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Abstract
Background: Maximum parsimony is one of the most commonly used and extensively studied
phylogeny reconstruction methods. While current evaluation methodologies such as computer
simulations provide insight into how well maximum parsimony reconstructs phylogenies, they tell
us little about how well maximum parsimony performs on taxa drawn from populations of
organisms that evolved subject to natural selection in addition to the random factors of drift and
mutation. It is clear that natural selection has a significant impact on Among Site Rate Variation
(ASRV) and the rate of accepted substitutions; that is, accepted mutations do not occur with
uniform probability along the genome and some substitutions are more likely to occur than other
substitutions. However, little is know about how ASRV and non-uniform character substitutions
impact the performance of reconstruction methods such as maximum parsimony. To gain insight
into these issues, we study how well maximum parsimony performs with data generated by Avida,
a digital life platform where populations of digital organisms evolve subject to natural selective
pressures.

Results: We first identify conditions where natural selection does affect maximum parsimony's
reconstruction accuracy. In general, as we increase the probability that a significant adaptation will
occur in an intermediate ancestor, the performance of maximum parsimony improves. In fact,
maximum parsimony can correctly reconstruct small 4 taxa trees on data that have received
surprisingly many mutations if the intermediate ancestor has received a significant adaptation. We
demonstrate that this improved performance of maximum parsimony is attributable more to ASRV
than to non-uniform character substitutions.

Conclusion: Maximum parsimony, as well as most other phylogeny reconstruction methods, may
perform significantly better on actual biological data than is currently suggested by computer
simulation studies because of natural selection. This is largely due to specific sites becoming fixed
in the genome that perform functions associated with an improved fitness.
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Background
One of the most important problems in systematic biol-
ogy is phylogenetic tree reconstruction. The use of phyloge-
netic trees is a fundamental step in many biological
problems, such as the inference of evolutionary relation-
ships among genes, genomes and organisms, protein
structure and function prediction, and drug design [1].

Because of the importance of phylogeny reconstruction,
many different reconstruction techniques have been
developed. One of the most popular and widely used
techniques is maximum parsimony [2]. The basic idea
behind maximum parsimony is to find a most parsimoni-
ous phylogenetic tree; that is, a tree that requires the
fewest mutations to explain the observed sequences. One
drawback of maximum parsimony is its computational
complexity. Finding a most parsimonious tree is an NP-
hard problem [3], which means that it is unlikely any
algorithm can find a most parsimonious tree quickly for
all possible input sequences. One of the best implementa-
tions of maximum parsimony is that of [4] which can
handle roughly 1000 taxa.

Evaluating how well maximum parsimony or any other
technique reconstructs phylogenies is a difficult problem.
Several different evaluation methodologies have been
proposed [5] including computer simulation [6-9] and
experiments with organisms with known phylogenies
[10,11]. Unfortunately, each of these techniques is hand-
icapped by at least one of the following drawbacks. The
true phylogeny is not known. The simulated taxa have no
meaning and do not contain genes. The simulated taxa
have been generated by simplifying the evolutionary proc-
esses to ignore important mechanisms such as natural
selection. There is limited data from which to draw statis-
tically robust conclusions about the relative performance
of algorithms. The result is that existing evaluation meth-
odologies have left us incapable of answering several fun-
damental questions about phylogeny reconstruction.
What is the effect of natural selection on the performance
of a phylogeny reconstruction technique such as maxi-
mum parsimony? What is the effect of using the wrong
character substitution model on the performance of a
phylogeny reconstruction technique such as maximum
parsimony? What is the effect of using the wrong muta-
tion location model on the performance of a phylogeny
reconstruction model such as maximum parsimony?

For example, consider the evaluation method of generat-
ing synthetic data using computer simulation techniques
[6-9]. This method has many advantages including that
the true phylogeny is known and large amounts of data
can be generated rapidly. To generate synthetic data using
a computer simulated evolutionary process, the researcher
typically specifies four model components: a tree topol-

ogy, a character substitution model, a mutation location
model, and a probability distribution for the ancestral
root sequence. A specific ancestral sequence is generated
from the probability distribution, and the simulation
mutates the sequence down the given tree topology
according to the given substitution and mutation location
models until a sequence has been generated for each leaf
of the tree. Two programs commonly used to generate
sequences according to a given tree and substitution
model are Seq-Gen and PSeq-Gen [12,13]. The character
substitution model is used to simulate varying probabili-
ties of accepted mutations. In natural sequences, the prob-
ability of mutating from one character to another and
having this mutation be accepted depends on the specific
characters involved. Several different amino acid and
nucleotide substitution models have been developed to
partially account for the effects of biochemistry and natu-
ral selection [14-18]. The mutation location model is used
to simulate Among Site Rate Variation (ASRV). In natural
sequences, different sites undergo substitutions at differ-
ent rates; that is, the mutation location model is not uni-
form. For example, portions of the genome that
correspond to binding or catalytic sites of protein
sequences will experience fewer mutations than the non-
coding portions of the genome. ASRV affects estimation of
distances between sequences, transition rate bias and phy-
logeny reconstruction. Several different ASRV models
have been proposed [19,20]. Usually a mathematical dis-
tribution, such as a gamma distribution, is used to model
ASRV.

