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Abstract

Background: Thyroid hormone receptors (TRs) function as molecular switches in response to
thyroid hormone to regulate gene transcription. TRs were previously believed to be present only
in chordates.

Results: We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues
from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc,
Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain
and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs
from the vertebrates and from the jawless vertebrate (lamprey) clustered within separate
subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the
schistosome TRs and S. mediterranea TRs clustered within separate subgroups.

Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed
TR 'N-terminus signature sequence', with a consensus sequence of (G/P)YIPSY(M/L)XXXGPE(D/
E)X.

Heterodimer formation between S. mansoni TRs and SmRXRI suggests that the invertebrate TR
protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTRa
could bind to a conserved DNA core motif as a monomer or homodimer.

Conclusion: Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes
underwent duplication independently in the Protostomia and Deuterostomia. The duplication of
TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes,
TR genes underwent duplication in Platyhelminths, occurring independently in trematode and
turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to
form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to
vertebrate TR core DNA elements as a monomer or homodimer.
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Background

Thyroid hormones (TH) play important roles in growth,
development and metabolism in vertebrates. TH is syn-
thesized in the thyroid gland under the control of thyroid-
stimulating hormone (TSH) secreted by the pituitary. TSH
secretion is controlled by thyrotropin-releasing hormone
(TRH) which is secreted from the hypothalamus. THs are
lipophilic molecules able to passively cross the membrane
and bind to its receptor, the thyroid hormone receptor
(TR). TRs belong to a superfamily of transcription factors
called nuclear receptor (NR) superfamily, based on pro-
tein sequence similarities, structural motifs and function-
ality [1]. TRs function as a molecular switch in response to
the thyroid hormones T3 or T4 to activate or repress gene
transcription depending on the promoter context and thy-
roid hormone binding status [2]. The typical nuclear
receptor contains an N-terminal A/B domain, a conserved
C domain (DNA binding domain, DBD), a D domain
(hinge region) and a moderately conserved E domain (lig-
and binding domain, LBD). The most conserved DBD
contains two zinc finger motifs (CI and CII). Like all NRs,
TRs regulate transcription through its binding to the pro-
moter region of a target gene by the DBD and they activate
or repress mRNA synthesis through co-regulators bound
to the LBD [1]. The specific target DNA sequence to which
NRs bind is called a hormone response element (HRE).
The typical HRE is a direct, inverted or everted repeat or
palindrome of the DNA sequence AGGTCA. TRs can bind
to the HRE as a monomer, a homodimer or as a het-
erodimer with RXR, another member of nuclear receptor
superfamily which contributes to the specificity of the TR.
TH binds to the LBD of TR which results in a conforma-
tional change in the C-terminus of the receptor. Corepres-
sors then dissociated from the TR allowing coactivators to
bind to the C-terminus of the TR in a hormone-dependent
manner. TR and the coactivator complex activate the
expression of the target gene [3,4].

TR was previously believed to be an innovation of chor-
dates as the genomes of insects (Drosophila and mos-
quito) and nematodes (Caenorhabditis elegans and C.
briggus) do not contain TR genes [5-8]. Recently, we iden-
tified two thyroid receptor homologues in the flatworm
Schistosoma mansoni [9], one of which was found in the S.
mansoni EST database [6,10]. The presence of TR homo-
logues in S. mansoni demonstrated that the TR orthologue
genes are present outside of chordates. However, it is still
unclear whether these prostostome TRs possess the same
functional domains as in vertebrate TRs. Another question
is whether the TR orthologue is present in other inverte-
brates or just in the platyhelminth lineage? Answers to
these questions will help to understand the origin of TR
genes and evolution of the function of vertebrate thyroid
hormone network. To begin to address these questions,
we isolated cDNAs of S. mansoni TRs and demonstrated
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that TRs in platyhelminths are highly conserved not only
in sequence similarity, but also in gene organization, pro-
tein-protein interaction and in DNA-binding ability. Fur-
thermore, we mined the available genome data and
demonstrated that TR orthologues are present in different
invertebrate animals but not in Porifera or Cnidaria. Phy-
logenetic analysis showed that the TR orthologue likely
originated from a common ancestor of the Bilateria.

Results

TR orthologue genes in invertebrate animals

By an extensive search of available databases, predicted
genes encoding TR orthologues were found in different
invertebrate animals using the conserved DBD as a query.
They include two genes in each of the platyhelminth spe-
cies evaluated, the turbellarian Schmidtea mediterranea and
the trematodes, Schistosoma mansoni and S. japonium, one
each from the mollusc Lottia gigantean (owl limpet) and
the crustacean Daphnia pulex (water flea) (Fig. 1 and see
additional file 1). No TR orthologues were identified in
any species of the Radiata.

