evolution of pri-
mate promoters during the last 25 million years [8-10].
Recently, divergence between human and chimpanzee
sequences have been re-evaluated to almost 5%, resulting
mainly from indel events [2,11-13] and copy number var-
iants (CNVs) that strongly contributed in shaping primate
genomes [14], offering therefore a wide variety of sites at
which primate lineage-specific genetic novelty could hap-
pen. Indeed, recent segmental duplications are particu-
larly enriched in genes that display expression differences
between humans and chimpanzees [15]. In addition, an
accelerated rate of contraction or expansion in gene fami-
lies, including brain-expressed genes, operated in pri-
mates when compared with other mammals [16]. On a
larger scale, CNVs contributed significantly to diverse
expression phenotypes in primates [17] and to emergence
of complex or sporadic diseases in humans [18]. To recon-
cile apparently conflicting data, we previously proposed
that, in parallel to single nucleotide mutations that confer
alterations in the gene expression patterns or amino acids
sequences, genomic rearrangements may have played an
important role during primate evolution, providing crea-
tion of novel but rare regulatory modules as well as pro-
tein coding and/or non-coding genes [19-21]. Indeed,
combination of exon shuffling, retrotransposition and
gene promoter fusion have led to genes harbouring com-
pletely new structures and expression patterns selectively
in the primate lineage (reviewed in [22,23]). These rare
events would have been nevertheless particularly impor-
tant in shaping human genes found expressed in repro-
ductive organs, as exemplified by the chimeric POTE-actin
genes [24], or involved in hominoid brain neurotransmis-
sion, as exemplified by the GLUD2 gene [25].

The study of primate-specific gene creation and early evo-
lution requires the discovery of genes that have retained
characteristic features of their youth [26]. The PMCHL sys-
tem, which combines the retroposition/exon shuffling
and the segmental duplication models, has been one of
the first hominoid-specific gene creation model described
[19-21,27,28]. We have shown that these genes have been
created in the hominoid lineage through i) retroposition
at the ancestral chromosome 5p14 locus in catarrhini of
an antisense pro-melanin-concentrating hormone (PMCH)

gene transcript, ii) local rearrangement leading to a trun-
cated version of the retrogene, iii) sequence remodelling
(indel and mutation accumulation that allowed creation
of exons) and iv) final duplication at the ancestral 5q13
locus in hominids. Furthermore, processed and unproc-
essed transcripts were characterized in a human fetal brain
library [19] as well as in developing human brain [27].
These mRNAs were found to encode a putative nuclear
protein of 8 kD, named VMCH-p8, that was only identi-
fied using in vitro translation systems or transfected cell
models [27]. However, many questions remained
unsolved regarding the region and time of insertion of the
retrogene, the fine structure of both genes (complete
exon/intron structure), their expression patterns (in par-
ticular the relative abundance and tissue-specificity of
processed transcripts) and their protein coding potential
in human cells.

In this paper, we established the structure of PMCHL1/
PMCHL2 genes and demonstrated that alternatively
spliced transcripts encompassing exons 1 to 6 are mostly
expressed in human testis. We established further the evo-
lutionary history and regional organization of PMCHL
genes at both loci on human chromosome 5 and pro-
posed that a single retroposition event followed by point
mutations provided novel exonic sequences in transcrip-
tional sense direction. Several short open reading frames
(ORFs) were found encoded within the spliced PMCHL
RNAs but most of them were not conserved in the primate
lineage. This suggests a lack of overt functionality of these
ORFs, even though the existence of a small species-specific
protein cannot be ruled out. Finally, we attempted to
identify proteins generated from PMCHL genes in
macaque and human tissues with an antiserum directed
against VMCH-p8 and its variants but we failed to detect
them. Therefore, spliced transcripts from the primate-spe-
cific PMCHL1/PMCHL2 genes would likely represent
mRNA-like non-protein coding RNAs (ncRNAs).

Results and discussion
1. Structure and distribution of spliced PMCHL transcripts 
in human brain and testis
In our previous study [19], we characterized several alter-
natively spliced transcripts harbouring exons 1 to 5 of the
original PMCHL1/PMCHL2 genes. Six transcripts corre-
sponding to PMCHL1 spliced RNA were found in testis
and/or fetal brain. Two PMCHL2 spliced RNA were
reported only in testis. In order to further precise the
exon/intron structure of PMCHL genes and to further
investigate the tissue distribution of spliced PMCHL tran-
scripts, we examined the presence of additional RNAs in
human testis and cortex Marathon cDNA libraries, as well
as in a human fetal prefrontal cortex sample. For this, we
performed PCR experiments (Figure 1) using primer pairs
designed to amplify (in one or two rounds of PCR) tran-
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Identification of spliced PMCHL transcriptsFigure 1
Identification of spliced PMCHL transcripts. (A) PMCHL exon/intron structure as deduced from previous [19] and 
present transcript sequences. Primer positions are indicated. (B) Identification of alternative spliced transcripts by PCR and 
sequencing. For human testis, transcripts harbouring exons 1 and 6a were amplified using primer pair 3–9/3–30, and transcripts 
harbouring exons 1 and 6b were amplified using primer pair 3–9/3–353, followed by 3–10/3–353. For human fetal brain, PCR 
primer pairs were 3–7/3–30, followed by 3–8/3–27. Documented ESTs [GenBank:AI203691; EMBL:BX091674; Gen-
Bank:AA724728; GenBank:BG184695] corresponding to spliced transcripts are represented. The number of independent 
clones for each transcript identified in our previous [19] and present studies are indicated in brackets. The 3b splice donor site 
differs in PMCHL1 (named 3b1) and PMCHL2 (named 3b2). Two 5b splice acceptor sites (indicated by t/b), separated by four 
nucleotides, were identified. GenBank accession numbers of transcripts are: [GenBank:EU921424, GenBank:EU921425, Gen-
Bank:EU921426, GenBank:EU921427, GenBank:EU921428, GenBank:EU921429, GenBank:EU921430, GenBank:EU921431, 
GenBank:EU921432, GenBank:EU921433, GenBank:EU921434, GenBank:EU921435, GenBank:EU938381]. (C) RT-PCR and 
Southern blot analysis of spliced transcripts in human and macaque adult testis, prefrontal cortex (CX) and cerebellum (CB). 
Spliced transcripts were detected only in human testis. PCR amplification was with primer pair 3–7/3–30. Molecular weights 
are indicated. M, size markers; RT, reverse transcribed; NRT, non-reverse transcribed.
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scripts encompassing the most distant known exons, pre-
viously named exons 1 and 5. Sub-cloning of the PCR
products and sequencing of individual clones allowed the
discovery of a novel exon, located between exon 2 and
former exon 3. It was named exon 3 and previously
named exons 3, 4 and 5 are now renamed exons 4, 5 and
6 (Figure 1A, top panel).