The key drawback of computer simulations is that despite
the use of sophisticated models, the taxa are not collected
from a natural evolutionary process. Instead, the taxa are
simply random sequences of characters that have no
meaning and do not include actual genes or functional
components. Thus, no sequence can be "more fit" than
another sequence, and the taxa are determined solely by
mutation and drift but not natural selection. Therefore,
computer simulation techniques cannot be used to assess
the effect of natural selection on the performance of max-
imum parsimony.

Working with natural data with known phylogenies par-
tially overcomes the limitations of computer simulation
[10,11]. However, even these data suffer from important
limitations. First and foremost, the number of known
phylogenies is relatively small. Furthermore, in experi-
mental phylogenies, the mutation rates typically are
manipulated to increase divergence with the potential
side effect of overemphasizing genetic drift as compared
to natural selection. Finally, while the major phylogenetic
relationships will be known, there is a limit to the amount
of data available to the researcher. In computer simula-
tions, for example, all mutation events can be recorded at
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a level of detail impossible with real biological organisms.
Thus, we are still incapable of answering many questions
about the effect of natural selection on reconstruction
accuracy.

In this work, we study exactly this question. What is the
effect of natural selection on the performance of a recon-
struction technique such as maximum parsimony? Does it
improve or hinder reconstruction accuracy? Furthermore,
assuming that natural selection does influence reconstruc-
tion accuracy, how does it affect reconstruction accuracy?
More specifically, we know that natural selection creates
both ASRV and non-uniform character substitution. What
is the relative importance of ASRV and non-uniform char-
acter substitution on reconstruction accuracy?

The Avida digital evolution research platform
We study these questions using the Avida digital evolution
research platform [21] to generate a collection of
sequences that experience true Darwinian evolution from
which we can attempt to reconstruct a phylogeny. In
Avida, each sequence represents a self-replicating compu-
ter program. Like computer simulations, all information
including the phylogeny of the sequences can be perfectly
recorded. However, the Avida populations do not simu-
late evolution; they evolve subject to mutation, drift, and
selection. We describe below how mutation and selection
arise.

When a digital organism replicates, it copies its genome,
one instruction at a time, into empty memory. Mutations
arise due to a faulty copy command. When an instruction
is copied, there is a small probability that it will be copied
incorrectly. This probability or mutation rate is an experi-
mental parameter set by the researcher. Typically, when a
mutation occurs, an incorrect instruction is chosen uni-
formly at random from the remaining instructions,
though we do consider other probability distributions as
well.

Space is limited in an Avida population and death occurs
when organisms are removed (at random) to make room
for new offspring. The fitness of an organism is essentially
its replication speed. One way for an organism to increase
its fitness is for it to replicate using fewer instructions. An
alternative is to perform specific Boolean logic tasks (akin
to metabolic reactions) that are specified in the
researcher-defined digital environment that give the
organism extra energy that allows the organism to execute
instructions more rapidly. For example, if NOR is a
rewarded task, organisms can obtain extra energy by read-
ing in two vectors of binary digits, performing NOR on
each corresponding pair of bits in the two inputs, and out-
putting the resulting bit vector. There are many different

ways to perform NOR and rarely, if ever, will evolution
find identical solutions in replicate runs.

The Avida system and natural selection
A concern that we are faced with in using Avida as a data
source for phylogeny reconstruction studies is the same
credibility gap that computer simulation studies face. Spe-
cifically, how similar is data from Avida experiments to
data found in the natural world?

We first emphasize that Avida is a widely used platform
for studying evolution. Several dozen peer reviewed
papers have been published based on Avida experimental
data including several in Nature, Science, and the Pro-
ceedings of the National Academy of Sciences [22-26].

Biological communities have accepted Avida experimen-
tal data because populations of digital organisms
undergo true Darwinian evolution where individuals
have genomes that are expressed into phenotypes. Avida
experiments do not simulate any specific biological proc-
ess or system. Instead, Avida organisms are computer pro-
grams with actual meanings and fitness values. Thus,
Avida organisms do evolve subject to natural selection.

For example, Avida organisms are highly contingent on
previous events. Ofria and others have shown that com-
plex traits can evolve in Avida [25] if simpler traits are
rewarded by using the genetic code that performs the sim-
pler traits as building blocks. On the other hand, some-
times the use of a particular gene in one way will constrain
further evolution in other directions. A specific case of this
is that the replication of an organism's genome can
become over-optimized relying on that genome to be a
specific length, thereby constraining all other genes to
exist within a fixed number of instructions and thus limit-
ing their evolution. Wagenaar and Adami showed that
chance events are required to open gateways that allow
further adaptation [27]. Thus, Avida experiments show
wide variation in the paths taken by evolution with repli-
cate runs rarely finding the same solution. Epistasis also
occurs in Avida [22] and the dynamics were essentially
identical to those found in long term E. coli experiments
[28].

