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Abstract
Background: RNA molecules, through their dual appearance as sequence and structure,
represent a suitable model to study evolutionary properties of quasispecies. The essential
ingredient in this model is the differentiation between genotype (molecular sequences which are
affected by mutation) and phenotype (molecular structure, affected by selection). This framework
allows a quantitative analysis of organizational properties of quasispecies as they adapt to different
environments, such as their robustness, the effect of the degeneration of the sequence space, or
the adaptation under different mutation rates and the error threshold associated.

Results: We describe and analyze the structural properties of molecular quasispecies adapting to
different environments both during the transient time before adaptation takes place and in the
asymptotic state, once optimization has occurred. We observe a minimum in the adaptation time
at values of the mutation rate relatively far from the phenotypic error threshold. Through the
definition of a consensus structure, it is shown that the quasispecies retains relevant structural
information in a distributed fashion even above the error threshold. This structural robustness
depends on the precise shape of the secondary structure used as target of selection. Experimental
results available for natural RNA populations are in qualitative agreement with our observations.

Conclusion: Adaptation time of molecular quasispecies to a given environment is optimized at
values of the mutation rate well below the phenotypic error threshold. The optimal value results
from a trade-off between diversity generation and fixation of advantageous mutants. The critical
value of the mutation rate is a function not only of the sequence length, but also of the specific
properties of the environment, in this case the selection pressure and the shape of the secondary
structure used as target phenotype. Certain functional motifs of RNA secondary structure that
withstand high mutation rates (as the ubiquitous hairpin motif) might appear early in evolution and
be actually frozen evolutionary accidents.

Background
Molecular quasispecies are minimal evolutionary units
able to evolve coherently and to adapt to environmental
changes sufficiently fast to ensure survival. First intro-
duced by Eigen [1], they represent a simple model of rep-

licating molecular populations subject to high mutation
rates and selective pressure. In the context of the origin of
life, these populations may be an example of darwinian
evolution prior to the appearance of organized cellular life
[2]. The dynamics and fate of such populations in a given
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environment depend on several parameters, as the length
of the molecules, the population size, or the mutation rate
at replication. Too long molecules, too small populations,
or too high mutation rates constitute main obstacles pre-
venting the appearance and fixation of biological func-
tion.

Knowledge of the organizational properties of molecular
quasispecies is essential to understand how novelty arises
and is selected in populations of replicators. A minimal
model to perform computational studies of molecular
evolution consists of ensembles of replicating RNA
sequences that fold into a secondary structure [3-5], which
then becomes the target of selection. This simple separa-
tion of genotype and phenotype is crucial to take into
account the degeneration between description levels
(from sequence to structure and eventually function) [6,7]
and to observe several different collective properties with
relevant roles in evolution and adaptation, among them
robustness against mutations [8] and structural diversity
[9].

RNA secondary structure has been often used as a model
of molecular phenotype. Its use has permitted to advance
in the understanding of phenomena such as the discrete
nature of evolutionary transitions [10], the influence of
sequence degeneration in the adaptive properties of qua-
sispecies [11], or the relation between genotypic and phe-
notypic error thresholds [12], to cite a few. Eventually,
these advances aid in the interpretation of experimental
observations with more complex populations, such as
RNA viruses [13].

It is common knowledge that the high mutation rates
under which RNA viral replication occurs maintain a large
degree of diversity in their populations [14]. Due to their
characteristics, they were proposed as the first natural case
of quasispecies. Since then, an effort has been made to
relate concepts arising from the theoretical definition of
molecular quasispecies to empirical measures performed
on actual natural populations. As a result, it has been pro-
posed that RNA viruses evolve close to the error threshold
[15] and that drift in the consensus sequence is not neces-
sarily accompanied by changes in viability, due to degen-
eration [16]. The advantage of evolving robustness, a
central property of quasispecies, has been recently dem-
onstrated with subviral pathogens [17].

In this contribution, we analyze the structural and collec-
tive properties of an ensemble of RNA sequences sub-
jected to replication at various mutation rates and
subsequent selection depending on a target structure. Our
aim is to understand how adaptation takes place in those
populations, and the typical times required to find and fix
a given secondary structure in the molecular ensemble.

We observe that the population undergoes a kind of col-
lective search and that some properties are delocalized
(i.e. they are not found on any single molecule, but it is
the average over the population that maintains them). We
introduce the concept of consensus structure and demon-
strate that, even at values of the mutation rate that forbid
the fixation of a goal function in a significant fraction of
molecules, the population as a whole reflects the selective
pressure to which it is subjected. Finally, we suggest that
quasispecies do not evolve too close to the error thresh-
old, but have selected intermediate values of the mutation
rate in order to optimize their response time to environ-
mental changes. Thus, it is not the plain generation of
diversity what is maximized through evolution, but the
response time to external changes, which, in our case, is a
combination of the time needed to find a given secondary
structure (shorter at high mutation rates) and the time
required to fix it in the population (shorter at low muta-
tion rates).