We identified six PMCHL1 spliced variants in adult testic-
ular Marathon cDNA library (Figure 1B), two of which
[GenBank:EU921424, GenBank:EU921428] had already
been identified in the same cDNA library [Gen-
Bank:AY008408, GenBank:AY008410, respectively].
However, transcript [GenBank:EU921424] bears one A to
G mutation within exon 1, resulting in an arginine to gly-
cine mutation in ORF1. Noteworthy, transcript [Gen-
Bank:EU921428] corresponds also to two testis ESTs
(IMAGE clone 1753807 [GenBank:AI203691;
EMBL:BX091674] and IMAGE clone 1326573 [Gen-
Bank:AA724728]), and was also found in a human fetal
brain Marathon cDNA library in our previous study [19].
This apparently abundant transcript harbours exons 1-2b
and 6a, like most spliced transcripts in testis which were
obtained in a single round of PCR. In contrast, transcripts
harbouring exon 6b were identified after two rounds of
PCR and never contained exon 6a. Transcripts containing
exon 2a were never observed in the present study.

We also identified four novel alternative PMCHL2 splic-
ings in adult testis, which all contained a partial exon 3
(3b2) shorter than the original exon 3 (3b1) observed in a
PMCHL1 transcript (Figure 1B). Sequence analysis (see
Figure 2) revealed that mutations in the PMCHL2
sequence created a novel gene-specific splice donor site
(3b2) which is systematically used in the present PMCHL2
transcripts.

We further identified one novel PMCHL1 splice variant in
a fetal prefrontal cortex sample (Figure 1B). This transcript
was the only one to harbour an alternative splice donor in
exon 4, which was never observed in testis RNAs.

In our previous study [19], we reported two alternative
acceptor sites in exon 5b (previously named exon 4b) sep-
arated by only four nucleotides and with apparent testis-
and brain-specificities (indicated by superscript t/b in Fig-
ure 1). Our present results show that most testis tran-
scripts use the exon 5a splice acceptor site, and two use the
alternative 5bt site. However, the PMCHL1 transcripts
identified in fetal brain also use the alternative 5bt site
indicating that it could not be considered anymore as a
testis-specific splice acceptor site. The alternative 5bb site,
previously reported in a fetal brain transcript was not
found in our present study.

In contrast to human testis and fetal brain, we could not
detect any spliced PMCHL RNA harbouring exons 1 and
6a in the human adult cortex Marathon cDNA library
using the 3–7/3–30 primer pair. This primer pair was fur-
ther used in RT-PCR experiments combined with South-
ern blot to determine the tissue distribution of the spliced
transcripts in testis, prefrontal cortex and cerebellum in
adult human and macaque (Figure 1C). In agreement
with our results using the Marathon cDNA libraries, we
detected spliced PMCHL RNA harbouring exons 1 and 6a
in human adult testis, but not in adult prefrontal cortex
and cerebellum. Thus, PMCHL1 transcripts are found in
testis and fetal brain and are more abundant than
PMCHL2 transcripts that are observed only in testis. In
addition, PMCHL2 gene expression was reported in
HT1080 cells subjected to RAGE (random activation of
gene expression), in which an EST [GenBank:BG184695]
encompassing exons 2a and 3 of PMCHL2 has been iden-
tified.

In macaque, no spliced transcripts were identified by
Southern blot (Figure 1C) in agreement with our
sequence analysis indicating that the macaque PMCHL1
gene lacks the exon 6a acceptor splice site (see below).

Taken together, our findings indicate that PMCHL1 and
PMCHL2 genes: i) give rise to a complex pattern of alter-
native splicings, ii) are subject to distinct tissue-specific
expressions and iii) are developmentally regulated (i.e.
expressed in fetal but not adult cortex).