It is true that Avida data does have some limitations. The
genome length of an Avida organism in our experiments
is 100 (with 26 possible instructions at each position).
This implies that the genome of a typical Avida organism
is less complex than that of most biological organisms,
but is certainly comparable to that of short genes. Thus,
Avida phylogenies can most easily be compared to gene
phylogenies of biological organisms. While we could
increase the length of the Avida organisms, it is not clear
this increase would be meaningful. The information den-
Page 3 of 15
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:94 http://www.biomedcentral.com/1471-2148/7/94
sity of the longer organisms would be less than that of the
length 100 organisms if both organisms perform the same
set of tasks.

Another potential limitation is that Avida's basic life
chemistry is distinct from that of natural organisms. How-
ever, while the specific chemistry may be different, we can
still compare phylogeny reconstruction with and without
natural selection to derive general principles about natu-
ral selection's effect on phylogeny reconstruction that
should apply to any evolving system. Any such general
principles should be robust across most biological sys-
tems.

We have previously used Avida to analyze the effect of nat-
ural selection on the performance of maximum parsi-
mony and neighbor joining [29,30]. In [30], we
demonstrated that maximum parsimony and neighbor
joining could reconstruct 4 taxa phylogenies surprisingly
well when all branches are extremely long and no signifi-
cant functionality is being acquired through evolution. In
[29], we tested a wider range of branch lengths for 4 taxa
tree topologies and showed that both maximum parsi-
mony and neighbor joining can reconstruct data sets gen-
erated with natural selection more accurately than
datasets generated without natural selection, particularly
when the internal branch is long enough to allow the
acquisition of a significant phenotypic trait. We also
showed that incorporating a simplistic ASRV model sig-
nificantly enhanced the quality of the computer simula-
tion data.

In this paper, we perform a more detailed analysis to
determine how natural selection impacts the performance
of maximum parsimony. We isolate specific conditions
where the presence of natural selection significantly
improves the reconstruction accuracy of maximum parsi-
mony. We then illustrate how selective pressures cause
changes in both ASRV and instruction frequency (which is
related to the character substitution model). Our results
show that ASRV and non-uniform character substitutions
are not sufficient to capture the effects of natural selection
on the performance of maximum parsimony. However,
the computer simulation data produced by accurately
simulating ASRV is more similar to real, experimental data
than the computer simulation data produced by accu-
rately simulating character substitution probabilities.
Finally, we corroborate these results using PSeq-Gen data.

Results and Discussion
Our experimental methodology consists of two compo-
nents that are described more completely in our methods
section. In brief, we generate symmetric 4 taxa topologies
to be reconstructed as depicted in Figure 1. The internal
branch length of this 4 taxa topology is the number of

unique genotypes in the phylogeny from the intermediate
ancestor Y to the intermediate ancestor Z, one of which is
the ultimate ancestor X. The external branch length is the
number of unique genotypes from either intermediate
ancestor Y or Z to any of the 4 descendant children A, B,
C, or D.

We generate sequences that evolve subject to natural selec-
tion using Avida. We generate sequences that evolve with-
out natural selection by using computer simulation
techniques. Within Avida, we utilize different reward
structures to vary the selective pressure. In a given reward
structure, some set of tasks is rewarded along a given
branch in the tree topology. The set of tasks rewarded
might change from one branch to another.

Conditions where natural selection improves 
reconstruction accuracy
We first determine if natural selection has any impact on
the accuracy of maximum parsimony. Our initial results
show that there are conditions where natural selection can
significantly improve the accuracy of maximum parsi-
mony, corroborating results from our earlier papers
[29,30]. For example, consider the data from Figure 2.
MP's reconstruction accuracy is significantly higher given
the Avida data rather than the control data from computer
simulation. In fact, MP can reconstruct 4 taxa trees with
surprisingly large branch lengths.

We now isolate what conditions lead to natural selection
improving MP's reconstruction accuracy. Our first test is
to vary the internal branch length of the tree. Our results
shown in Figure 3 demonstrate that natural selection's
impact increases as we increase the internal branch length.
For example, when the internal branch length is only 6,
there is little difference between MP's accuracy on the two
data sets. When the internal branch length increases to
200, MP's superiority on Avida data is even larger than
when the internal branch length is 60. The explanation is
that there must be enough time for significant adaptation
to occur.

Model tree topologyFigure 1
Model tree topology.
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We next experiment with selection strength to determine
its impact on MP's reconstruction accuracy. Our results
shown in Figure 4 demonstrate that natural selection's
impact increases as we increase selection strength. For
example, MP's reconstruction accuracy on data generated
with a bonus for performing rewarded tasks that is 1/100th

of the default bonus is essentially identical to MP's accu-
racy on computer simulation data. As we increase the
bonus, MP's accuracy improves.

We next experiment by varying the reward structure. In
our default overlapping reward structure, new tasks are
rewarded in each branch of the tree topology. We test the
importance of changing selective pressures on MP's per-
formance by assessing MP's reconstruction accuracy on

Avida data generated where the same tasks are rewarded
on all branches of the tree topology. Our results shown in
Figure 5 demonstrate that changing selective pressures is
critical; in particular, it is important that the intermediate
ancestor incorporates a significant adaptation. When the
same tasks are rewarded in all branches, most of the tasks
are acquired by the original ancestor and thus no signifi-
cant adaptations are incorporated into the intermediate
ancestors.

