
BioMed CentralBMC Evolutionary Biology

ss
Open AcceResearch article
Differential gene transfers and gene duplications in primary and 
secondary endosymbioses
Stefan Zauner2, Peter Lockhart1, Bettina Stoebe-Maier4, Paul Gilson3, 
Geoffrey I McFadden5 and Uwe G Maier*2

Address: 1Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New 
Zealand, 2Cell Biology, Philipps-University Marburg, Karl-von-Frisch Str., 35032 Marburg, Germany, 3Walter and Eliza Hall Institute of Medical 
Research, Parkville, Victoria 3050, Australia, 4Naturwissenschaffen, An der Zahlbach 15, 35039 Marburg, Germany and 5Plant Cell Biology 
Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia

Email: Stefan Zauner - zauner@staff.uni-marburg.de; Peter Lockhart - p.j.lockhart@massey.ac.nz; Bettina Stoebe-
Maier - bmaier@naturwissenschaffen.de; Paul Gilson - gilson@wehi.edu.au; Geoffrey I McFadden - gim@unimelb.edu.au; 
Uwe G Maier* - maier@staff.uni-marburg.de

* Corresponding author    

Abstract
Background: Most genes introduced into phototrophic eukaryotes during the process of
endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL
homologues are found in different genome compartments among phototrophic eukaryotes.
Comparative sequence analyses of recently available genome data, have allowed us to reconstruct
the evolutionary history of these genes and propose a hypothesis that explains the unusual genome
distribution of groEL homologues.

Results: Our analyses indicate that while two distinct groEL genes were introduced into
eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in
all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-
occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes
of evolution involving deletion, duplication and targeting of groEL proteins.

Conclusion: The requirement of two groEL homologues for chaperon function in phototrophs has
provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary
lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent
evolutionary processes among eukaryotic lineages.

Background
Plastids, the solar powered energy factories of pho-
totrophic eukaryotes, either translate mRNAs for their
organelle-encoded genes or import nuclear-encoded pro-
teins. In both cases, correct folding of proteins is managed
by chaperones such as those of the GroEL family. These
are an abundant class of chaperones, which are also found

in mitochondria, hydrogenosomes and prokaryotes [1,2].
Their importance and distribution has led to intensive
investigation of their function, and has culminated in the
'molecular chaperon concept' [3,4], which has strongly
influenced current understanding of protein folding and
assembly.
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Early genomics on the cyanobacterium Synechocystis sp.
PCC 6803 and on plastid chromosomes of eukaryotes has
highlighted a surprisingly varied distribution of genome
locations for GroEL homologues amongst photosynthetic
taxa [5,6]. Synechocystis sp. PCC 6803 harbours two differ-
ent groEL genes, whereas only one is maintained in red
algal plastomes and the plastid genome of the cyanelle.
Genes encoding GroEL have not been located within the
sequenced genomes of chloroplasts in green algae and
land plants, but two nuclear homologs of groEL, the
cpn60s, have been detected in the nuclear genome of
Chlamydomonas reinhardii and some land plants. In
Euglena gracilis, no groEL gene has been identified [7]. The
secondary endosymbionts of a cryptomonad (Guillardia
theta) and also a diatom (Odontella sinensis) are known to
encode a single groEL gene in their plastid, and it can be
speculated that the presence of a single copy of groEL may
indicate the ancestral state in a primary endosymbiont
[8,9]. Interestingly, the nucleomorph genome of the cyp-
tomonad Guillardia theta harbours a groEL homologue [6]
and a cpn60-like homologue has recently also been found
in the nucleomorph genome of another secondary endo-
symbiont: the chlorarachniophyte Bigelowiella natans (Gil-
son & McFadden, unpublished). Additionally, cpn60-like
genes have recently been discovered in the nuclear
genomes of other photosynthetic organisms: including in
a red alga (Cyanidioschyzon merolae), a diatom (Thalassio-
sira pseudonana), and Plasmodium falciparum (a parasitic
organism that harbours a degenerate plastid). With the
exception of P. falciparum, the co-occurrence of two groEL
genes in the genomes of these recently sequenced organ-
isms was predicted as necessary for maintaining chloro-
plast function [6]. We develop here a hypothesis for
differential transfer and gene duplication that explains the
distribution of groEL homologues amongst the mulitple
genomes of photosynthetic taxa. We discuss how these
proteins may act as an important regulator for plastid
functions.