The finding that a rather high diversity of spliced tran-
scripts are present in testis is not surprising, because of the
permissive chromatin environment present in gonads,
allowing high transcriptional activity even from weak tis-
sue-specific promoters [29]. Thus, most retroposons
evolve into non-functional pseudogenes that are tran-
scribed only in the testis [30]. However, the abrupt emer-
gence of a new chimeric gene in primates could
potentially contribute to reproductive barriers and thus
play a role in speciation [31]. In this regard the hominoid-
specific oncogene Tre2 appears expressed only in testis
while the two parental genes USP32 and TBC1D3, that
fused to generate the Tre2 gene, are expressed in a broad
range of human tissues [32]. In addition, the presence of
spliced PMCHL transcripts in fetal brain, is rather sugges-
tive of a functional role during human brain develop-
ment. This would imply that the retroposon acquired an
active promoter and has been subjected to selection pres-
sure. Whether these spliced PMCHL transcripts actually
play a functional role in testis and fetal brain is an obvious
question, which we further addressed below.
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Phylogenetic analysis of the intron-exon boundaries of the PMCHL genesFigure 2
Phylogenetic analysis of the intron-exon boundaries of the PMCHL genes.(A) Comparative sequence analysis of 
PMCHL splice donor and acceptor sites. Exonic nucleotides are in uppercase letters, and intronic nucleotides are in lowercase. 
Consensus splice donor and acceptor sequences are indicated. The most invariant dinucleotides gt and ag are in bold charac-
ters. Sequence differences in these dinucleotides are boxed in grey. Dashes indicate identity with the sequence in the first row. 
Brackets indicate a gap. GenBank accession numbers and positions in http://www.ensembl.org are as follows: PMCH HSA [Gen-
Bank:NM002674], PMCHL1 HSA chr 5p14, 22178218–22188421, PMCHL2 HSA chr 5q13, 70707368–70717576, PMCHL1 PTR 
chr 5, 93832488–93866206, PMCHL2 PTR chr 5, 44567880–44600471, PMCHL PPA [GenBank:EF043264], PMCHL PPY [Gen-
Bank:AY008415, GenBank:AY008422, GenBank:AY008419], PMCHL HLA [GenBank:EF043266], PMCHL CAE [Gen-
Bank:EF043268], PMCHL MML chr 6, 22205153–22215832, PMCHL MFA [GenBank:EF043267], PMCHL CHA 
[GenBank:AY008430], PMCHL SOE [GenBank:EF043262], PMCHL CAP [GenBank:EF043263], PMCHL CCA [Gen-
Bank:AY008431]. (B) Schematic representation of the PMCHL1 and PMCHL2 exon/intron structures in Homo sapiens (HSA), Pan 
troglodytes (PTR), Macaca mulatta (MML) and Macaca fascicularis (MFA). The position of the retroposed sequence derived from 
the antisense strand of the PMCH locus is indicated and detailed correspondence between the sequences is given (inset). Times 
of divergence are indicated (Mya).
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2. Evolutionary history of the PMCHL genes
Retroposition-driven creation of PMCHL1 gene occurred 30–35 Mya 
in primate lineage
To gain further insights into the evolutionary history of
the PMCHL gene family, we extended our previously ini-
tiated sequence analysis of PMCHL and PMCH genes. For
this, genomic DNAs were PCR amplified with the
PMCHL- or PMCH-specific primer pairs indicated in Table
1 and the PCR products were sequenced. Novel sequences
were submitted to GenBank under the following acces-
sion numbers. For PMCHL1: [GenBank:EF043262]
(SOE), [GenBank:EF043263] (CAP), [Gen-
Bank:EF043264] (PPA), [GenBank:EF043265] (PTR),
[GenBank:EF043266] (HLA), [GenBank:EF043267]
(MFA), [GenBank:EF043268] (CAE). For PMCH: [Gen-
Bank:EU916242] (TSY), [GenBank:EU916243] (MFA),
[GenBank:EU916244] (CAE), [GenBank:EU916245]
(SOE), [GenBank:EU916246] (CCA), [Gen-
Bank:EU916247] (PPA), [GenBank:EU916248] (PTR),
[GenBank:EU916249] (HLA)].

We first carried out the phylogenetic analysis of the exon/
intron boundaries of the PMCHL genes (Figure 2A, B).
Consensus gt/ag splice donor and acceptor sites are
present in all species bearing the retroposon, i.e. all catar-
rhines of this study, with the exception of the splice accep-
tor site of exon 6a which is present only in hominoids.
Moreover, the exon 5c donor site and the 6a and 6b splice
acceptor sites were not consensual in the platyrrhines ana-
lysed here, i. e. before the retroposition event, suggesting
that canonical splicing could not occur in this ancestral
region before the arrival of the retroposed sequence. Our
sequence analysis showed that these splice sites were cre-
ated de novo through single nucleotide mutations. Thus,
the splicing between exons 5 and 6 corresponds to de novo
exonisation and not to an Alu-driven exonisation mecha-
nism [33], exon 6 being absent in platyrrhines and then
conserved through selection pressure. In contrast, splice
sites of exons 3 and 4 pre-dated the retroposition event,
indicating that a fusion of the PMCH-derived exons with
pre-existing exons is likely to have occurred. Whether
these exons were expressed before the retroposition
remains to be determined, but no expressed sequence tag
corresponding to exons 3 and 4 alone could be identified
in mammalian EST databases. Furthermore, chimeric
transcripts formed by transcription of two consecutive
genes into a single RNA can occur quite frequently in
human cells [34]. A similar mechanism may be involved
in the production of fused transcripts encompassing
either exon 3 or 4 of PMCHL1/PMCHL2 genes. However,
further characterization of putative promoters inside the
PMCHL genes needs to be done before involving such
RNA domain accretion process on regulation of these
genes.

A nucleotidic phylogenetic analysis (Figure 3) was per-
formed to date more precisely the retroposition event. As
PMCHL genes encompass part of the PMCH gene
sequence (sense and antisense), it was possible to align
primate sequences of these specific parts of the PMCHL1
and PMCH genes. The phylogenetic analysis was per-
formed using the parsimony, maximum-likelihood and
neighbour-joining methods and with the rat and mouse
PMCH sequences as outgroups (Figure 3A). All phyloge-
netic methods led to congruent data, with high bootstrap
values with the neighbour joining method. The tree
showed an apparent aberration relative to our present
knowledge concerning the relationship between species
and the creation of the PMCHL1 gene (circled in Figure
3A). We expected the PMCH sequences of Cebus capucinus
and Saguinus oedipus to be grouped with the PMCH
sequence of Tarsius syrichta rather than with the PMCHL
sequences. However, a noteworthy low bootstrap value
(34%) was found for this branching. The position of the
PMCHL sequences as well as the uncertainty for position-
ing the Cebus capucinus and Saguinus oedipus PMCH
sequences suggest that the retroposition event leading to
the PMCHL1 gene occurred very shortly (likely within 5
million years) after the split of platyrrhini/cathyrrhini, i.e.
30–35 Mya [35,36].