Results and Discussion
Evolutionary algorithm
Selection and mutation
Our system model consists of a population of N replicat-
ing RNA sequences, each of length n nucleotides (nt).
Population sizes and sequence length are kept constant
during simulations. At the beginning of the simulation,
every molecule of the population is initialized with a ran-
dom sequence. As a molecule replicates, each nucleotide
has a probability µ to be randomly replaced by another
(or the same) type of nucleotide.

At each generation, the sequences are folded into second-
ary structures with help of the Vienna RNA package (see
Methods). We define a target secondary structure which
represents in a simple way optimal performance in the
given environment. The secondary structure of molecules
in the population is compared to the target structure, and
the closer a secondary structure is to the target structure,
the higher the probability p(di) that the corresponding
sequence i replicates. This probability is given by

p(di) = Z-1exp(-βdi/d) (1)

where di is the distance between the structure correspond-

ing to sequence i and the target structure, d is the average

distance of the population to the target structure, d = ∑idi/

N, and . The parameter β denotes

the selection pressure and takes the value β = 1 for all
numerical results shown in this study. Generations in our
simulation are non-overlapping and the offspring genera-
tion is calculated according to Wright-Fisher sampling at
each time step, with fitness given by Eq. (1).

Z d dii
N= −( )=∑ exp /β

1
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Starting with a population constituted by randomly cho-
sen sequences, the population evolves through a transient
regime until it reaches a statistically stationary state char-
acterizing the asymptotic regime. Obviously, these proc-
esses depend on the parameters of the system, in
particular on the mutation rate µ, as will be discussed in
detail below.

Definitions
Secondary structures are denoted in standard bracket
notation, where unpaired nucleotides are given by ".",
and paired ones by "(" (upstream) and ")" (downstream).
Matching brackets stand for paired bases. The target struc-
tures considered in this study correspond to biologically
relevant RNA structures of 35 to 76 nt in length, and are
listed in Table 1.

The base pair distance between two secondary structures is
given by the number of base pairs that have to be opened
and closed to transform one structure into the other (as
implemented in the RNAfold algorithm [18]). The Ham-
ming distance between two secondary structures of the
same length is given by the number of positions in which
the two structures, aligned in standard bracket notation,
differ.

Two relevant macroscopic quantities to characterize the
state of the population are the average distance d to the

target structure and the fraction ρ of structures in the pop-
ulation folding into the target structure. Due to the sto-
chastic nature of evolution, both quantities fluctuate in
time even after reaching an asymptotic regime. Therefore,
within this regime, we perform averages over long time
intervals (and different realizations, starting from distinct
initial RNA populations). The obtained mean values are

denoted by  and , respectively.

In order to quantify collective properties of the molecular
ensemble, we calculate the consensus sequence of the popu-
lation. The (virtual) consensus sequence is calculated by
determining, for each position along the sequence, the
most frequent type of nucleotide found within the popu-
lation, i.e. "C", "A", "G" or "U". In real RNA molecular

and viral quasispecies, the consensus sequence is obtained
by means of population sequencing, and it does not nec-
essarily correspond to any of the individual sequences
present in the population.

It is straightforward to fold this sequence and obtain the
structure of the consensus sequence, for which also its coinci-
dence with the target structure can be determined. At each
time step we count either one, corresponding to coinci-
dence, or zero, otherwise. Averages over time (and realiza-
tions) of this binary variable yield C, which corresponds

to the probability that, at a randomly chosen time step,
the structure of the consensus sequence coincides with the
target structure.

In analogy to the consensus sequence, we further define a
consensus structure. The (virtual) consensus structure is cal-
culated by determining, for each position along the chain,
the most frequent structural state found within the popu-
lation, i.e. unpaired ".", paired upstream "(" or paired
downstream ")". Due to this definition, the consensus
structure again does not necessarily represent a valid sec-
ondary structure of an RNA molecule. Averages over time
(and realizations) of the coincidence between the consen-
sus structure and the target structure yield the probability

S. Finally, it is also possible to identify the structure of

the most abundant sequence in the population, to which
a density M is assigned. Figure 1 depicts a sample of

sequences and structures obtained from a real computa-
tional run of the model, and the different densities
defined.

The size of the population ranges from N = 150 to N =
60000 molecules, though most results have been
obtained for N = 602 (one zeptomol). Standard devia-
tions have been computed for all averaged quantities,
although they are explicitly shown in the figures only
when of particular interest.

The quantities introduced so far correspond to observa-
bles of the population at the statistically stationary state.
Starting from a random initial condition, there is a tran-
sient time required to attain asymptotic values of those
quantities. In order to ensure that the transient behavior is
not included in averaged quantities, we check for (a) the
generation at which the first molecule folding correctly
into the target structure appears, gA, and (b) the genera-
tion at which the target structure becomes fixed in the
population, gF.

d ρ

ρ

ρ

ρ

Table 1: Target Structures. Target structures used in the 
simulations.