We finally experiment by comparing the overlapping
reward structure where some tasks are rewarded in consec-
utive branches in the tree topology with the non-overlap-
ping reward structure where no task is rewarded in
consecutive branches in the tree topology. Our results

The impact of internal branch lengthFigure 3
The impact of internal branch length. The accuracy of maximum parsimony is plotted as a function of external branch 
length. The Avida data sets are generated using the overlapping reward structure. The control data sets are generated using 
computer simulation techniques. In the short data sets, the internal branch length is 6. In the long data sets, the internal branch 
length is 200. In the default data sets, the internal branch length is 60.

Natural selection improves maximum parsimony's reconstruction accuracyFigure 2
Natural selection improves maximum parsimony's reconstruction accuracy. The accuracy of maximum parsimony 
is plotted as a function of external branch length. The Avida data set is generated using the overlapping reward structure. The 
control data set is generated using computer simulation techniques. In both data sets, the internal branch length is 60.
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shown in Figure 6 demonstrate that MP's performance on
both Avida data sets is significantly better than MP's per-
formance on the control data generated using computer
simulation. It is interesting to note that MP performs bet-
ter on the Avida overlapping data set than the Avida non-
overlapping data set. We believe this improved perform-
ance is due to the selective pressure to maintain critical
pieces of code that are rewarded in consecutive environ-
ments (E1 and E2) as well as (E2 and E3). That is, a signif-
icant adaptation that is acquired in an intermediate
ancestor may be lost if the associated task is no longer
rewarded in the final environment E3. This is less likely to
occur in the overlapping reward structure than the non-
overlapping reward structure.

The effect of selective pressure on among site rate 
variation (ASRV) and instruction frequency
Our results clearly demonstrate that there are situations
where natural selection improves MP's reconstruction
accuracy. To help determine which factor, ASRV or non-
uniform accepted substitution probabilities, is the more
influential byproduct of natural selection on the perform-
ance of maximum parsimony, we plot the ASRV and
instruction frequencies that result from a variety of selec-
tive pressures. We use instruction frequency as a proxy for
accepted substitution percentage because instruction fre-
quencies are easier to interpret given the 26 instructions in
the Avida instruction set. If we were to compare substitu-
tion percentages directly, that would require comparing

The impact of changing reward structureFigure 5
The impact of changing reward structure. The accuracy of maximum parsimony is plotted as a function of external 
branch length. The control data set is generated using computer simulation techniques. In all data sets, the internal branch 
length is 60. The Avida data set uses the overlapping reward structure. The other data sets reward 0, 3 or 10 tasks throughout 
the entire experiment.

The impact of selection strengthFigure 4
The impact of selection strength. The accuracy of maximum parsimony is plotted as a function of external branch length. 
The Avida data sets are generated using the overlapping reward structure. The control data set is generated using computer 
simulation techniques. In all data sets, the internal branch length is 60. The selection strength of the Avida data sets are given as 
a function of the default selection strength. For example, the selection strength in the "Avida weaker by 100" dataset is 100 
times smaller than the selection strength in the default Avida data set.
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262 = 676 numbers while comparing instruction frequen-
cies requires only 26 comparisons. Our results indicate a
stronger relationship between ASRV and reward structure
than between instruction frequencies and reward struc-
tures. This implies that ASRV may be a more important
factor than non-uniform character substitution. However,
our results also indicate that ASRV and non-uniform char-
acter substitutions cannot account for the entire effect of
natural selection on the performance of maximum parsi-
mony.

To assess the relationship between ASRV and natural
selection, we compare how the mutations are distributed
by genomic position for 4 different selective pressures:
Avida with the overlapping reward structure, Avida with
the non-overlapping reward structure, Avida with the no-
task reward structure, and the control data set generated
by computer simulation. For each selective pressure, we
collect data from our experiments with internal branch
length 60 and external branch length 600; we have 100
replicates for each selective pressure. For each data set, we
compute the number of mutations that occur in each of
the 100 positions from an intermediate ancestor (Y or Z in
Figure 1) to a leaf taxa (A, B, C or D in Figure 1). Since we
have a total of 100 replicates with 4 lines of descent for
each replicate and 100 genomic positions for each line of
descent, there are a total of 40,000 unique positions. Due
to the external branch length of 600, the average number
of mutations that each position will experience will be
approximately 6; it is slightly higher because there is a
small chance that more than one mutation may occur
between a parent and a child. The mutation distribution
data for our 4 data sets is depicted in Figure 7.