When focusing on the PMCHL genes, in the regions
encompassing exons 1-2b (Figure 3B) and exons 5–6 (Fig-
ure 3C) the nucleotidic phylogenetic trees fully corre-
spond to accepted species trees, indicating that no
particular and global (since here the entire gene sequences
were used) evolutionary event interfered. However, we
observed a difference in the Pan troglodytes/Pan paniscus/
Homo sapiens positioning between the two phylogenetic
trees. This simply corresponds to an inherent irresolution
in the hominidae speciation, which could be inferred (or
not) from a complex speciation with interbreeding before
final separation of chimpanzees, gorillas and humans [37-
39]. All three species should probably be grouped under
the Pan or Homo clade as previously suggested [35,40,41].

We previously reported the presence of a complete Alu-Sq
sequence element within PMCHL exon 2 [27], but the
insertion event into PMCHL1 could not be dated pre-
cisely. It is worth noting that this sequence appears to be
an AluSg, and not an Alu Sq element. Our present
sequence analysis reveals that all primate species carrying
the PMCHL1 exon 2 harbour the AluSg sequence (Figure
2B). Thus, the insertion was likely concomitant to the ret-
roposition, occurring after the divergence of Cebus species
(C. apella and C. capucinus), and before the divergence of
the cercopithecoids, approximately between 30–35 Mya.
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A 92 kb element encompassing PMCHL1 and adjacent intronic/
exonic sequence of CDH12 on 5p14 duplicated to create PMCHL2 
on 5q13 at the time of hominid divergence
We previously proposed [19] that PMCHL2 was created
from a duplication of a large, but undefined in size,
genomic DNA fragment comprising PMCHL1, "jumping"
from ancestral hominid chromosome 5p14 to 5q13.
Here, we precisely determined the limits of the duplicon
by similarity using a BLAST search [42]. It appeared that a
fragment of 92 kb, encompassing 17 kb upstream and 65
kb downstream of the 10 kb of PMCHL1 was duplicated
(Figure 4). This 92 kb duplicon corresponds to a large part
(88 kb) of the 5' portion of intron 4 of the CDH12 gene
encoding brain cadherin (as defined in http://
www.ensembl.org), as well as CDH12 exon 4 and the last
4 kb of its intron 3. No other exons (found elsewhere in
the genome) than those derived from the PMCH gene
were found in the duplicon. The percentages of identity
between the 5p and 5q elements were equivalent all along
the duplicon (i.e. in the PMCHL genes, and in the 5' and
3' flanking regions), and are close to 98%, in agreement
with a very recent duplication event.

We have therefore precisely mapped the limits of the
PMCHL1/PMCHL2 duplicon. A question concerning the
creation of novel genes, particularly in the case of segmen-
tal duplication, is relative to the acceptor sites. Which kind
of sequences allows invasion by foreign sequences?
Which kind of sequences can we find at the segmental
duplication boundaries? No clear boundaries specificities
are described for segmental duplication except for a signif-
icant enrichment in short interspersed elements (SINEs)

such as young Alu Y and Alu S sequences and other repeats
similar to these involved in Ig heavy chain recombination
in pericentromeric and interstitial segmental duplications
[2,13,43]. Alu mediated DNA duplications have excep-
tionally been reported in eukaryotes [44]. These duplica-
tions appeared however to affect mainly hyper-
recombinogenic chromosomal regions, and particularly
for secondary duplications [43]. Long interspersed ele-
ments (LINEs) like Line 1 elements were also directly (i.e.
not only favouring Alu sequences duplication) implicated
in exon recombination and have been proposed to medi-
ate exon shuffling [22], but none of the previously
described human chimeric genes [45] harbour this kind of
element at its boundaries. In the case of PMCHL1/L2, no
particular SINEs or LINEs sequences could be found at the
boundaries, neither at the first insertion site of the PMCH
antisense retroposon (in an intron of the Brain Cadherin
(CDH12) gene at the 5p14 locus), nor at the 5q13 locus
when creating PMCHL2. Recently, a duplication-driven
model for DNA transposition has been put forth by Eich-
ler's group [46] suggesting that the probability for a DNA
element to be duplicated correlated with the degree of
proximity to so-called core duplicons. In this context, a
core duplicon named Glu5–10 and corresponding to a
truncated version of the GUSB gene, has been found in
close vicinity to PMCHL1 and PMCHL2 genes on 5p14
and 5q13 respectively [20]. Whether the proximity with
this duplicon was determinant for emergence of the
PMCHL2 gene remains at this stage a matter of specula-
tion but the timing of both Glu5–10 duplicon expansion
and intrachromosomal duplication of PMCHL1 in pri-
mates fits very well. These duplication events are also con-

Table 1: Sequences of oligonucleotides used for PCR

forward primer sequence reverse primer sequence T° gene

Sequencing
1–2 CTCAAGGTATTTTACTTTCAGCATCC 1–3 TGCAGAATTTTCACAAAGTTTAATGCAC 56°C PMCH
3–4 GGCCATAGGGTGGTTTGG 3–19 TGAGTAGATAAAAGGACTGACTT 56°C PMCHL
3–18 AAGTCAGTCCTTTTATCTACTCA 3–22 TAACCTTGCTTTCTTCCTTTCTATA 57°C PMCHL
3–15 GCGTCAGTGTCCTAATGCAT 3–68 GAATTTCTGAGCTGTGTTGTGC 58°C PMCHL
3–18 AAGTCAGTCCTTTTATCTACTCA 3–27 TGATAACGTGAAATCGTACCAT 54°C PMCHL
3–20 ACTCCACGTCAAGACAGTTGCA 3–30 GATGGAGGTAAACCAAGGAGG 60°C PMCHL
3–72 TTCTGGTTTTCACAGTAACTGATCT 3–142 GGGAAATCAGTGAGTGGAGTAGGAA 58°C PMCHL
3–110 GCTGAAATCCTTCCTCAAGA 3–33 AGCTGATATCCTAGAAGTAG 53°C PMCHL