Name n Structure in bracket notation

hairpin 35 ..(((((((....(((...)))......)))))))
hammerhead 35 (((..((((....))))...((((...)))).)))
3-stem-loop 46 (((.((((....)))).((((....)))).((((....)))).)))
model tRNA 76 (((((((..((((........)))).(((((.......))))).....(((((.......)))))))))))

)....
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Numerical results
Statistically stationary state

After the initial transient time has elapsed, the density ρ
only fluctuates in time around a constant value with a
strength that decreases as the inverse of the square root of
the population size N. Once this asymptotic regime is
reached, averages over time and realizations are per-

formed to yield the mean value  corresponding to a

given mutation rate µ.

Same averages are performed over the other densities
defined. Figure 2(a) shows average values , S, C,

and M as a function of µ. Since, for most cases, the tran-

sient is not longer than a few hundred generations, the

ρ

ρ ρ ρ

ρ

Heterogeneity of sequences and structures, and quantities relatedFigure 1
Heterogeneity of sequences and structures, and quantities related. Examples of RNA sequences (written in 5'-3' ori-
entation) and their corresponding structures in bracket notation at the statistically stationary state of a numerical simulation 
with N = 602, n = 35, µ = 0.0325. The probability that a sequence folds into the target structure (a hammerhead structure, rep-
resented in the upper right corner) is  = 0.25. Other densities are C = 0.85, S = 0.99, and M = 0.01. At the time step 

chosen, the structure of the consensus sequence and the consensus structure differ in one position, and the latter does not 
correspond to any real secondary RNA structure (a very rare event in the asymptotic regime, but shown here for illustration). 
The Hamming distance between the sequences shown and the consensus sequence varies from 8 to 15, and does not show any 
significant difference whether the sequence folds into the target structure or whether the corresponding structure is rare (last 
group). Despite a well defined global state where the population, as a whole, clearly contains all the information on the target 
structure, both the density of sequences folding into it and especially the density of the most abundant sequence present low 
values.

ρ ρ ρ ρ
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first 2000 generations are skipped and the average is per-
formed over 4000 generations and 25 realizations.

For values of the mutation rate below the phenotypic
error threshold, the density  always yields finite values.

The asymptotic value of the phenotypic error threshold is

only obtained in the limit of population size N → ∞. At
finite population size, the error threshold is shifted
towards lower replication error rates [19]. In this work, by

phenotypic error threshold we mean the value of µ at

which  � 0. A precise estimation of the error threshold

is not necessary for the qualitative effects here described.

As µ increases,  decreases monotonously. If the muta-

tion rate is too large, the phenotypic error threshold µc is

crossed and the population cannot evolve successfully

towards the target structure. Above µc the target structure

is only present due to stochastic effects, and  << 1 (for

an estimation of a lower bound to the probability that the
target structure appears in a population of random
sequences, see [20]). However,  vanishes strictly at (and

hence above) the error threshold, i.e. ,

only in the limit n → ∞, N → ∞. While  decreases

smoothly over a large range of µ, the situation is different
for the density of the consensus structure S, which is

essentially one below µc and jumps to zero above the

threshold value. The apparently smooth transition result-
ing from the numerical simulations is a finite size effect.
Actually, we expect that the transition experienced by S

is discontinuous and analogous to the disintegration of
information described for quasispecies at the genotypic
error threshold [21,22]. It is interesting that, close to the
threshold, information on the phenotype is a collective
property: it is clearly recovered when averages over the
population are performed, but phenotype is delocalized,
in the sense that only a few sequences truly fold into the
correct target structure.

The density of the structure of the consensus sequence C

behaves differently from  and S. Although it

decreases smoothly as µ increases, it keeps relatively high

values even for µ > µc.

The frequency M of the most abundant sequence dis-

plays relatively low values for all mutation rates, except in

the limit µ → 0 where the population becomes homoge-
neous. In the present case, and since mutation and selec-
tion operate on different levels, it is not surprising to find
that many different sequences fold into the same struc-
ture. This multiplicity is a consequence of the degenera-
tion of the sequence-structure map. Numerical results not
displayed here show that M decreases as the population

size N increases, since a larger population is able to
explore a proportionally larger fraction of the sequence

space. A conclusion of this observation is that, for most µ
values, the most abundant sequence does not give any rel-
evant information on the structure and composition of
the population. Therefore, from a functional point of
view, we cannot think of quasispecies as ensembles organ-
ized around a typical sequence. The consensus sequence
can be better described as a center of gravity of the popu-
lation [22].