Sequence alignment analysis

Alignment of DBD amino acid sequences show that the
invertebrate TR orthologues are highly conserved (Fig. 1).
All TRs (from chordate and non-chordate species) possess
an identical P-box sequence, which determines the specif-
icity of target DNA binding. The methionine at position
16 of the N-terminus of the DBD (highlighted in red in
Fig. 1) was non-chordate TR-specific. Instead at this posi-
tion an isoleucine is conserved in all chordate TRs exam-
ined to date. Two amino acids (His and Pro) at positions
33-34 of N-terminal of DBD were chordate TR-specific
(highlighted blue in Fig. 1). The second zinc finger is less
conserved in non-chordate TR orthologues compared to
the first zinc finger, but still shows a high degree of con-
servation (Fig. 1). The T-box and A-box which are located
in the C-terminal extension (CTE) of the DBD are also
highly conserved in non-chordate TR orthologues. They
show 75-83% and 57-100% identity to the chordate T-
box and A-box, respectively. These regions in the water
flea TR orthologue are highly divergent, probably due to a
recombination event that happened in this region (see
below). An aspartic acid in the vertebrate TRs at the 8th
position of N-terminus of the T-box is highly conserved
for jawed vertebrate TRs, a glutamic acid at this position is
conserved in other TRs. Although the N-terminal A/B
domain of nuclear receptors is divergent, there is a highly
conserved motif found at the 3' end of the TR A/B domain,
we termed the 'N-terminal signature sequence' (NTSS).
The TR NTSS is a consensus sequence of (G/P)YIPSY(M/
L)XXXGPE(D/E) (Fig. 1). In non-chordate TR ortho-
logues, the sequence is PYIPSYMXXXGPEEP; while in
chordates, three amino acids are deleted generating a
sequence of GYIPYL(D/E)KE(P/Q/L). The deleted three
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Figure |

Sequence alignment of the DNA binding domain (DBD) of TRs. There is a highly conserved motif found at the 3' end
of A/B domain, termed the 'N-terminal signature sequence’ (NTSS). In non-chordate TR homologues, it is PYIPSYMXXXG-
PEEP; while in chordate NTSS, three amino acids are deleted (represented by dashes) generating a sequence of GYIPYL(D/
E)KE(P/QI/L). In the N-terminus of the DBD, a methionine at position 16 (highlighted in red) is non-chordate TR specific. In this
position an isoleucine is conserved for all chordate TRs. Two amino acids (His and Pro for all species except Ciona) are
inserted at positions 33—34 of the N-terminus of DBD in chordate TRs (highlighted in blue). An aspartic acid in vertebrate TRs
at the 8th position of the T-box is highly conserved for vertebrate TRs, a glutamic acid at this position is conserved for other
TRs (highlighted in red). Stars identify the conserved cysteine residues that comprise the zinc finger of the DBD. The con-
served residues are highlighted in green. CiTR: Ciona intestinalis nuclear receptor |, DpTR: water flea Daphnia pulex TR, hTRa:
Human thyroid receptor alpha, hTRb: Human thyroid receptor beta, LgTR: owl limpet Lottia gigantean TR, SeTRa: turbellarian
Schmidtea mediterranea TRa., SeTRb: S. mediterranea TR, SjTRa: blood fluke Schistosoma japonium TR alpha, SJTR: S. japonium
TR beta, SmTRau: blood fluke S. mansoni TR alpha, SmTRp: S. mansoni TR beta, SpTR: sea urchin Strongylocentrotu purpuratus TR.
The accession numbers of the aligned human nuclear receptors can be found in Additional files | and 2.
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amino acids in chordate NTSS were deduced from the
non-chordate sea urchin TR (SpTR). Since the deuteros-
tome SpTR shares the same NTSS with that of protostome
TRs, this suggests that the non-chordate NTSS is the prim-
itive state.

Functional domains of non-chordate TRs

To determine the functional domains of a non-chordate
TR orthologue, cDNAs encoding the entire open reading
frame (ORF) of the two S. mansoni TRs (SmTRa and
SmTRp) were isolated, sequenced and the sequences
deposited in GenBank (SmTRa [GenBank:AY395038,
AY395059-AY395063, AHO013464) and SmTRS [Gen-
Bank:AY395039]).

SmTRa and SmTRS encode proteins of 1115 amino acids
and 847 amino acids, respectively. Each protein exhibits a
modular structure characteristic of the nuclear receptor
superfamily with an A/B domain, a conserved DBD, a
hinge region and a LBD (Fig. 2 and 3). Alignment of the
sequences demonstrated that the LBD is less conserved.
Helices 1-2 in the LBD are highly divergent, similar to
that of other reported schistosome NRs [11-19]. Although
the LBD is less conserved (Fig. 2), the consensus motif I
(from helix 3 to helix 6) and the consensus motif II (from
the middle of helix 8 to the middle of helix 10) are con-
served [20] (Fig. 2). A putative AF2 activation domain core
(AF2-AD) (helix 12) is present in both SmTRs (Fig. 2). It
exhibits a high degree of conservation (represented by
YLHELF and YFHELF in SmTRa and SmTR, respectively)
in comparison to the common consensus AF2-AD core
structure of ®OXEDD, where @ denotes a hydrophobic
residue [12,21,22].

The two consensus LBD motifs (motif I and motif II) were
examined in other non-chordate TR orthologues when
their DBD-containing contig contained these regions (Fig.
4). Two amino acids in motif I (a glycine at position 21
and an aspartic acid at position 29) and the three amino
acids in motif II (alanine at position 3, a leucine at posi-
tion 9 and an isoleucine or leucine at postion 45) were
found to be invertebrate TR-specific (Fig. 4).

Phylogenetic analysis

Phylogenetic analysis of DBD sequences shows that all
invertebrate TRs cluster with the vertebrate TR subgroup
(Fig. 5), suggesting that they originated from a common
ancestor gene. The two TR orthologues in the Platy-
helminths, the turbellarian S. mediterranea and the trema-
todes (S. mansoni and S. japonicum) clustered outside of
the vertebrate TR subgroups suggesting that they under-
went duplication after the split of Prostostomia and Deu-
terostomia. Furthermore, each of the two duplicated
trematode TR homologues cluster together within a sub-
group, while the two turbellarian (S. mediterranea) TR
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homologues clustered within another subgroup. This
result suggests that the TR duplication in the Platy-
helminths occurred after the split of the trematodes and
the turbellarians.