PCR
3–9 CTGAGAATGGGGTTCAGGATAC 3–30 GATGGAGGTAAACCAAGGAGG 58°C PMCHL
3–9 CTGAGAATGGGGTTCAGGATAC 3–353 TTTAACAATTGAACACATGTAATCATT 53°C PMCHL
3–10 TGGGGATGAAGAAAACTCAGCTAA 3–353 TTTAACAATTGAACACATGTAATCATT 53°C PMCHL
3–7 CAATGGGATTATGCTGTCACAA 3–30 GATGGAGGTAAACCAAGGAGG 58°C PMCHL
3–8 AACATAATTTCTTAAATCATGG 3–27 TGATAACGTGAAATCGTACCAT 56°C PMCHL

Probe 1
3–25 TGAGATGTAAAGAGACCACCTT 3–30 GATGGAGGTAAACCAAGGAGG 58°C PMCHL

Annealing temperature (T°) that was used for PCR and gene-specificity are indicated for each oligonucleotide pair.
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Phylogenetic analyses of the PMCH and PMCHL genesFigure 3
Phylogenetic analyses of the PMCH and PMCHL genes. Phylogenetic analyses of (A) the alignable PMCH and PMCHL 
sequences, of (B) the region encompassing exon 1 to exon 2b of PMCHL, and of (C) the region encompassing exon 5 to exon 
6 of PMCHL. All three unrooted trees were obtained using a neighbour-joining (NJ) method. Branches also found by maximum 
likelihood (G option) and parsimony are indicated with ** (p < 0.01) and +, respectively. Grey oval indicates unresolved locali-
zation of the platyrrhine PMCH branch. Mus musculus (MMU) and Rattus norvegicus (RNO) are used as outgroups in (A). Gen-
Bank accession numbers and positions in http://www.ensembl.org are as indicated in Figure 2, and the following: PMCH PPA 
[GenBank:EU916247], PMCH PTR [GenBank:EU916248], PMCH HLA [GenBank:EU916249], PMCH MFA [GenBank:EU916243], 
PMCH CAE [GenBank:EU916244], PMCH CCA [GenBank:EU916246], PMCH SOE [GenBank:EU916245], PMCH TSY [Gen-
Bank:EU916242], PMCH RNO [GenBank:NM012625], PMCH MMU [GenBank:NT039500], PMCHL1 HSA [GenBank:AY028318, 
GenBank: AY028319], PMCHL2 HSA [GenBank:AY028320, GenBank:AY028321], PMCHL1 PTR [GenBank:EF043265].
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gruent with the global surge in intrachromosomal
duplications at the time of hominid divergence, as previ-
ously predicted [21] and experimentally proven [47].

3. Analysis of the protein coding potential of PMCHL 
transcripts
We next addressed the protein coding potential of the
spliced PMCHL RNAs. We examined the sequences of all
PMCHL transcripts reported in the present and in our pre-
vious study [19] to identify ORFs longer than 100 bp. Ten
short ORFs of less than 300 bp were found. PMCHL tran-
scripts harbouring exons 5-6a or 5-6b present all together
seven ORFs that are 120 to 198 bp in length (Figure 5), i.e.
they would encode proteins of 40 to 66 amino acids.
ORFs of less than 300 bp (i.e. 100 amino acids) are often
assumed not to be translated. However, many well known
functional proteins of less than 100 amino acids in length
have been reported, including the small inducible
cytokine families CCL and CXCL [48], and the xenobiotic
defensin and defensin-related cryptidin factors [49]. Fur-
thermore, a recent study has shown that among the
31,035 predicted proteins encoded by the 102,801 FAN-
TOM mouse full-length cDNA sequences, 12% of the pro-
teins (i.e. 1,683 proteins) are less than 100 amino acids in
length [50]. This suggests that there might be up to 4 times
more small proteins than the 424 entries present for Mus
musculus to date in the SwissProt protein database (release
56). Interestingly, most of the small proteins with known

function are evolutionarily conserved [48] or present con-
served sequence motifs [49]. Notably, a recent report [51]
indicates that ORFs < 300 bp in length, that are not evolu-
tionarily conserved, are unlikely to be translated into
functional proteins. Given that the PMCHL ORFs present
on exons 5-6a and 5-6b are not conserved among Homo
sapiens, Pan troglodytes and Pongo pygmaeus, due to
frameshift-causing insertions/deletions (Figure 5), we
propose that these ORFs are most likely non-functional.

The longest ORF identified on PMCHL transcripts is 294
bp (98 amino acids) long and locates within the Alu
sequence in exon 2a. Four transcripts harbouring exon 2a
were identified in testis in our previous study [19]. How-
ever, the corresponding putative protein is not conserved
due to a single nucleotide insertion in the human
PMCHL1 sequence causing a frameshift in the middle of
the ORF. Therefore, this ORF is also spurious according to
the criteria of Clamp and colleagues [51].

PMCHL transcripts encompassing exons 1-2a and 1-2b
harbour two ORFs, named ORF1a and ORF1b, respec-
tively (Figure 6A, B, C). Even though these ORFs are also
less than 300 bp in length, they present the same lengths
in Homo sapiens, Pan troglodytes and Pongo pygmaeus, and
share > 90% sequence identity. In Macaca fascicularis, the
ORF is shortened and runs only on exon 1 due to the pres-
ence of an early stop cordon. These ORFs are of particular

Schematic map of PMCHL gene positions at human chromosome 5p14 and 5q13 lociFigure 4
Schematic map of PMCHL gene positions at human chromosome 5p14 and 5q13 loci. The six exons of PMCHL1 
locate within 10 kb on chromosome 5p14, on the opposite strand of CDH12 intron 4. PMCHL2 arose by duplication of a 92 kb 
fragment (in grey) encompassing PMCHL1 onto chromosome 5q13. Positions according to http://www.ensembl.org nomencla-
ture are indicated.