Figure 2(b) displays a short time interval illustrating the

typical behavior of the three densities, ρ, ρS, and ρC in the

asymptotic regime for the particular case µ = 0.03. The val-

ues of ρ fluctuate slightly around its average value  =

ρ

ρ

ρ

ρ

ρ

limµ µ ρ→ →
c

0

ρ

ρ

ρ

ρ
ρ ρ

ρ

ρ

ρ

Average values of population densities as function of µ and typical dynamical behaviorFigure 2
Average values of population densities as function of 
µ and typical dynamical behavior. (a) Values of the aver-
age density  (black curve) of sequences folding into the 

target structure (hairpin), of the probability C (red line) 

that the consensus sequence folds into the target structure, 
of the probability S (green line) that the consensus struc-

ture coincides with the target structure, and of the fraction 

M (blue line) of the most abundant sequence in the popula-

tion. Population size is N = 602; averages over 4000 genera-
tions and 25 realizations have been performed. (b) Temporal 
dynamics (interval of 50 generations starting at generation 
2080 after initialization of a single run) of ρ (black diamonds), 
ρC (red crosses), and ρS (green circles) for µ = 0.030. Average 
values are  = 0.323, C = 0.749, S = 1.0. For better vis-

ualization of the values of ρC and ρS, the values corresponding 
to 1 are drawn on the line 0.9 and the values corresponding 
to 0 are drawn on the line 0.1.
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0.323. Nevertheless, although only a relatively small frac-
tion of sequences fold into the target structure, the con-
sensus structure matches practically always the target
structure: S = 1.0. The structure of the consensus

sequence is equal to the target structure in most genera-
tions, but not in all of them, in agreement with its average
value C = 0.749. The coincidences between the structure

of the consensus sequence or the consensus structure with
the target structure is intermittent in time due to fluctua-
tions in the composition of the ensemble of sequences.
Examination of long time series show that if at a given
generation only relatively few sequences fold into the tar-
get structure, at the same time the probability increases
that the structure of the consensus sequence does not
coincide with the target structure.

Average curves showing the dependence of the densities
on N are represented in Figure 3. In Fig. 3(a) we display

, S, and C as a function of µ for three different val-

ues of N. We observe the weak dependence of  on the

population size and a fast convergence to its asymptotic

value, the convergence of S to a step function at µ = µc,

and the large variation of C as N changes. The strong

dependence of C on N limits the practical use of C as

a quantity to describe the evolutionary state of the popu-
lation. The trend of each quantity is illustrated in Fig. 3(b)
for a particular value of the mutation rate.

Our study of the dependence of the densities in the
asymptoticy state with the model parameters is completed
by analyzing the role played by different target secondary
structures. This involves not only the dependence on the
sequence length n, but also on the particular shape used
as target. To this end, we use two populations evolving
towards a hairpin-like structure and towards a hammer-
head structure, both of length n = 35, as well as two pop-
ulations evolving towards a 3-stem loop (n = 46) and a
model tRNA (n = 76), respectively (see Table 1). The dif-
ferent densities computed can be compared if the product

µn is used as independent variable, instead of the bare
mutation rate (Figure 4). In fact, we observe that the dif-
ferent curves for  almost coincide, though differences

are genuine and not due to statistical errors.

Further, the four curves for S do not show monotonic

variations as a function of n. At this point, one can argue
that there is a significant role played by the precise struc-

ρ
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ρ ρ ρ
ρ
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ρ ρ
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ρ

Relevant densities for different target structuresFigure 4
Relevant densities for different target structures. 
Dependence of  (black lines) and S (green lines) on the 

mutation rate µ and the length n of the target structure. The 
curves correspond to the hairpin structure (solid line), ham-
merhead structure (dotted line), 3-stem-loop structure 
(dashed line), model tRNA structure (dotted-dashed line), 
whose structures are specified in Table 1. The curves for  

almost coincide when the dependent variable is scaled as µn. 
Population size is N = 602; averages over 4000 generations 
and 25 realizations have been performed.
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Densities as a function of the mutation rate µ and the popu-lation size NFigure 3
Densities as a function of the mutation rate µ and the 
population size N. (a) Curves for  (black lines), C (red 

lines), and S (green lines) as a function of the mutation rate 

for different values of the population size N. Dotted lines 
denote N = 150, solid lines N = 602, and dashed lines N = 
2408. The density of correctly folded sequences  and the 

probability S that the consensus structure coincides with 

the target structure converge to limit curves as N increases. 
The probability C depends strongly on N. (b) Dependence 

of , C, and S with N, quantitatively illustrating the 

behaviors described in (a), for the specific mutation rate µ = 
0.04. Averages have been performed over 4000 generations 
and 25 realizations.
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ture used as target. This point will be made clearer when
we analyze the time that a population needs for fixation
of the target structure.

Search and fixation times
The statistically stationary state can be equated with an
optimized state where the population is maximally func-
tional, considering the restrictions imposed by the system
parameters. From an evolutionary point of view, it is
extremely important to quantify the time required to
achieve the stationary state under different conditions.
Adaptation to new environments is fully dependent on
the ability of the population to respond in a time span
comparable to that of the external fluctuations, and evo-
lution apparently selects mutation rates that permit this
long-term adaptation [23-25].

This is our motivation to carry out a detailed analysis of
the transient time needed to obtain a continuous presence
of the target structure in the population, starting from a
random initial pool of sequences. As we have seen, the
population is capable of finding solutions to the problem
of maintaining a given secondary structure only for values
of the mutation rate below threshold. Nevertheless, this
might not be enough to guarantee survival of the popula-
tion if there is not a persistent presence of a finite fraction
of molecules folding into the target structure after a rea-
sonably short number of generations.