A high resolution phylogenetic tree was constructed using
the DBD and LBD sequences (Fig. 6). Since the only full
length LBD sequence was identified from S. mansoni TRs,
the S. mansoni TRs were used to represent the protostome
TRs. The results show that all jawed vertebrate TRs clus-
tered within a group including TRa. and TR subgroups.
The two jawless vertebrate lamprey TRs clustered outside
of the jawed vertebrate TRs. This suggests that the verte-
brate TR gene underwent duplication after the split of jaw-
less and jawed vertebrates. The urochordate Ciona TR and
the two duplicated trematode SmTRs cluster outside of the
vertebrate TR groups. These results confirmed those
obtained from the DBD analysis which suggested that the
TR gene duplication occurred independently in verte-
brates and invertebrates.

Genomic organization

The gene organization of the TR homologue genes in S.
mansoni (SmTRa and SmTRf) was identified by alignment
of the cDNA sequence with the genomic sequence (Fig. 3).
The genomic sequences were obtained by screening S.
mansoni bacterial artificial chromosome (BAC) libraries
(SmBAC1 or CHOR103) and sequencing the BAC DNA
[23], and by Blast searching WTSI S. mansoni WGS data-
base [24]. Three clones (SmBAC1 3A6, 4G3 and 9D10) for
SmTRa and 3 clones (CHOR103 3115, 7K22 and 21F18)
for SmTRf were identified by screening the BAC libraries.
A gDNA contig (Sm00.scaff00056.0030.1) for SmTRa and
a gDNA contig (Sm00.scaff00631.0050) for SmTR/S were
obtained from WTSI S. mansoni WGS database. The Con-
tig Sm00.scaff00056.0030.1 contains a partial coding
region for SmTRa, BAC DNAs (SmBAC1 3A6 and 4G3)
were sequenced to generate a contig which contained full
coverage of SmTRa cDNA sequence.

The ORF of SmTRe« is encoded by seven exons spanning
over 32 kb and the ORF of SmTRS is encoded by six exons
spanning over 21 kb (Fig. 3). All splice donor and accep-
tor sites for the two genes fit the GT-AG role. The A/B
domain, hinge and E domains (LBD) are each encoded by
2-3 exons, respectively. The DBD of both proteins is
encoded by one exon (Fig. 3). The 5' UTR and 3'UTR in
both SmTRa and SmTRpS were not determined due to a
short 3'UTR in SmTR« which seems not to be full length
and due to the genomic contig not covering the 5'- and
3'UTR for SmTRp.

It is known that there are four conserved splice junctions
in nuclear receptor genes [3,4,9,20]. The first conserved
junction position (JP1) is within the DBD encoding
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LBD alignment

H3 H4 H5-H6
hTRal SEFTKIITPAITRVVOFAKKI]PMFYE-LHCEDQIILLKGCCMEIMSLRAAVRYDPESDTLT 262
hTRb SHFTKIITPAITRVVFAKK}PMF(JE-LHCEDQIILLKGCCMEIMSLRANVRYDPESETLT 324
eelTRal SEFTKIITPAITRVVHFAKK}PMFYE-LHCEDQIILLKGCCMEIMSLRAAVRYDPDSETLT 281
eelTRbl SQFTQIITPAITRVVHFAKKI]PMFJE-LHCEDQIILLKGCCMEIMSLRAAVRYDPESETLT 265
lampreyTR1 GHFTRIITPAITRVVFAKKI}PMFIE-LHCEDQIVLLKGCCMEIMSLRANVRYEFESDTLT 239
lampreyTR2 THFTAIITPSITRVVHFAKK}PMFTIE-LHCEDQIVLLKGCCMEIMSLRAAVRYDPESDTLT 308
CiTR EQFSSALTNAVTRVVEFAKRIPFFIGKAYTDDQVAMLKGCCMEVIVLNCYASYDRARCTLK 248
SmTRa HDLAYLIEPAITRLVHFAKQIQGFOT-LHADDQIRLLCGCCIDLITLRAAYCLSKSAKIQG 920
SmTRb SRITSLIEPMIASLVAFARLYPGFHL-LOANDQTRLLRGCCLDIITLRANYLLSRIAVSLG 635
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H7 H8
hTRal LSGEMAVKREQLK] 282
hTRb LNGEMAVIRGQLK 344
eelTRal LSGEMAVKREQLK 301
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CiTR LFSKVIITREKLRRTREFD-— 266
SmTRa LVDHSLLIRGPITTRTTPPTTTSTSRPSNNQSNLTHQYNTITPPYIPNNQYPKLGISDHKC 981
SmTRb IVDENGHNKPQFTTISPLDSADIFVQONVPSHQHNVASV-———-——--— IPNNIYPQLGTSDYKC 688
H8 H9 H10
hTRal SDAIFELGKSLSAHNLIDTEVALLQAVLIMSTDRSGLLCYDKIEKSQEAYLLAFEHYVNHR 343
hTRb SDAIFDLGMSLSSHNLIDTEVALLQAVLIMSSDRPGLACYERIEKYQDSFLLAFEHYINYR 405
eelTRal SDAIFDLGKSLAQHNLIDSEVALLQAVLIMSSDRSGLTCYEKIEKCQETYLLAFERYINYR 362
eelTRbl SDAIFDLGVSLSCHNLODSEVALLQAVIIMSSDRPGLTSYERIEQCQEDYLLAFEHYINYR 346
lampreyTR1 SDAIFELGRSLAAHELIDSEVALLQAILIMSSDRPGLVSYDKVEKMQETYLLAFEHYVNHR 320
lampreyTR2 SDAIFDLGRSLAAHSLODTEVALLQAVLIMSTDRPGLVNYDKVEKLODTYLLALEHY INHR 389
CiTR ADDLFRTAEEMSIIQLIETEIAMLKAIIVIFAADRPRIQH]IDEIRNIQNSLLQSLRYYVMDK 329
SmTRa AQLIRGVALKMARINIQQOTDVAMMAAILIMSPDRSDLLDYESIENNONNLLETFNRYVNRT | 1042
SmTRb AQMIRAVALKLARIEINQOTEVALMTSILIMSPDRFGLTDEETVEHTQDILLETFNRYANRI 749
Motif II
H1l
hTRal —-KHNIPHFWPKLLMKVTDLRMIGACHASRFLHMKVECP- 380
hTRb KHHVTHFWPKLLMKVTDLRMIGACHASRFLHMKVECP— 442
eelTRal KHNIPHFWPKLLMKVTDLRMIGACHASRFLHMKVECP— 399
eelTRbl KHKVSYFWPKLLMKVTDLRMIGACHASRFLHMKVEC]P— 383
lampreyTR1 KHAMRHFWPKLLMKVTDLRLIGACHSSRILHMKVTCP— 357
lampreyTR2 EHRLNHFWPKLLMKVTDLRLIGACHSSRILHMKVTCP— 426
CiTR AQHEYAVWSMLLIKMADIRRISNGFAASLMDMKLNNPE 367
SmTRa RG-———————————— QIKQSGLYPVSSSQCWPRIIMTLTELRSVTMCAQDLFSQTYGMSDN 1068
SmTRb RKIRFNRMNHNNMSSRSININGISQQQQJYWPRILMALTELRSITLCNQGLFVEKAYGNT - 809
hTRal
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eelTRal
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lampreyTR1
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SmTRb
H12
hTRal LELEVFEDQEV 397
hTRb LELEVFED 456
eelTRal LELEVFEDQDV 416
eelTRbl LFLEVFED 397
lampreyTR1 LFLEVFED 371
lampreyTR2 LFLEIFPD 440
CiTR LLLOHY[GVWSCFPKPSYDLPNPSVPKPSGFQPLQLPHAALSGH 489
SmTRa VLHELFLADEKINTME 1115
SmTRb ¥FHELF[TGDFILQETNISSFESGNNNDNNNLC 847
POXEDD
AF2-AD