���	��+� ������+�

	
���

��

�� ��
������	�

������

������	�

�
����+� �
����+�
Page 9 of 16
(page number not for citation purposes)

http://www.ensembl.org


BMC Evolutionary Biology 2008, 8:330 http://www.biomedcentral.com/1471-2148/8/330
interest because they share a large part of sequence iden-
tity with ORF1 present on unspliced PMCHL RNA, and
with the pro-MCH precursor because it mainly locates in
exon 1, i.e. in the region derived from exon 2 of the ances-
tor PMCH gene. The putative 8 kD protein corresponding
to ORF1, previously named VMCH-p8, presents a putative
nuclear localisation signal (NLS) at the N-terminus
(KPKKK, shaded in grey in Figure 6B), and is among the
longest ORFs, encoding 72 amino acids (Figure 6A, B, C).
In a previous study [27], we examined the protein coding
potential of ORF1 carrying out in vitro translation experi-
ments and COS-7 cell transfections with the Flag epitope-
tagged ORF1. The results indicated a weak protein-coding
potential, depending on particular plasmid constructions,
providing mRNA stabilising elements and enhanced pro-
moter activity [27]. In the present study, we used a VMCH-
p8 antiserum directed against the thirteen N-terminal
VMCH-p8 amino acids, comprising the putative NLS (see
Figure 6B). This allows the determination of the expres-
sion of ORF1, as well as the ORF1a and ORF1b variants
(sharing the N-terminal epitope). The reactivity of the
VMCH-p8 antiserum was demonstrated in Western blot
experiments using a recombinant GST-VMCH-p8 protein
produced in bacteria. VMCH-p8 antiserum recognized the
GST-VMCH-p8 protein, migrating at about 34 kD,
whereas the preimmune serum did not (Figure 6D). Next,
we used the VMCH-p8 antiserum to examine expression
of ORF1 and its variants in human and macaque tissues
(Figure 6E). We tested human adult testis, hippocampus
and prefrontal cortex extracts from a new-born and a foe-
tus, as well as four Macaca fascicularis cerebral areas (sup-
plementary motor area, cerebellum, prefrontal cortex and
visual area). These tissues and cerebral areas were chosen
for the presence of ORF1-bearing PMCHL transcripts in
RT-PCR experiments ([27,28]; our unpublished data). In
our Western blot experiments, no signal could be detected
in all human and macaque tissues tested, at the expected
size of 8–9 kD for the putative VMCH-p8 protein and its
variants. This strongly suggests that these putative pro-
teins are not translated in vivo in the human and macaque
tissues that we tested. We further carried out Western blot
and immunoprecipitation experiments on HEK293 cells
transfected with PMCHL1/2 sequences bearing ORF1 to
detect low levels of VMCH-p8 protein. Even though high
levels of ORF1-bearing PMCHL1/2 transcripts were
detected by RT-PCR, no signal corresponding to the
VMCH-p8 protein could be detected (data not shown).
One explanation for the lack of protein detection, that we
cannot exclude, is a very low protein expression level
below our detection threshold. Also, for the putative
Macaque protein, we further cannot exclude an altered
epitope-recognition of the antibody due to a lysine to
glutamic acid mutation within the epitope. Assuming that
the failure to detect the VMCH-p8 protein or its variants is
not due to these technical limitations, the lack of transla-

tion of ORF1 like-bearing mRNAs could reside in the
moderate consensus with the optimal sequence for trans-
lation initiation described by Kozak [52]. Actually, only
the consensual adenine at position -3 is present.

What might be the role(s) of the large variety of spliced
PMCHL mRNAs in human testis and fetal brain? It is
tempting to propose that these PMCHL transcripts work
mainly as an mRNA-like non-protein coding RNA
(ncRNA). Since the realization that 98% of the transcrip-
tional output in mammals consists of ncRNAs, the enthu-
siasm for this class of RNAs has grown tremendously [53-
55] and has been granted its own NONCODE database
[56]. Numerous classes of ncRNAs have been reported,
most of which are small ncRNAs (including miRNAs, siR-
NAs and snoRNAs), but also long ncRNAs (ranging from
1 to more than 100kb) such as Xist and the antisense Tsix
transcripts involved in × inactivation in mammals
[57,58], or the Air RNA that appears to be responsible for
imprinted repression of nearby genes (including Igf2r
gene) through an antisense-mediated mechanism [59].
Several mRNA-like ncRNAs that are transcribed by RNA
polymerase II, spliced and polyadenylated have also been
reported [60-62], including in human [63,64]. Interest-
ingly, many small ncRNAs are located in introns of coding
or non-coding mRNAs [54,65]. The functional roles of
ncRNA are diverse, corresponding mainly to adaptor func-
tions targeting nucleic acids to various enzymatic com-
plexes (involved in RNA processing, splicing,
transcription...) and gene expression regulation/silencing
(involved in virtually all cellular functions).

Do the PMCHL transcripts host small ncRNAs in their
introns, and/or do the PMCHL transcripts control the
expression of neighbouring genes in cis (an obvious can-
didate is the CDH12 gene) or in trans through RNA-RNA
duplexes (obvious candidates are the PMCH and Antisense
RNA Overlapping MCH (AROM) genes)? We are now
addressing these intriguing questions.

Conclusion
We provide here new data concerning spliced PMCHL
transcripts, further precising the PMCHL gene structure.
Sequencing data of the PMCHL genes in several non-
human primates offered a substantial improvement of the
creation model proposed previously [19]. In particular,
we proposed that the initial retroposition occurred within
an intron of the CDH12 gene soon after platyrrhine/catar-
rhine divergence and was concomitant with the insertion
of an Alu Sg element. Our sequence analysis further points
to the presence of short ORFs that present little or no evo-
lutionary conservation, suggesting that spliced PMCHL
transcripts are non-protein coding RNAs. This proposal is
further supported by our expression analysis of the most
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relevant PMCHL ORFs in human and macaque tissues,
which failed to detect any corresponding protein.