Evolutionary success thus corresponds to appearance and
fixation of the target structure in the population. We deter-
mine the time to success as the generation gF after which
at least one molecule of the population folds into the tar-
get structure uninterruptedly for 500 generations. Even for
low mutation rates, the dispersion of those values is large,
and therefore we perform 200 independent runs to calcu-
late gF.

In Fig. 5(a), we show the curves corresponding to the
number of the generations gF to success as defined above
and to the generation gA where a sequence folding into the
target structure shows up for the first time. In principle, it
appears equally difficult to maintain the target structure in
the population at too low values of µ or at values close to
the error threshold µc. However, there are two rivaling
processes, diversity generation and competition between
mutants, which dominate the behavior of gF at each
extreme (and are responsible for the asymmetric behavior
of gA at low and high values of µ). For low values of µ,
mutants appear rarely. In this situation, any mutation
decreasing the distance to the target is certainly fixed in
the population, since the copies of the advantageous
mutant retain the advantage of its progenitor. For µ → µc,
on the contrary, new mutants appear continuously. How-
ever, the advantages they might occasionally acquire are

often wiped out, since their sequences are not maintained
for long in the progeny. This slows down the spread of
adaptive changes, which are then fixed with difficulty, to
the whole population.

Figures 5(b) and 5(c) illustrate how fixation proceeds for
low and high µ. For the scope of these figures, we have
rescaled time and set as generation number 1 that at
which the target structure appears for the first time in the
population (gA). Then, for each generation number, we
have averaged the density ρ over 25 realizations. We will

Search and fixation time (in number of generations) as a func-tion of µFigure 5
Search and fixation time (in number of generations) 
as a function of µ. (a) Curves corresponding to average val-
ues of the search time gA when the target structure shows up 
for the first time in the population (dotted curve) and the 
total time gF of search plus fixation (solid curve). Most of the 
transient corresponds to searching time except for values of 
µ close to the threshold, where the limiting step is fixation. 
(b) Fixation time for µ = 0.002. After appearance (gA), it takes 
few generations to attain stationary values (  = 0.965 ± 

0.008). (c) Fixation time for µ = 0.05 (  = 0.039 ± 0.020, 

shown as dashed and dotted horizontal lines). The probabil-
ity to lose the target structure after its first appearance is 
high, fixation becomes difficult and, even if the asymptotic 
regime is reached on average, population fluctuations can 
lead to the occasional disappearance of the target structure. 
This is quantified by the very large fluctuations displayed by ρ, 
here shown as error bars. Simulations have been made for 
the hairpin structure, N = 602, and averages of 200 (a) and 
25 (b, c) realizations have been performed.
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discuss when fixation occurs and when the asymptotic
regime is reached.

As can be seen in Fig. 5(b), the limiting factor at low µ is
the searching time, as already discussed. Once the target
structure is found, the number of correct sequences grows
first exponentially, then saturates, and the stationary value
of ρ is attained in a few generations. Specifically, for µ =
0.002 the correct structure appears first after 195 genera-
tions, is fixed 6 generations later, and the asymptotic
regime is reached approximately after another 6 genera-
tions, i.e. after 207 generations (these are average values).

This is in contrast to the dynamics represented in Fig. 5(c),
for µ = 0.05. Since mutants appear at a high rate, the first
appearance of the target structure takes only about 41 gen-
erations on the average. Actually, independent numerical
studies corroborate that searching time attains minimum
values at the error threshold [26]. However, fixation of the
particular sequence with the proper structure becomes a
hard task too close to the threshold. Disappearance of that
and related sequences folding into the target structures is
likely, due to the high mutation rate, and about 200 gen-
erations (207 for the sample studied) elapse on average
before the structure is actually established in the popula-
tion. The asymptotic regime is reached approximately 200
generations after the first appearance of the target struc-
ture, i.e. after 241 generations for this sample. Nonethe-
less, there is always a finite probability that the target
structure is lost due to population fluctuations.

The two processes (search and fixation) are simultane-
ously optimized in a broad range of mutation rates where
the values for gF are relatively low and do not vary strongly
with µ. According to our results, those values are relatively
distant from the error threshold, in the range of 30% to
50% of µc in the studied examples.

We also have studied the behavior of gF with respect to the
secondary structure chosen as target. As we show in Fig. 6,
gF diverges for µ → 0, µ → µc, and presents a minimum at
intermediate values of µ for all investigated target struc-
tures. We have already seen above that µc depends on n
and on the specific structure studied.