We see that for the control data set with no selective pres-
sure, the plot of the number of positions that experience a
given number of mutations is, as expected, a normal dis-
tribution centered close to 6. Likewise for the no-task
reward structure data set, once the positions with 0 muta-
tions are deleted, the plot of the number of positions that
experience a given number of mutations is also normally
distributed with the center close to 7. This occurs because
the main selective pressure in the no-task reward structure
setting is to maintain the replication cycle. The instruc-
tions responsible for replication are the ones in positions
with 0 mutations. On the other hand, in the non-overlap-
ping and overlapping structure data sets, the plot of the
number of positions that experience a given number of
mutations is not a normal distribution but rather is close
to uniform in the range from 1 mutation to 12 mutations
with a significant tail for higher numbers of mutations.
Thus, significant changes in ASRV do correlate with signif-
icant changes in MP's reconstruction accuracy. However,
there is not a sharp difference in the mutation distribution
plots for the overlapping and non-overlapping data sets.
This suggests that ASRV alone is not sufficient to explain
the improved performance of maximum parsimony on
the data generated in the overlapping reward structure
compared to the data generated in the non-overlapping
reward structure.

To assess the relationship between instruction frequency
and selective pressure, we compare the instruction fre-
quencies of the terminal taxa for the same set of 4 selective
pressures. We use the same settings we did for the ASRV
data: internal branch length 60 and external branch
length 600. Similar to the ASRV data set, we have a total

Comparing overlapping and non-overlapping reward structuresFigure 6
Comparing overlapping and non-overlapping reward structures. The accuracy of maximum parsimony is plotted as a 
function of external branch length. The Avida data set is generated using the overlapping reward structure. The Avida 2 data 
set is generated using the non-overlapping reward structure. The control data set is generated using computer simulation tech-
niques. In all data sets, the internal branch length is 60.
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of 40,000 instructions in the 4 terminal taxa for each of
the 100 replicates. Given that the instruction set size is 26,
the average instruction frequency should be 3.86%. The
instruction frequencies for the 4 data sets are plotted in
Figure 8.

We see that for the control data set with no selective pres-
sure, the instruction frequency distribution is essentially
uniform at 3.86%. However, the instruction frequencies
for the three Avida data sets that experience natural selec-
tion are clearly not uniform. The frequencies for instruc-
tions critical to replication such as h-copy, nop-A, nop-B,
and nop-C are significantly above 3.86% in all three Avida
data sets. The instruction frequencies for nand and IO,

both of which are critical for performing Boolean logic
tasks, are also significantly above 3.86% in the overlap-
ping and non-overlapping reward structure data sets
where there is a selective pressure to perform Boolean
logic tasks.

When comparing the instruction frequencies, we see very
little difference between the two from the overlapping and
non-overlapping reward structures despite the significant
difference in MP's reconstruction accuracy. Furthermore,
there is a significant difference between the no-task
reward structure instruction frequencies and the control
data instruction frequencies while MP reconstructs both
data sets with essentially the same accuracy. This data sug-

Instruction frequenciesFigure 8
Instruction frequencies. For each data set; Avida with overlapping reward structure, Avida with non-overlapping reward 
structure, Avida with no-task reward structure, and control data generated by computer simulation; the frequency of each of 
the 26 unique instructions in the four leaf taxa is plotted. The data was generated using 100 replicate experiments for each data 
set with 400 instructions per replicate giving a total of 40,000 instructions. Each replicate used an internal branch length of 60 
and an external branch length of 600.

Distribution of per site number of mutationsFigure 7
Distribution of per site number of mutations. The percentage of the 40,000 genomic positions or sites that experience a 
given number of mutations is plotted for the range 0 mutations through 20 mutations. The data was generated using 100 repli-
cate experiments for each reward structure. Each replicate contributed 400 genomic positions or sites and used an internal 
branch length of 60 and an external branch length of 600.
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gests that while non-uniform instruction frequencies and
non-uniform character substitutions are a significant
result of natural selection, they may not explain why nat-
ural selection improves the performance of phylogeny
reconstruction algorithms such as maximum parsimony
in some cases.

The effect of among site rate variation (ASRV) and non-
uniform character substitutions on the performance of 
maximum parsimony
The previous data implied that ASRV is more likely to
have an effect on maximum parsimony's performance
than non-uniform character substitutions. In order to
study this question more carefully, we augment our com-
puter simulation program in order to perfectly mimic
either the location of mutations that occurred in an Avida
experiment or the substitutions that occurred in an Avida
experiment. When the computer simulation program
mimics the locations of mutations, we define this as loca-
tion simulation. When the computer simulation model
mimics the substitutions that occur, we define this as sub-
stitution simulation. When using location simulation, the
character substitutions are chosen at random. When using
substitution simulation, the mutation location is chosen
uniformly at random among available locations. Note
that in normal computer simulation, both mutation loca-
tion and character substitution are chosen uniformly at
random. We describe this in more detail in our methods
section.

Furthermore, in order to exaggerate the influence of the
character substitution process, we augment the default
Avida character substitution process that is uniform with
two new character substitution processes, F and L, in

which some substitutions are more likely to occur than
others. Note this effect is distinct from that of natural
selection in which case some mutations are more likely to
be accepted than others. We provide more details on the F
and L character substitution processes in our methods. As
the data depicted in Figure 9 shows, using these biased
character substitution processes does lead to instruction
frequencies that are more divergent from uniform.