Figure 2

Sequence alignment of the ligand binding domain (LBD) of S. mansoni TRa. and SmTRp. Alignment of sequences
from Helices (H) 3—12 of the LBD domain of S. mansoni TRs (SmTRa and SmTR). Helices described in [53] are boxed. The
autonomous activation domain (AF2-AD) is indicated. Numbers at the end of each line indicate residue positions in the original
sequence, amino acids of CiTR 490-587 are not shown in the alignment. CiTR: Ciona intestinalis nuclear receptor |, hTRa:
Human thyroid receptor alpha, hTRb: Human thyroid receptor beta, SmTRa: blood fluke S. mansoni TR alpha, SmTRb: S. man-
soni TR beta. The accession numbers of the aligned human nuclear receptors can be found in Additional file 2.
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Figure 3

Gene organization of SmMTRa and SmMTRS. A. SmTRa. B. SmTRp. (@) Showing exons and size of introns; Roman numer-
als indicate exons. (b) Showing the size of exons and their correspondence to the different protein domains. A/B: A/B domain,
DBD: DNA binding domain, D: D domain (hinge region), Tt: signature sequence of the LBD, E: E domain (LBD) after Tr.

region, the second (JP2) is in the region which encodes
the 3' end of the DBD, the third (JP3) is in the LBD motif
I (also known as the LBD signature sequence, Tt) encod-
ing region [20] and the fourth one (JP4) is in the LBD
motif II encoding region [20]. JP1 exhibits diversity
among nuclear receptor genes but is conserved for certain
gene groups including vertebrate TR genes [9]. JP2 is
highly conserved usually in the region encoding the
fourth amino acid of the hinge region, but most of the
Drosophila NR genes have lost this junction [9]. JP3 is NR
gene-specific [20] and JP4 is at the same position in all
vertebrate NR genes [20]. All identified non-chordate TR
orthologues possess the four JPs, except JP1 was lost in the
schistsome TR genes (SmTRa, SmTRp, SjTRa and SjTRp)
and JP2 was lost in DpTR. JP3 of all invertebrate TR genes
is at the same position as that found in vertebrate TR genes
(NR1A) (Fig. 7). JP4 in all invertebrate TRs is located at
the same conserved position as found in all analyzed NRs
[20]. The conserved splice junctions in these invertebrate
TRs suggest that the organization of the TR genes was
ancient and has been maintained throughout evolution. It
adds further support to the notion that vertebrate and
invertebrate TR orthologues originated from a common
ancestor gene.

Protein-protein interaction

One property of vertebrate TRs is the ability to form a het-
erodimer with RXR [4]. To determine if a non-chordate TR
would form a heterodimer with RXR, the interaction
between SmRXR1 with SmTRa and SmTRf was tested by
GST pull-down experiments. Either GST-SmTRa-LBD or
GST-SmTRB-LBD fusion protein was incubated with in
vitro translated 35S-SmRXR1. GST-bound resin was used as
a negative control to assess non-specific background bind-
ing. The results showed that both SmTRa-LBD and
SmTRB-LBD could form a heterodimer with SmRXR1 in
vitro. The results demonstrate that non-chordate TRs are
capable of forming a heterodimer with RXR (Fig. 8).