Simulations not displayed here show that the qualitative
behavior of gF does not depend on the system size N.
However, some interesting quantitative differences
deserve discussion. First, the time of first appearance gA
shortens as N increases due to the higher diversity gener-
ated: a larger population undergoes more extensive
searches in sequence space. On the other hand, fixation
time remains essentially unchanged, since for most values
of µ advantageous mutations spread exponentially fast. As
a result, gF also decreases as N increases. This is in agree-

ment with recent analytical results on the expected fixa-
tion time in asexual populations where clonal interference
dominates adaptation. For large populations, and assum-
ing that all mutations have the same effect on fitness, it
can be shown that adaptation speed depends logarithmi-
cally on the population size [27].

A side effect of considering large populations evolving
towards short molecules, as the ones here used, is that
there is a non negligible probability that, solely by chance,
one of the sequences folds into the target structure, an
effect enhanced through the action of selection. This
implies that the curve of gF broadens with N, as observed.
However, for values of µ above µc this is a spurious effect
that is not accompanied by true fixation.

Structural robustness
We have described the process of loss of phenotypic infor-
mation when the mutation rate approaches its critical
value. Close to the error threshold, the fraction of
sequences correctly folding into the target secondary
structure is low, while the density of the consensus struc-
ture is essentially one. Remarkably, this remains true even
if all correctly folded sequences are not included in the
analysis. Results on the structural robustness of the evolu-

Search and fixation time as a function of µ for different target structuresFigure 6
Search and fixation time as a function of µ for differ-
ent target structures. The number of generations 
required to find and fix the target structure depends not only 
on the length of the sequence, but also on its specific second-
ary structure. It takes longer to fix a hammerhead structure 
than a hairpin structure of the same length. The interval of µ 
values where the structure can be effectively fixed shrinks as 
n increases. Simulations have been made for the hairpin 
structure (solid line), hammerhead structure (dotted line), 3-
stem-loop structure (dashed line), model tRNA structure 
(dotted-dashed line), N = 602, and averages of 200 realiza-
tions have been performed.
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tionary process are summarized in Figures 7 (hairpin) and
8 (hammerhead).

We analyze the structure of the population after the
asymptotic regime has been reached. To this aim, we rep-
resent, for each position along the sequences in the popu-
lation, the total number of secondary structure states, i.e.
unpaired, paired upstream and paired downstream. The
diagrams are obtained for four different values of µ
(below and above µc) and based on 25 realizations each.
We only consider those sequences that do not fold into
the target structure, in order to emphasize the presence of
a distributed, collective but delocalized state of the popu-
lation that retains information on the selective pressure to
which it is subjected.

For example, for the hairpin structure and µ = 0.04 (Fig.
7(a)), we find at the 5' position 12532 unpaired, 627
upstream paired and 0 downstream paired structural
states. This representation is analogous to that obtained

from sequencing analyses, since the consensus structure
corresponds to the most frequent state at each position.
Through averaging, we can recover a virtual hairpin struc-
ture even from the sequences that do not fold into hairpin
structures (as it occurs, e.g. in Fig. 7(a)).

Despite the fact that above the error threshold the target
structure is practically not present within the population,
parts of the structure are recognized in population aver-
ages. It is remarkable that the structure does not disappear
at once: certain structural elements are weaker and disap-
pear at lower mutation rates, but others are maintained.
Our detailed studies with the hairpin and the hammer-
head structures show that long stacks are amongst the
most stable elements, while short stacks linking loops dis-
appear more easily (see Figs. 7(d) and 8(c)).

Selective pressure

All numerical results presented in this study have been

obtained for β = 1. However, we also have performed sim-

ulations for different values of the selective pressure β. The

larger β, the easier it is to fix the target structure in the pop-
ulation, and the larger are the asymptotic values of  for

the same mutation rate. Nevertheless, the results do not

qualitatively depend on the specific value of β as long as
it takes values around unity. The process changes qualita-

tively in either of the limits β → 0 and β → ∞. In the first
case, selection does not discriminate between structures
closer or further from the target structure, and the dynam-
ics become a random branching process for the original

ρ

Structural stability: disintegration of collective information depends on the secondary structure, example hammerheadFigure 8
Structural stability: disintegration of collective infor-
mation depends on the secondary structure, exam-
ple hammerhead. The same as for Fig. 7, but for the 
hammerhead structure and mutation rates µ = 0.04 (a), µ = 
0.05 (b), µ = 0.06 (c), and µ = 0.07 (d). Correctly folding 
sequences have been discounted: 1987 (a), 484 (b) and 0 (c, 
d).
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Structural stability: disintegration of collective information depends on the secondary structure, example hairpinFigure 7
Structural stability: disintegration of collective infor-
mation depends on the secondary structure, exam-
ple hairpin. We represent, for each position along the 
sequences in the population, the total number of secondary 
structures presenting each structural state. In this case, we 
have only considered those sequences that do not fold into 
the hairpin structure. Subplots correspond to increasing val-
ues of the mutation rate µ = 0.04 (a), µ = 0.05 (b), µ = 0.06 
(c), and µ = 0.07 (d). This representation permits to identify 
robust motifs in the secondary structure, that is, structural 
parts that are maintained at high values of µ. Curves have 
been calculated from the asymptotic state (after 6000 gener-
ations) of 25 simulations for a population with N = 602. From 
the obtained 15050 structures, those folding into the target 
structure have been discounted: 1891 (a), 590 (b), 70 (c), 0 
(d). Black dots denote unpaired positions ".", red triangles 
directed to the right correspond to upstream pairs "(", and 
green triangles directed to the left are downstream paired ")" 
nucleotides. The consensus structure is obtained by taking 
the most frequent state at each position.
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set of sequences. Since no advantage is given to any partic-
ular sequence, it is not possible to fix sequences close to