Methods
Tissues
Human prefrontal cortex and cerebellum from adults
were provided by the National Neurological Research
Specimen Bank (Los Angeles, CA, USA) and by the GIE
Neuro-CEB (Hôpital de la Pitié-Salpétrière, Paris, France),
which collect tissues with the full authorization of the
respective local ethical committees. Human adult testis
RNA was purchased from BioChain/Cliniscience (France).
Dr. A. Coquerel (CHU Rouen, France) provided human
prefrontal cortex and hippocampus tissues from a new-
born. Dr. D. Jordan (Faculté de médecine, Lyon, France)
provided human prefrontal cortex and hippocampus tis-
sues from a foetus. Collection of human new-born and
foetal tissues was according to the french legislation of

parental consent and with the approval of local ethical
committees. Human adult testis total proteins were pur-
chased from BioChain/Cliniscience (France). Testis, pre-
frontal cortex, cerebellum, visual area, and supplementary
motor area samples from three adult macaques (Macaca
fascicularis) were obtained from Dr. E. Bezard at the
Biothèque Primate/Primatech (CNRS, Bordeaux, France),
where tissue collection is carried out in agreement with
the European Communities Council Directive of Novem-
ber 24, 1986 (86/609/EEC).

Genomic DNAs
Genomic DNAs were collected from Cebus capucinus (gift
from B. Dutrillaux, cytogénétique moléculaire et oncolo-
gie, CNRS, Institut Curie, Paris, France), Tarsius syrichta,
Saguinus oedipus, Cebus apella, Chlorocebus aethiops, Hylo-
bates lar, Pan paniscus and Pan troglodytes (gift from Dr P.
Dijan, CEREMOD, Meudon, France) and were already

Mapping of exon 5-6a and exon 5-6b ORFsFigure 5
Mapping of exon 5-6a and exon 5-6b ORFs. Schematic representations of ORFs found on human PMCHL1 and PMCHL2 
transcripts harbouring exons 5-6a or 5-6b, and on the corresponding putative transcripts in Pan troglodytes and in Pongo pyg-
maeus. ORFs > 100 bp are represented by brackets at their relative positions. ORFs are not at scale due to sequence inser-
tions/deletions, but ORF lengths (in base pairs) are indicated.
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Analysis of the coding potential of VMCH-p8 and its variants in human and macaque tissuesFigure 6
Analysis of the coding potential of VMCH-p8 and its variants in human and macaque tissues. (A) Schematic repre-
sentation of PMCHL ORF1, encoding the putative VMCH-p8 protein, present on unspliced RNA, and its variants, ORF1a and 
ORF1b, present on spliced RNAs. (B) Sequence comparison of PMCHL1 and PMCHL2 ORF1, ORF1a and ORF1b. The ORF1 
epitope is underlined. The putative nuclear localisation signal (NLS) is shaded in grey. The variable C-terminal parts are boxed. 
(C) Sequence comparisons of PMCHL1 ORF1, ORF1a and ORF1b in Homo sapiens (HSA), Pan troglodytes (PTR), Pongo pygmaeus 
(PPY) and Macaca fascicularis (MFA). The variable C-terminal parts are boxed. (D) Specificity of the anti-VMCH-p8 antiserum. In 
Western blots, immune anti-VMCH-p8 serum detects the recombinant GST-VMCH-p8 protein (12.5 ng) migrating at 34 kD 
(arrow). (E) Western blot analysis of the expression of VMCH-p8 and its variants in vivo in human and macaque tissues. GST-
VMCH-p8 (12.5 ng), human adult testis proteins (25 μg), new-born (NB) and fetal (F) hippocampus (HPC) and prefrontal cor-
tex proteins (CX) (80 μg each), and macaque supplementary motor area (SMA), cerebellum (CB), prefrontal cortex (CX) and 
visual area (VA) proteins (80 μg each) were analysed using the anti-VMCH-p8 antiserum. The arrow points to GST-VMCH-p8 
migrating at 34 kD.
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used in previous studies [28]. Other genomic samples
were kindly provided by San Diego Zoo/CRES (Pan panis-
cus, Gorilla g.g., Pongo pygmaeus, Pongo p.abelii, Hylobates
lar, Macaca silenus) and by Prof A. Blancher (Rangueil
Hospital, Toulouse, France) (Cebus appella, Pan troglo-
dytes). Genomic DNA was isolated from the occipital cor-
tex of a Macaca fascicularis (provided by Dr. E. Bezard
(Biothèque Primate/Primatech, CNRS, Bordeaux, France)
according to the Blin and Stafford's method [66].

RNA extraction and reverse-transcription
Total RNAs were extracted from human and macaque tis-
sues according to standard guanidium phenol method
[67] and using a FastPrep apparatus (FP220A Thermo
instrument, Qbiogene, France). Contaminating genomic
DNA was removed from RNA preparation by RQ1 RNase-
free DNase treatment (Promega) according to the manu-
facturer's protocol. cDNAs were synthesized by reverse-
transcription (RT) of 2 μg of total DNase-treated RNAs
using the SuperScript TM II Reverse Transcriptase (Invitro-
gen) and oligo dT according to the manufacturer's proto-
col.

PCR amplification
Oligonucleotides (list provided in Table 1) were pur-
chased from Eurogentec (Belgium).

For genomic DNA, 100–200 ng were PCR-amplified using
the oligonucleotide couples indicated in Table 1 and the
LA Taq polymerase (Takara) following the supplier's pro-
tocol. Thirty-five cycles of amplification were carried out
as follows: 30 s at 94°C (denaturation), 30 s at annealing
temperature (indicated in Table 1), 1 to 10 min at 72°C
(extension). A final extension step of 7 min at 72°C was
performed. PCR products were purified using the Nucle-
oSpin kit (Machery Nagel) and sequenced.