Electrphoretic mobility shift assays (EMSAs) were per-
formed to determine DNA binding specificity of SmTRa
and SmTRB. A DNA element containing the half-site
AGGTCA, a direct repeat of the half-site spaced with 0-5
nucleic acids (DR0O-DR5) and palindrome repeat of the
half-site not separated by nucleic acids (Pal0) were
employed. A gel shift was observed when y-32P labelled
half-site, DRO-DR5 or Pal0 were added to SmTRa.. SmTRa
could bind to all the tested oligonucleotides either as a
monomer or as a homodimer (Fig. 9A). SmTRB demon-
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Motif II
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Sequence alignment of motif | and motif Il in the LBD. Alignment of motif | and motif Il in the LBD of TRs shows that
two amino acids in motif | (a glycine at position 21 and an aspartic acid at position 29) and three amino acids in motif Il (an
alanine at position 3, a leucine at position 9 and an isoleucine or leucine at postion 45) are invertebrate TR homologue-specific
(all highlighted in red). The conserved residues are highlighted in green. DpTR: water flea Daphnia pulex TR, LgTR: owl limpet
Lottia gigantean TR, SmTRa: blood fluke S. mansoni TR alpha, SmTRp: S. mansoni TR beta, SpTR: sea urchin Strongylocentrotu pur-
puratus TR. The accession numbers of the aligned human nuclear receptors can be found in Additional files | and 2.

strated a weak gel shift with the same labelled oligonucle-
otides as template (Fig. 9B). Heterodimers of either
SmTRa or SmMTRB with SmRXR1 did not cause a gel shift
(Fig. 9A and 9B). SmRXR1 alone could bind to the tested
oligonucleotides (Fig. 9A and 9B) as we previously dem-
onstrated [19].

The above result showed that SmTRa could bind to a half
site, DRO-DR5 and Pal0 element as a monomer or a
homodimer. To test whether the DBD domain (which
contains a weaker-dimer interface in the D-box) could

bind to the oligonucleotides as a homodimer, in vitro syn-
thesized SmTRa (GIn!82-Ala288) (containing 20 aa at the
5' end of the DBD, the DBD and 40 aa at the 3' end of the
DBD) was tested. SmTRo (GIn'82-Ala288) bound to all
tested oligonucleotides as either a monomer or a
homodimer (Fig. 10). The results suggest that there is a
dimer interface located in DBD region of SmTRa [25-27].
Specificity was demonstrated by the ability of cold specific
competitor but not the non-specific competitor to prevent
SmTRa binding to the oligonucleotide template.
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Figure 5

Maximum Likelihood phylogenetic tree derived from amino sequences of the DNA binding domain. A phyloge-
netic tree was constructed using the Maximum Likelihood (ML) method under Jones-Taylor-Thornton (JTT) substitution
model with a gamma distribution of rates between sites (eight categories, parameter alpha, estimated by the program) using
PHYML (v2.4.4)). Support values for the tree were obtained by bootstrapping a 100 replicates and are indicated above each
branch. Branches under the bootstrap value of 50 were shown as polytomies. The same data set was also tested by Bayesian
inference with a JTT amino acid replacement model + gamma rates. The trees were started randomly with four simultaneous
Markov chains running for 5 million generations. Bayesian posterior probabilities (PPs) were calculated using a Markov chain
Monte Carlo (MCMC) sampling approach implemented in MrBAYES v3.1.1, the PPs values are shown below each branch. Star
indicates the node obtained by Bayesian inference which was different from that obtained by ML method. DpTR: water flea
Daphnia pulex TR, LgTR: owl limpet Lottia gigantean TR, SeTRa: turbellarian Schmidtea mediterranea TRa, SeTRb: S. mediterranea
TR, SjTRau: blood fluke Schistosoma japonium TR alpha, SJTRp: S. japonium TR beta, SmTRa: blood fluke S. mansoni TR alpha,
SmTRP: S. mansoni TR beta, SpTR: sea urchin Strongylocentrotu purpuratus TR. The accession number of each sequence used for
phylogenetic analysis can be found in Additional files | and 2.
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Figure 6

Maximum Likelihood phylogenetic tree derived from amino sequences of DBD and LBD. The phylogenetic rela-
tionship among TRs was examined by the Maximum Likelihood method (ML) and Bayesian inference with the same methods as
in Fig. 6. Support values for ML tree were obtained by bootstrapping a 100 replicates and are indicated above each branch.
Branches under the bootstrap value of 50 were shown as polytomies. Bayesian inference was running 3 million generations.
The PPs are shown below each branch or after the ML bootstrapping value separated by a slash. Star indicates the node
obtained form by Bayesian inference which was different from that obtained by the ML method. SmTRa: blood fluke S. mansoni
TR alpha, SmTR: S. mansoni TR beta. The accession number of each sequence used for phylogenetic analysis can be found in
Additional files | and 2.
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Figure 7