the target and the phenotypic error threshold µc → 0. In

the second case, an infinitely large value of the selection
pressure amounts to assigning a probability of replication
1 to the sequence closest to the target and zero to any
other sequence. Fixation proceeds fast, but searching relies
strongly on random events, and thus becomes a lengthy
task. Some analytical results have been derived in this
limit [28].

If we use the Hamming distance instead of the base-pair
distance, search and fixation times become significantly
larger. This reflects the fact that the base-pair distance
penalizes more strongly structures far from the target than
does the Hamming distance. According to the latter, two
structures can be apparently close but still at a large evolu-
tionary distance, a fact that is better captured by the base-
pair distance. The effect of a worse distance measure can

be partly compensated by increasing β, as Eq. (1) reveals:
the two parameters have indeed an interchangeable effect
on selection. From a phenomenological point of view,

either d or β take implicitly into account the selective pres-
sure of the environment, where different mechanisms can
be at work to discriminate between optimally and sub-
optimally performing structures. Finally, let us emphasize
that a given functional form of the selective pressure act-
ing on any evolutionary system of this kind has a curve

(µ) associated. As long as different environments mean

different forms and strengths for the selective pressure,

they will define different values for µc. That is to say, the

value of the error threshold is a function not only of the
sequence length, but also of the precise environment [29].

Comparison with experimental observations in molecular 
quasispecies
Sequence heterogeneity
The theoretical framework considered here can be com-
pared with the experimental knowledge derived from the
study of molecular or viral quasispecies. Natural RNA
populations harbor large degrees of diversity regarding
sequence composition, as it was already documented in
the first systematic genetic analyses performed on viral
quasispecies. They showed that, in multiply passaged
populations of Qβ phage, each viable virus differs in one
or two positions (out of less than 4500 nucleotides in the
whole genome) from the consensus sequence [14]. The
large heterogeneity of real quasispecies at the genetic level
was confirmed by further studies, which established that
RNA viruses are ensembles of mutants resulting form

error-prone replication processes with average mutation
rates in the range of 10-3 to 10-5 base substitutions per
nucleotide copied [30]. Nevertheless, such a high muta-
tion rate does not necessarily place the quasispecies at the
very edge of the error threshold, as often assumed. Exper-
iments using chemical mutagens have demonstrated that
RNA viruses can increase their mutation rates up to 2.8-
fold in riboviruses [15] and up to 13-fold in retroviruses
[31,32] without compromising their viability. Increases in
the mutation rate of quasispecies as a natural strategy to
optimize the exploration of the sequence space have been
also documented through the description of hypermu-
tated (though still viable) viral genomes in in vivo infec-
tions (reviewed in [33]).

Regarding molecular populations derived from directed
RNA evolution in vitro, most of the experiments so far per-
formed have focused on the evolutionary outcome (the
selected ribozyme or aptamer) rather than on the process
itself (reviewed in [34] and [35]). However, some of the
experimental approaches have included the analysis of
clonal sequences derived from different transfers of con-
tinuous evolution or rounds of stepwise evolution. In
those cases, it was possible to track the evolution of RNA
genotypes (by means of the comparative analysis of each
isolated sequence) and/or phenotypes (by analyzing their
corresponding secondary structure or catalytic/binding
activity) over time. Following this combined approach,
the first mutation-accumulation experiment with in vitro
evolving populations of RNA molecules was recently per-
formed [36]. In parallel, comparative analysis of real
ribozymes subject to extensive mutagenesis have shown
that the mutation error rate actually selected during RNA
evolution is well below threshold, since structural and
functional considerations put it up to eight times larger
[37] than the error expected from classical quasispecies
theory, where separation between genotypic and pheno-
typic levels is not taken into account [38].

Moreover, when genotype and phenotype are decoupled
in models of evolution, it turns out that the most abun-
dant sequence does not necessarily coincide with the mas-
ter sequence, i.e. the fittest sequence, as defined in
quasispecies theory. This agrees with experimental obser-
vations demonstrating that even if a population accumu-
lates mutations steadily through bottleneck events, its
fitness can achieve high values comparable to those of an
optimized initial population [16,39]. That is to say, there
are many different genotypes which yield comparable lev-
els of biological performance.