For RT samples and Marathon cDNA libraries, 2 μl were
PCR-amplified using the indicated primer pairs and the
HotMaster Taq DNA polymerase (Eppendorf) following
the supplier's protocol. Thirty-eight cycles of amplifica-
tion were carried out as follows: 30 s at 94°C (denatura-
tion), 30 s at annealing temperature (indicated in Table
1), 2 min at 65°C (extension). A final extension step of 7
min at 72°C was performed. When necessary, nested PCR
was performed with internal primers using 2 μl of a 1:20
dilution of the first round products. PCR-amplified frag-
ments were subcloned into the pGEM-T Easy vector
(Promega) and transfected into TOP10 thermocompetent
cells (Invitrogen) according to the manufacturer's instruc-
tions, followed by plasmid DNA preparation using a
Qiaprep Spin Miniprep kit (Qiagen) and sequencing.

Southern blotting
PCR products obtained with primer pair 3–7/3–30
(thirty-five cycles) were electrophoresed on a 1% agarose

gel containing ethidium bromide and were visualized
under UV. The gel was then denatured 15 min in 500 mM
NaOH, 1.5 M NaCl solution, neutralized 15 min in 500
mM Tris, 1.5 M NaCl, and soaked 5 min in 2 × SCC solu-
tion (300 mM NaCl, 30 mM sodium citrate). The DNA
was transferred overnight as a gravity-dry blot onto a cel-
lulose membrane (Biodyne B, Pall Corporation, FL, USA).
The membrane was prehybridized for 4 h at 65°C in
Church solution (500 mM Na2HPO4, pH 6.8, 5% SDS),
hybridized overnight at 65°C in fresh Church solution
containing previously prepared 32P-labeled PMCHL-spe-
cific probe 1 corresponding to the fragment amplified
with primer pair 3–25/3–30 (see Table 1) at 5.105

dpm.ml-1. 32P-labeled probes were prepared using the
Prime-a-gene labelling system (Promega) according to the
manufacturer's protocol. After hybridization, the mem-
brane was washed twice 15 min in 2 × SSPE and twice 10
min in 1 × SSPE. Hybridized radioactive probes were
detected with a Fujifilm phosphoimager (FLA-5100).

DNA sequencing and alignment
Sequencing of PCR-amplified fragments was carried out
on both DNA strands using the Ampli Taq Polymerase FS,
the Big Dye Terminator 1.1 sequencing kit (Applera), and
a ABI PRISM 3100 sequencer (Perkin Elmer). Sequences
obtained from the public databases (EMBL/GenBank/
DDBJ) and fragments sequenced by PCR were aligned
manually using SEAVIEW [68]. Species are: Homo sapiens
(HSA), Pan paniscus (PPA), Pan troglodytes (PTR), Pongo
pygmaeus (PPY), Hylobates lar (HLA), Macaca mulatta
(MML), Macaca fascicularis (MFA), Cercopithecus hamlyni
(CHA), Chlorocebus aethiops (CAE), Cebus capucinus
(CCA), Cebus apella (CAP), Saginus oedipus (SOE), Tarsius
syrichta (TSY).

Phylogenetic analysis
Phylogenetic dendrograms were reconstructed according
to three different methods: Neighbour Joining (BIONJ),
Maximum Likelihood (ML, using the Global option), and
Maximum Parsimony (MP). For the Neighbour Joining
(NJ) analysis, a distance matrix was calculated by DNAD-
IST according to the Kimura two parameters correction.
Bootstraps were done using 1,000 replications, BIONJ
and Kimura two parameters correction. BIONJ was
according to Gascuel [69], ML and MP were from PHYLIP
(Phylogeny Inference Package, version 3.573c, distributed
by J. Felsenstein, Department of Genetics, UW, Seattle,
WA, USA). Phylogenetic analyses were done excluding
domains that were not common to every sequence as well
as low complexity domains that could not be properly
aligned. The phylogenetic dendrograms were drawn using
NJPLOT [70].

Preparation of proteins
Human and macaque tissues were homogenized in RIPA
buffer (20 mM Tris HCl, pH 7.4, 150 mM NaCl, 1% NP-
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40, 0.5% sodium deoxycholic acid, 0.1% SDS, 2 mM
EDTA, protease inhibitor cocktail Complete (Roche))
using a FastPrep apparatus (FP220A Thermo instrument,
Qbiogene, France), incubated on ice for 30 min, and cen-
trifuged at 20000 × g for 15 min at 4°C. Proteins in the
supernatants were quantitated using a commercial Brad-
ford reagent (BioRad).

Production of recombinant GST-VMCHp8 protein
PMCHL1 ORF1 encoding the putative VMCH-p8 protein
was sub-cloned into the BamH1/EcoR1 sites of the pGEX-
3X vector, in frame with GST (Amersham Biosciences).
The construct was used to transform thermocompetent
Rosetta cells (Novagen) and the recombinant GST-
VMCH-p8 protein was produced and purified using glu-
tathione-sepharose (Amersham Biosciences) beads
according to the manufacturer's instructions.

Antibodies
Polyclonal antibodies were raised against the putative
VMCH-p8 protein encoded by PMCHL1 ORF1. A peptide
comprising the thirteen N-terminal amino acids of the
sequence (MLSQKPKKKHNFL) was designed by Dr B.
Cardinaud (IPMC, Valbonne, France), synthesized and
coupled to keyhole limpet haemocyanin (KLH) before
rabbit immunization (Genaxis, Nîmes, France). Anti-
VMCH-p8 antiserum was used at a final dilution of
1:1,000. Secondary HRP-coupled goat anti-rabbit anti-
bodies (Jackson ImmunoResearch) were used at a
1:10,000 dilution.

Western blotting
Proteins were separated on 12% Tris-glycine or 16.5%
Tris-tricine gels under reducing conditions and transferred
to nitrocellulose membranes (Schleicher & Schuell, Ger-
many) using a wet tank transfer system (BioRad). Mem-
branes were blocked 1 h in TBS-T (137 mM NaCl, 2.7 mM
KCl, 2.5 mM Tris, pH 7.4, 0.1% Tween-20) containing 5%
fetal calf serum, incubated for 2 h at room temperature
with primary antibodies (1:1000 dilution), followed by 1
h incubation with secondary antibodies, and revealed
with the SuperSignal West Pico (Pierce) chemilumines-
cence detection system.
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