Conserved junction sites within TRs. A. Conserved junction site of TRs. JPI: Conserved junction position | which is
within the DBD encoding region. JP2: Conserved junction position 2 which is at the end of the DBD coding region. JP3: Con-
served junction position 3 which is within the LBD motif | coding region and is gene group specific. |P4: Conserved junction
position 4 which is within the motif Il of LBD encoding region. P4 is conserved in all vertebrate NR genes. B. Shows the splice
junction of invertebrate TRs within motif | which is at the same position as that found in all vertebrate TRs (NRIA) [20]. DBD:
DNA binding domain, LBD: ligand binding domain. CiTR: Ciona NR 1|, DpTR: water flea Daphnia pulex TR, hTRo: Human thy-
roid receptor alpha, hTRB: Human thyroid receptor beta, LgTR: owl limpet Lottia gigantean TR, SeTRa: turbellarian Schmidtea
mediterranea TRa, SeTRB: S. mediterranea TR, SjTRa: blood fluke Schistosoma japonium TR alpha, SjTRp: S. japonium TR beta,
SmTRa: blood fluke S. mansoni TR alpha, SmTRp: S. mansoni TR beta, SpTR: sea urchin Strongylocentrotu purpuratus TR. H3:
helix 3, H4: helix 4, H5: helix 5. The accession number of each sequence used for analysis can be found in Additional file I.
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Protein-protein interaction of SmTRs with SmRXRI.
GST pull down shows that both SmTRo. and SmTRf3 can
form a heterodimer with SMRXR in vitro. 35S-labeled
SmRXRI was synthesized in vitro using pCITE-SmRXRI as
template and then incubated with GST-SmTRa(LBD), GST-
SmTRB(LBD) or GST (negative control) protein affixed to
glutathione-Sepharose beads. The beads were collected,
washed and the bound protein was resolved on 10% SDS
acrylamide gel and visualized by autoradiography.

Discussion

An extensive search of whole genomic sequence (WGS)
databases extracted from NCBI and online resources
revealed the presence of TR orthologues in the Platy-
helminths, Mollusca, Crustacea, and Echinodermata.
However, no TR orthologues nor sequences encoding a TR
P-box sequence of CEGCKG followed by the amino acid
sequence FFRR (CEGCKGFFRR), which is unique to NR
subfamily 1 including TR, was found in sponges (Reniera
sp) nor cnidarians (Hydra magnipapillata and Nematostella
vectensis). The results suggested that the TR orthologue
gene originated in a common ancestor of the Bilateria.
The gene duplication of TRs was deduced from a phyloge-
netic analysis employing DBD and LBD sequences. The
analyses demonstrated that the TR orthologue genes
underwent duplication independently in invertebrates
and vertebrates. Furthermore, the TR orthologues in the
Platyhelminths underwent duplication after the split of
the turbellaria and trematodes. In vertebrates, the TR
genes underwent a duplication event in lampreys, a jaw-
less vertebrate, after the lamprey split from a common
ancestor of jawed vertebrates. This result is consistent with
the duplication of Hox gene clusters in lampreys [28].
Although the A/B domain of NR is highly divergent, we
identified a conserved NTSS (N-terminal signature
sequence, (G/P)YIPSY(M/L)XXXGPE(D/E)) located in the
C-terminus of the A/B domain of TRs. Analysis of other
NRs (data not shown) demonstrates this motif is found
only in TRs suggesting it is TR-specific. The NTSS of TRs
was found to be sequence-specific for the chordate and for

http://www.biomedcentral.com/1471-2148/7/150

the non-chordate TRs, three amino acids present in non-
chordate TRs are missing in chordate NTSS. In the DBD, a
methionine at position 16 of the N-terminus was non-
chordate-specific, while two amino acids inserted at posi-
tions 33-34 of the N-terminus were chordate-specific,
These differences which are conserved, support the notion
that TR genes duplicated independently in non-chordate
and chordate species.

That the JP3 conserved in all invertebrate TRs are also con-
served in vertebrate TR genes support the notion that the
vertebrate and invertebrate TR orthologue genes origi-
nated from a common ancestor gene. Further, that the
four JPs are conserved in both invertebrate and vertebrate
TR orthologue genes suggest that the gene organization of
vertebrate TR genes is ancient and has been maintained
through out evolution of TRs.

GST pull-down experiments showed that SmTRs exhibits
similarity to vertebrate TR proteins as they both can form
a heterodimer with RXR (SmRXR1). RXRs have been char-
acterized in other invertebrates such as Mollusca and
Arthropoda [29,30]. The formation of SmTRs with
SmRXR1 indicates that other invertebrate TRs can possibly
form a heterodimer with RXR. The ability of vertebrate NR
to bind to a DNA element on a target gene was described
as the 1-2-3-4-5 rule [31,32]. Vertebrate TRs are known
to bind to half-sites as a monomer, to DRO as a het-
erodimer with RXR [33] and to DR4 as a homodimer or
heterodimer [32,34-43]. The binding of the TR monomer
or homodimer is weak, which is due to a rapid dissocia-
tion of the TR-TRE complex [44]. Our EMSA show that
SmTRa can bind to a half-site as a monomer and bind to
DRO-DR5 as a homodimer. The results suggested that TR
gained the ability to bind to conserved half-site repeats in
a common ancestor, but did not subsequently evolve a
distinct specificity as regards spacing between half sites.
Although the DBD sequence between SmTRa and SmTRf
are highly similar, SmTRp showed weak binding to the
DNA elements compared to that of SmTRa. This suggests
that other domains may have a role in determining the
ability of SmTRp to bind to the DNA element, such as has
been shown for another schistosome nuclear receptor,
SmNR1 [19]. Although both SmTRs could form a het-
erodimer with SmRXR1 as determined in a GST pull-
down assay, SmTRa/SmRXR1 or SmTRB/SmRXR1 did not
bind to the DNA elements tested. This may due to the
flanking or spacing of nucleotides between the HRE, as it
is known that these nucleotides also determine the ability
of the protein to bind to it. Identification of the HRE in a
target gene will help to understand the evolution of TR
DNA binding properties. Mammalian TRs are ligand-
dependent transcription factors, they repress basal tran-
scription through association with a variety of corepres-
sors in the absence of T3. A structural change occurs when
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Figure 9