As Figure 10 shows, MP's performance on the substitution
simulation data is essentially identical to its performance
on the control data and is much worse than its perform-
ance on the Avida data. This is true even when we use the
biased F and L character substitution processes. These
results suggest that even though natural selection has a
significant impact on character substitution probabilities,
non-uniform character substitutions do not explain how
natural selection improves maximum parsimony's
improved reconstruction accuracy in some cases.

As Figure 11 shows, MP's performance on the location
simulation data is very similar to its performance on the
Avida data, even when the Avida data is generated using
the biased F and L character substitution processes. These
results suggest that one reason natural selection improves
the performance of maximum parsimony in some cases is
its introduction of ASRV.

An observation that is perhaps surprising is that MP actu-
ally performs better on the location simulation data than
on the Avida data. This can be explained by the fact that
homoplasy is less likely with a uniform character substitu-
tion model than a non-uniform character substitution
model. Thus, in the genomic positions that experience

Instruction frequencies with F and L substitution processesFigure 9
Instruction frequencies with F and L substitution processes. For Avida with the overlapping reward structure, the fre-
quency of each of the 26 unique instructions in the four leaf taxa is plotted when the taxa are generated using the default uni-
form character substitution process, the F character substitution process and the L character substitution process. The data 
was generated using 100 replicate experiments with 400 instructions per replicate giving a total of 40,000 instructions. Each 
replicate used an internal branch length of 60 and an external branch length of 600.
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high rates of change, more homoplasies are likely to occur
in the actual Avida sequences than in the location simula-
tion model sequences.

To further test the impact of ASRV and character substitu-
tion models on the performance of maximum parsimony,
we performed comparable experiments using data from
PSeq-Gen. For each of the four character substitution
models (uniform, JTT, PAM, and mtREV), we generated
1000 replicates using both α = 1, which corresponds to
significant ASRV, and α = 100, which corresponds to

essentially no ASRV. For each data set, we computed MP's
performance.

As Figures 12, 13, and 14 show, none of the three charac-
ter substitution models implemented in PSeq-Gen (JTT,
PAM, and mtREV) has a significant effect on MP's recon-
struction accuracy. More specifically, for either α value,
MP's reconstruction accuracy is essentially identical using
all four substitution models, including uniform. On the
other hand, the α value and thus ASRV has a significant
effect on MP's reconstruction accuracy regardless of the

Location simulation and maximum parsimony reconstruction accuracyFigure 11
Location simulation and maximum parsimony reconstruction accuracy. The accuracy of maximum parsimony is 
plotted as a function of external branch length. The Avida data sets are generated using the overlapping reward structure with 
the default uniform, F and L character substitution processes. For each Avida data set, a control data set is generated using 
computer simulation techniques. Finally, for each Avida data set, a second control data set is generated using the location sim-
ulation technique. In all data sets, the internal branch length is 60, and there were 100 replicate experiments.

Substitution simulation and maximum parsimony reconstruction accuracyFigure 10
Substitution simulation and maximum parsimony reconstruction accuracy. The accuracy of maximum parsimony is 
plotted as a function of external branch length. The Avida data sets are generated using the overlapping reward structure with 
the default uniform, F and L character substitution processes. For each Avida data set, a control data set is generated using 
computer simulation techniques. Finally, for each Avida data set, a second control data set is generated using the substitution 
simulation technique. In all data sets, the internal branch length is 60, and there were 100 replicate experiments.
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substitution model used. These results validate our find-
ings with Avida data.

Conclusion
Maximum parsimony may perform significantly better on
actual biological data than is currently suggested by com-
puter simulation studies due to the effects of natural selec-
tion. In sequences that evolve subject to natural selection
and which experience a geographic separation, specific
sites in the genome that perform critical functions become
resistant to accepted mutations. As there are typically
many distinct ways to perform a function, the solution
derived by one population is likely to be different than the
solution derived by the second population. The sites asso-
ciated with these different solutions provide a signal that
aids in the reconstruction of phylogenies. As this phe-
nomenon is more strongly associated with locations
rather than the specific substitutions that occur, ASRV
appears to have a stronger impact on phylogeny recon-
struction than character substitution probabilities.

It is important to note, however, that natural selection led
to improved reconstruction accuracy for Maximum Parsi-
mony only when there were changes in rewarded tasks
that led to intermediate ancestors acquiring significant
adaptations. This would suggest that natural selection will
only help in reconstructing phylogenies from taxa that
diverged due to new selective pressures. The prevalence of
this phenomenon in the natural history of our world will
determine to some extent the significance of this finding.

It is also important to note that we performed all our
experiments using symmetric tree topologies. Maximum

parsimony is known to perform poorly when the topolo-
gies are not symmetric [31-33]. It is a natural question to
ask how the effects of natural selection interact with the
issue of long branch attraction.

In future work, we plan to test whether our results and
conclusions still hold when applied to larger phylogenies,
to smaller character sets, or when our techniques are
applied to tree reconstruction algorithms other than Max-
imum Parsimony. Furthermore, we plan to evaluate how
well Maximum Parsimony performs on asymmetric tree
topologies.