Secondary structures
In parallel to the genotypic information derived from
experimental work on quasispecies, a large effort has also
been devoted to their structural analysis. Besides RNA sec-
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ondary structure prediction using folding algorithms
[18,40] or comparative sequence analyses [41], several
experimental techniques have been developed to test in
vitro the actual secondary structure of RNA molecules
from homogeneous (such as cellular ribosomal RNA) or
heterogeneous (including fragments of genomic viral
RNA) populations. Two of the most widespread experi-
mental techniques for secondary structure determination
in viral RNA involve either the use of RNases with differ-
ent specificity or the chemical modification of RNA fol-
lowed by primer extension. As an example, both
approaches have been successfully applied to the analysis
of the very structurally compact internal ribosome entry
sites (IRES) elements in viral RNA, and they have allowed
the characterization of functionally relevant tertiary inter-
actions [42,43]. Recently, an alternative method of RNA
structure analysis has been developed, based on the
hybridization of RNA in native conditions to microarrays
of complementary DNA oligonucleotides [44,45]. Addi-
tionally, the three-dimensional solution structure of dif-
ferent biologically active RNAs can be experimentally
determined by means of different approaches, including
X-Ray diffraction techniques [46] and Nuclear Magnetic
Resonance-based methods [47].

In the case of heterogeneous RNA populations such as
molecular or viral quasispecies, the consensus sequence
can be easily obtained by means of population sequenc-
ing, and the corresponding secondary structure of the
region under study can be predicted [48,49]. The experi-
mental determination of the structure corresponding to
the consensus sequence using the above mentioned meth-
odologies would require the (chemical or enzymatic) syn-
thesis of a real homogeneous population of RNA
molecules harboring a sequence identical to the consen-
sus of the population. Therefore, in general, folding algo-
rithms are used for the prediction of the structure
corresponding to the consensus sequence, whereas exper-
imental structural techniques can be applied to the deter-
mination of the structure corresponding to the most
abundant sequence in the population. In both cases, func-
tional and evolutionary consequences can be derived
from that structural information. In our simulations, we
have observed that the consensus sequence folds into the
target structure most of the times. However, this does not
imply that individual molecules in the population do it
with the same probability. On the contrary, high values of

C can be obtained for relatively high mutation rates,

where very few sequences in the population are func-
tional.

If one is interested in the functionality of a particular RNA
sequence within the mutant spectrum of the quasispecies,
it can be picked-up from the population following a pro-
tocol based on molecular cloning and sequencing, that
allows the sequence analysis of both majority and minor-
ity genomes of the quasispecies, as recently exemplified
with human immunodeficiency virus [50]. The secondary
structure corresponding to each of the sequences can be
determined as described above, with an experimental lim-
itation imposed by the number of molecular clones that
can be obtained and analyzed. This limitation could be
circumvented in the future by means of DNA microarray
technology optimized to allow the quick characterization
of sequences (and, eventually, structures) of minority
genomes within the quasispecies. Therefore, depending
on the completeness of the analysis performed, these
approaches could lead to the experimental determination
of the consensus structure of natural populations.

Conclusion
The mutation rate characteristic of a natural quasispecies
has been selected through evolutionary optimization. The
observed value probably minimizes adaptation time,
which has to combine two opposing trends: one tries to
increase the mutation rate in order to generate diversity
and the other pushes to decrease the mutation rate to fix
readily and maintain fitter variants in the population. The
exploration of the sequence space in search of improved
phenotypes is a collective process. As such, some proper-
ties of the quasispecies cannot be ascribed to a particular
sequence, not even to the most abundant one, but are
revealed only when averages over the population are per-
formed. In its collective adaptation towards a target struc-
ture, the quasispecies keeps a distributed and delocalized
global state that informs about the selective pressures
driving the evolutionary process. Such structural robust-
ness is also recognizable through the progressive loss of
phenotypic information above the error threshold.

Our observations might be relevant when considering
early stages of molecular evolution in the context of an
RNA world, where high mutation rates at replication
could not be avoided. As a result, the shorter the
sequences of a population, the more probable that they
could stably maintain their functionality. Stability would
improve as well in the presence of large populations and
of an effective selection mechanism.

Remarkably, certain structures would also favour fixation
at high µ. As we have seen, function encoded in hairpin-
like structures could be selected in longer sequences, for
the same mutation rate, or at higher mutation rates, for
fixed molecular length. The hairpin motif is frequent in
nature [51], apart from being one of the most common
structures, attending to the probability that it results from
folding of a random sequence. We conjecture that certain
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secondary structure motifs, if functional, could be frozen
accidents in evolution, in the sense that they were much
more prone to appear in short molecules subjected to
high mutation rates, and thus became fixed and subse-
quently used as building blocks of more complex mole-
cules [20].

Methods
Simulations have been carried out at the Itanium II cluster
of INTA (Instituto Nacional de Técnica Aeroespacial,
Spain). For random number generation, we relied on the
Mersenne Twister and Ziff's GFSR4 algorithms as pro-
vided by GNU Scientific Library (GSL), Version 1.7 [52].
For secondary structure folding (minimum free energy)
and calculation of base-pair and Hamming distances, we
use the Vienna RNA package [18], version 1.5, with the
current standard parameter set.
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