DNA binding properties of SmTRs in vitro. Electrphoretic mobility shift assay (EMSAs) shows the DNA binding proper-
ties of SmTRs. A single protein or a combination of two proteins (SmTRa/SmRXR1 or SmTRB/SmRXR1) were synthesized in
a TNT quick coupled transcription/translation system (Promega) and allowed to bind to y-32P labeled DNA elements contain-
ing a half-site, DRO-DRS5 and Pal0. A. SmTRo. Lanes 1, 5,9, 13, 17, 21, 25 and 29 contain lysate from the control transcrip-
tion-translation reaction as negative controls. Lanes 2, 6, 10, 14, 18, 22, 26 and 30 contain lysate with in vitro translated SmTRa.
Lanes 3,7, |1, 15, 19, 23, 27 and 31 contain lysate with in vitro translated SmTRa and SmRXRI. Lanes 4, 8, 12, 16, 20, 24, 28
and 32 contain lysate with in vitro translated SmRXRI. NS: non-specific binding. B. SmTRp. Lanes I, 5,9, 13, 17, 21, 25 and 29
contain lysate from the control transcription-translation reaction as negative controls. Lanes 2, 6, 10, 14, 18, 22, 26 and 30 con-
tain lysate with in vitro translated SmTRp. Lanes 3, 7, | I, 15, 19, 23, 27 and 31 contain lysate with in vitro translated SmTRf and
SmRXRI. Lanes 4, 8, 12, 16, 20, 24, 28 and 32 contain lysate with in vitro translated SmRXR .. Ho: homodimer, Mo: monomer,
NS: nonspecific binding.
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DNA binding of SmTRo(GIn182-Ala288) in vitro. Electrphoretic mobility shift assay (EMSAs) shows the DNA binding
properties of SmTRa(GIn182-Ala288). DNA binding of SmTRa.(GIn 182-Ala288) containing 20 aa at the 5' end of the DBD, the
DBD and the 40 aa at 3' end of the DBD. Lanes I, 5,9, 13, 17, 21, 25 and 29: lysate from the control transcription-translation
reaction as negative control. Lanes 2, 6, 10, 14, 18, 22, 26 and 30 contain with lysate with in vitro translated SmTRa (GIn|82-
Ala288). Lanes 3,7, |1, 15, 19, 23, 27 and 31 contain lysate with in vitro translated SmTRa (GIn182-Ala288) with a 100 fold of
cold specific competitor (unlabeled oligonucleiotides same as the labeled one). Lanes 4, 8, 12, 16, 20, 24, 28 and 32 contain
lysate with in vitro translated SmTRa(GIn182-Ala288) with a 100 fold of cold non-specific competitor (5'-CGCGGATCCT-

GCAGCTCCAG-OH).

T3 binds to the TR that results in the release of natural
corepressors and results in the recruitment of coactivators
to activate gene transcription [4]. Determination of
whether invertebrate TR can bind to T3 will help to under-
stand the evolution of the thyroid hormone pathway.

Conclusion

We have identified ortholouges of TR in various inverte-
brate phyla. Sequence analysis demonstrates that there is
a 'N-terminal signature sequence' (NTSS) located in the A/
B domain -(N-terminal region) specific to TRs. Phyloge-
netic analysis of conserved DBD sequences showed that
TR orthologues originated from a common ancestor of the
Bilateria which underwent gene duplication independ-
ently in the Protostomia and Deuterostomia. Using the
schistosome TR orthologues as representative of the inver-
tebrate TR genes, we have demonstrated that they can
form heterodimers with RXR and bind as monomers and

homodimers to consensus vertebrate DNA half sites and
the direct repeat of the half sites DRO to DR5.

Methods

cDNAEs isolation

cDNAs containing the entire open reading frame (ORF) of
two S. mansoni TRs (SmTR«a and SmTRf) were isolated by
a PCR strategy using a S. mansoni paried adult worm cDNA
library (pBluescript SK (+/-) phagemid) pool as template
DNA. The PCR primers for one end (either 5' or 3' end)
were designed according to a fragment encoding the pre-
viously identified DBD region of each gene [9]. The
primer for the other end (either 5' or 3' end) was a vector
universal primer (M13-Rev and T3, or M13-For and T7
primers). PCR products were separated on 1.2% agarose
gels, ligated into pCR2.1 TOPO vector (Invitrogen) and
sequenced. After the correct fragments were identified, the
cDNA sequence containing the 5' UTR, ORF and 3' UTR
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were obtained by PCR. Each ¢cDNA was shown to be
related to a single mRNA species by sequencing the PCR
products obtained from single-stranded c¢cDNA using
primers located within the 5'UTR and 3'UTR of each gene.

Database search

Whole genomic sequences (WGS) were extracted from the
GenBank public ftp site [45] and imported into the Star-
Blast program (DNASTAR) to build a local database [18]
which was searched by tblastn using the sequence of the
DBD of SmTRa. as the query. Any sequence that contained
a zinc finger structure of the DBD (Cys-X2-Cys-X13-Cys-
X2-Cys or Cys-X5-Cys-X9-Cys-X2-Cys) was retained.
Sequence walking was carried out to assemble the contigs.
Website databases of GenBank (nr, EST human,
EST_mouse and EST_other databases) Genbank blast
[46], European Bioinformatics Institute [47] and Swiss-
Prot [48] were also mined by tblasn or blastp using the
same query sequence as above [18].