Methods
Our basic methodology is simple. We first generate a set
of four taxa with a known phylogeny that evolves subject
to natural selection using Avida. We label the four taxa as
A, B, C, and D and the three internal ancestors at bifurca-
tion points as X, Y, and Z. See figure 1 for an illustration.
Next, we generate three sets of computer simulation data
based on our known phylogeny. We work with 4 taxa trees
because we can compute the most parsimonious tree
quickly and we can simplify the problem of determining
if a tree is correct. Specifically, there are 3 distinct topolo-
gies that can be produced by a reconstruction algorithm;
the correct one, which pairs A with B and C with D, or two
possible false answers that incorrectly pair A with C and B
with D, or incorrectly pair A with D and B with C.

We assess the performance of maximum parsimony for a
given data set as follows. If maximum parsimony outputs
only the correct tree topology, it is given a score of 1 since
the correct answer is given unambiguously. If maximum

MP reconstruction accuracies for PSeq-Gen JTT dataFigure 12
MP reconstruction accuracies for PSeq-Gen JTT data. We plot the maximum parsimony reconstruction accuracy as a 
function of external branch length for 4 PSeq-Gen generated data sets. Two data sets use the JTT character substitution model; 
the other two use the uniform character substitution model. Two data sets use α = 1 to model significant ASRV. Two data sets 
use α = 100 to model little ASRV.
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parsimony outputs two possible tree topologies, one cor-
rect and one incorrect, it is given a score of 1/2 since the
correct answer is given but an incorrect answer is given as
well. If maximum parsimony outputs all three possible
tree topologies, it is given a score of 1/3. If maximum par-
simony fails to output the correct tree topology, it is given
a score of 0. Note that randomly selecting a topology (or
a combination of topologies) would have an expected
accuracy of 1/3.

Generation of known phylogenies with Avida

We generated Avida data in the following manner, which
is based on the approach taken by Hillis et al. with viruses
[10,11]. The procedure is illustrated in Figure 15. First, we
took a viable ancestor S1 and injected it into an initial
environment E1. The ancestor was handwritten and con-
tains a short copy loop and genome that is padded out to
length 100 with inert no-operation instructions. During

MP reconstruction accuracies for PSeq-Gen mtREV dataFigure 14
MP reconstruction accuracies for PSeq-Gen mtREV data. We plot the maximum parsimony reconstruction accuracy 
as a function of external branch length for 4 PSeq-Gen generated data sets. Two data sets use the mtREV character substitu-
tion model; the other two use the uniform character substitution model. Two data sets use α = 1 to model significant ASRV. 
Two data sets use α = 100 to model little ASRV.

MP reconstruction accuracies for PSeq-Gen PAM dataFigure 13
MP reconstruction accuracies for PSeq-Gen PAM data. We plot the maximum parsimony reconstruction accuracy as a 
function of external branch length for 4 PSeq-Gen generated data sets. Two data sets use the PAM character substitution 
model; the other two use the uniform character substitution model. Two data sets use α = 1 to model significant ASRV. Two 
data sets use α = 100 to model little ASRV.
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the Avida run, insertion or deletion mutations were disal-
lowed. This ensured all genomes have length 100 and are
aligned. Although the specific length 100 is somewhat
arbitrary, it is enough to provide space for mutations and
significant adaptation. All environments were limited to a
population size of 3600. Previous work with Avida [22]
has shown that 3600 is large enough to allow for diversity
while making large experiments with many replicates
practical.

We set the copy command to fail with a uniform probabil-
ity of 0.75%, which means that for a typical replication,
.75 (out of the 100) instructions would be copied incor-
rectly. When a copy command fails, a random instruction
is written in its place, each with equal probability in our
default setting. For some Avida experiments, we used two
non-uniform character substitution processes F and L,
which emphasize the first 13 instructions and the last 13
instructions, respectively. When the copy command fails
with the F (L) character substitution process, each of the
first (last) 13 instructions is written in its place with prob-
ability 4/65 and each of the last (first) 13 instructions is
written in its place with probability 1/65.

After running for L1 = 200 generations, we identified the
most abundant genotype S2 (or X from Figure 1) and
placed S2 into a new environment E2. We executed two
parallel experiments of S2 in E2 for 1.08 × 1010 cycles,
which is approximately 104 generations. In each of the
two experiments, we then sampled genotypes at L2 equal
to 3, 30, and 100 along the line of descent from S2 to the
most abundant genotype at the end of the execution. Let
S3a-x denote the sampled descendant in the first experi-
ment for L2 = x while S3b-x denotes the same descendant
in the second experiment. Note that S3a-x and S3b-x cor-
respond to internal ancestors Y and Z from Figure 1.

Next, for each value x of L2, we took S3a-x and S3b-x and
put them each into a new environment E3. Again, we exe-
cuted two parallel experiments for each organism. In each
of the four experiments, we then sampled genotypes at L3
equal to a set of values from 10 through 600 along the line
of descent from S3a-x or S3b-x to the most abundant gen-
otype at the end of the execution. For each value of L3,
four taxa A, B, C and D were used for reconstruction.
Organisms A and B share the same ancestor S3a-x while
organisms C and D share the same ancestor S3b-x.