BAC library screening and BAC DNA sequencing

S. mansoni BAC clones containing SmTRa and SmTRS
were identified by screening S. mansoni SmBAC1 or
CHOR-1 BAC library with methods previously described
[23]. For BAC DNA sequencing, the BAC clone was grown
in 100 ml LB medium (12.5 pg/ml choramphenicol) and
the BAC DNA was purified using Plasmid Midi kit (Qia-
gen) and sequenced on an ABI-377 automatic sequencing
machine.

Phylogenetic tree construction

Phylogenetic trees were constructed from deduced
sequences of the DBD and the sequence of DBD plus LBD,
respectively. Sequences were aligned with ClustalW [49].
Phylogenetic analysis of the data set was carried out using
Maximum Likelihood method under Jones-Taylor-Thorn-
ton (JTT) substitution model [50] with a gamma distribu-
tion of rates between sites (eight categories, parameter
alpha, estimated by the program) using PHYML (v2.4.4))
[51] with support values obtained by bootstrapping a 100
replicates. The same data set was also tested by Bayesian
inference using MrBAYES v3.1.1 with a JTT amino acid
replacement model + gamma rates [52]. The trees were
started randomly; four simultaneous Markov chains were
run for 5 million generations for the DBD data set and 3
million generations for the DBD+LBD data set, respec-
tively. The trees were sampled every 100 generations, the
Bayesian posterior probabilities (PPs) were calculated
using a Markov chain Monte Carlo (MCMC) sampling
approach implemented in MrBAYES v3.1.1, with a burn-
in value setting at 12,500 for DBD data set and 7,500 gen-
erations for the DBD+LBD data set, respectively.
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GST Pull-down

cDNAs encoding part of the hinge region plus the LBD
domain of SmTRa (Val739-Glu1115) and SmTRp
(Pro487-Cys847) were inserted into pGEX-4T-1 vectors to
form pGEX-SmTRa(LBD) and pGEX-SmTRB(LBD). cDNA
encoding SmRXR1 was previously inserted into pCITE-4a
vector to form pCITE-SmRXR1 [19]. E. coli AD 494 (DE3)
pLys S competent cells (Novagen) were transformed with
pGEX-SmTRo(LBD) or pGEX-SmTRB(LBD) and the GST
fusion proteins were purified by passage over a glutath-
ione-Sepharose column according to standard protocols.
pCITE-SmRXR1 was transcribed and translated using the
Single Tube Protein System (Novagen) following the
manufacture's protocol to produce 3°S labeled protein.
For pull-down experiments, a 50 pl reaction that con-
tained 2 ul of the in witro translation reaction,
SmTRo(LBD) or SmTRB(LBD) GST fusion protein, or GST
protein (negative control) affixed to glutathione-Sepha-
rose beads (about 2 pg) and binding buffer (50 mM Tris-
HCI, pH 7.5, 100 mM NacCl, 10% glycerol, 0.15% Noni-
det P40) was used [19]. The reaction was incubated over-
night at 4°C and then washed three times with binding
buffer. The bound proteins were analyzed by 10% SDS-
PAGE and autoradiography.

Electrphoretic mobility shift assay (EMSAs)

cDNA encoding SmTRa, SmTRB and SmTRa(GIn182-
Ala288) (containing 20 aa at the 5' end of the DBD, DBD
and 40 aa at the 3' end of the DBD) was inserted into
pCITE-4a vector to form pCITE-SmTRa, pCITE-SmTRp
and pCITE-SmTRa(GIn182-Ala288). The protein was pro-
duced in vitro using TNT quick coupled transcription/
translation system (Promega). The following complemen-
tary single-stranded oligonucleotides containing consen-
sus half-sites AGGTCA were synthesized:

half-site: 5'-GTACCGTAAGGTCACTCGCGT-3',

DRO: 5'-CCGTAAGGTCAAGGTCACTCG-3',

DR1: 5'-CCGTAAGGTCACAGGTCACTCG-3/,

DR2: 5'-CCGTAAGGTCACAAGGTCACTCG-3',

DR3: 5'-CCGTAAGGTCACAGAGGTCACTCG-3',

DR4: 5'-CCGTAAGGTCACAGGAGGTCACTCG-3',

DR5: 5'-CCGTAAGGTCACCAGGAGGTCACTCG-3'.

Pal0: 5'-CGCAAGGTCATGACCTCG-3' [19]. One strand
of each oligonucleotide was annealed after incubation at
100°C for 3 minutes to its complementary oligonucle-
otide and then labeled with T4 polynucleotide kinase and
y-32P adenosine triphosphate. The binding reactions were
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incubated on ice for 40 minutes in 15 pl reaction mixture
containing 40,000 cpm of probe, 3 pl in vitro translation
reaction, 3 pl 5 x buffer (20% glycerol, 5 mM MgCl,, 2.5
mM EDTA, 2.5 mM DTT, 250 mM NaCl, 50 mM Tris-HCI
(pH 7.5) and 0.25 mg/ml poly(dI-dC)poly (dI-dC)). The
reaction was separated on 6% (v/v) native polyacrylamide
gel containing 2.5% glycerol in 1 x TBE bufferat4°C[19].
Gels were dried, exposed to x-ray film and autoradio-
graphed.
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