Within the environments E1, E2, and E3, there were
energy bonuses associated with ten different Boolean
logic tasks which, in order of complexity, are ECHO, NOT,
NAND, AND, ORNOT, OR, ANDNOT, NOR, XOR, and
EQUAL. We use many different reward structures for our
Avida experiments. Our default reward structure is the
overlapping reward structure where tasks ECHO, NOT,
NAND, AND, and ORNOT are rewarded in E1, tasks AND,
ORNOT, OR, and ANDNOT are rewarded in E2, and tasks
ANDNOT, NOR, XOR, and EQUAL are rewarded in E3;
note that there are tasks shared between E1 and E2 and
between E2 and E3. We also consider the no-task reward
structure where none of the ten logical tasks are rewarded
in environments E1, E2 and E3; the non-overlapping
reward structure where tasks ECHO, NOT, and NAND are
rewarded in E1, tasks AND, ORNOT, and OR are rewarded
in E2, and tasks ANDNOT, NOR, XOR, and EQUAL are
rewarded in E3; the 3-tasks reward structure where tasks
ECHO, NOT, and NAND are rewarded in environments
E1, E2 and E3; and the 10-tasks reward structure where all
10 Boolean logic tasks are rewarded in environments E1,
E2, and E3.

The internal branch length of our tree structure is twice the
value of L2, for which we used values 3, 30 and 100. Note
that L2 = 3 means that, for example, genotype S2 is geno-
type S3a-3's great grandparent. Typically, the number of
mutations that differentiate a parent from a child is
exactly one, but occasionally the number can be two or
more. Furthermore, it is possible that two mutations that
occur in the line of descent from genotype S2 to S3a-x may

Experimental procedure to generate Avida dataFigure 15
Experimental procedure to generate Avida data. A 
population seeded with organism S1 is allowed to reproduce 
in environment E1 for L1 generations. The dominant organ-
ism at the end of the experiment, S2, is then used to seed 
two new experiments in environment E2 for L2 generations. 
The dominant organisms from these two experiments, S3a-x 
and S3b-x, are each used to seed two new experiments in 
environment E3 for L3 generations. The dominant organisms 
from each of these 4 experiments, A, B, C, and D, represent 
a set of taxa to be reconstructed. The definition of genera-
tion with respect to L1, L2, and L3 requires that there be at 
least one mutation from parent to child.
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affect the same genomic position. Thus, L2 does not nec-
essarily represent the Hamming distance between geno-
types S2 and S3a-x. Similar observations apply to L3. The
external branch length of our structure is simply L3, which
ranged in value between 10 and 600. For each environ-
mental model and each setting of L2 and L3, we produced
100 4 taxa phylogenies.

Generation of Computer Simulation Data
Given the known phylogeny, which includes the exact
sequence information of all internal ancestors, we per-
form several computer simulations that mimic the actual
population with varying degrees of accuracy. In all the
simulations, we follow the actual phylogeny exactly in
terms of number of mutations. That is, if there were
exactly 5 mutations from X to Y in the actual phylogeny,
there will be exactly 5 mutations from X to Y in the simu-
lated phylogeny. The computer simulations differ only in
the mutation location and/or the character substitution
models employed.

The control model uses both a uniform mutation location
model and a uniform character substitution model. The
location simulation model uses a uniform character substi-
tution model but emulates exactly the position of all
mutations. That is, if the 5 mutations occurred in (for
example) positions 3, 15, 23, 47, and 98 of sequence Y in
the actual phylogeny, they will also occur in positions 3,
15, 23, 47, and 98 of sequence Y in the simulated phylog-
eny, though the specific characters involved may differ.
Finally, the substitution simulation model uses a uniform
mutation location model but emulates exactly the substi-
tutions that occur. That is, if the 5 mutations of sequence
Y in the actual phylogeny were (a, f), (e, z), (f, t), (s, a),
and (z, u) where the first entry of each order pair is the
original character in sequence X and the second entry of
each order pair is the character after mutation in sequence
Y, then we enforce that the same changes occur in the sim-
ulated phylogeny, though at potentially different posi-
tions.

For each of the 100 Avida trees, we generated a new data-
set using each simulation model, resulting in a total of
400 trees (the 100 originals plus 300 simulated trees).

Generation of PSeq-Gen Data
The PSeq-Gen tool is widely used to simulate the evolu-
tion of protein sequences along evolutionary trees. Three
substitution models are implemented in PSeq-Gen: JTT,
PAM and mtREV. We introduced a uniform substitution
model where all the substitutions are equally likely. The
only mutation location model implemented in PSeq-gen
is the Gamma distribution. A small value for α simulates
a large degree of site-specific rate heterogeneity, and as
this value increases, the simulated data becomes more

rate-homogeneous. We used two α values, 1 and 100.
Thus we had a total of 8 unique parameter settings: four
substitution models combined with two alpha values.
Based on our four taxa model tree, for each parameter set-
ting, we generated 1000 independent replicates. All the
simulations use sequence length 100.
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