Results
Substitution model selection
In all analyses, except analyses of the red/brown algal
GroEL orthologues, an RtTEV model, that accommodated
positional rate heterogeneity in some form was the model
selected as best by ProtTest under the AIC criterion. In the
case of the GroEL orthologues in red/brown algae, we
noted that small differences in the AIC criterion separated
a variety of different models. When an RtREV model was
assumed, and positional rate heterogeneity was approxi-
mated by either a constant proportion of variable sites or
a discrete gamma distribution of rate classes, we noticed
that the optimal estimates for these parameters varied
among evolutionary lineages (i.e different estimates were
obtained for cyanobacterial GroEL1, cyanobacterial
GroEL2, red algal/heterokont plastid GroEL1 like

sequences, and highly diverged Cpn60-like sequences).
When a uniform rate distribution was assumed, pvar values
ranged from 0.3 variable sites (cyanobacterial GroEL1) to
0.9 variable sites (highly diverged Cpn60-like sequences).
When pvar was set to 1, alpha shape parameter values
ranged from 0.2 (for cyanobacterial GroEL1) to 0.8 (for
highly diverged Cpn60-like sequences). We suggest that
this degree of variation in parameter estimates for phylo-
genetic grouping of anciently diverged sequences is likely
to reflect lineage specific differences in structural and
functional constraints [10-12]. As such it is potentially
problematic for phylogenetic reconstruction, since paral-
lel increases in proportions of variable sites in different
evolutionary lineages can sometimes induce a form of
long branch attraction [10-12].

Evolutionary tree building
Optimal PhyML (protein maximum likelihood) trees
showed similar topological relationships over a wide
range of pvar values specified to accommodate positional
rate heterogeneity. The robustness of phylogenetic rela-
tionships to sampling error was also found to be relatively
stable, when evaluated using non-parametric bootstrap-
ping (100 replicates). Figure 1 shows the optimal
unrooted phylogenetic tree built assuming an RtREV
model with positional rate heterogeneity modelled with a
discrete gamma distribution (α = 0.92; 4 discrete rate cat-
egories).

Although, it contains more GroEL homologues than was
available to Wastl et al. [6], our phylogenetic reconstruc-
tion here is nevertheless consistent with observations and
inferences made by Wastl et al. [6]. Figure 1 shows that (a)
the groEL1 like genes from the plastid genome of red
algae/heterokonts and cryptophytes are most closely
related to the cyanobacterial groEL1 genes. (b) Interest-
ingly the cyanelle groEL1 like homologue is somewhat
intermediate between cyanobacterial and red algal/chro-
mist groEL1-like sequences, a finding that may reflect the
cyanobacterial-like nature of this plastid. (c) The non-
photosynthetic eubacterial groEL sequences are arguably
more similar to the groEL2 sequences found in cyanobac-
teria. In any event, the groEL2 orthologues in cyanobacte-
ria are genetically more diverse than the groEL1 sequences
in the same taxa. These observations may suggest that
groEL2 orthologues represent an ancestral from of GroEL.
However, our inference that structural/functional con-
straints differ amongst GroEL homologues, means that it
is not possible to exclude other interpretations. (d)
Assuming the root of the tree joins the branch leading to
the non-photosynthetic taxa, Figure 1 places the Gloeo-
bacter "A" and "B" sequences as the ancestral forms of
GroEL homologues in photosynthetic taxa. (e) In the
nuclear genomes of a diatom (Thalassiosira pseudonana),
an alveolate (Plasmodium falciparum), the higher plants
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and the nucleomorph genomes of a chlorarachniophyte
(Bigelowiella natans), a cryptophyte (Guillarida theta) and a
red algae (Cyanidoschyzon merolae) groEL2 type sequences
are found. In the case of higher plants, two forms of
groEL2 occur, and appear to represent forms of groEL
duplicated from an ancestral groEL2-like sequence. Infer-
ences concerning the origin of this duplication are poten-
tially problematic. A relatively high bootstrap value in
Figure 1 (77%) suggests that it may have occurred prior to
the divergence of plastids. However, potential long
branch attraction problems concerning the placement of
α and β Cpn60-like sequences from eukaryotes make this
conclusion tentative. Gene duplication within the green
lineage and differences in the functional/structural con-
straints of green α and β Cpn60-like sequences might also
explain the results observed Although Chlamydomonas
reinhardtii Cpn60 α and β sequences (AAA98642 and
AAA98643) are not included in our phylogenetic analysis
shown in Figure 1 (because their inclusion significantly
reduced the alignment length, and increased phylogenetic
uncertainty). However, it is clear from other phylogenetic
analyses (unpublished) that this green alga contains the
two forms of groEL2 also present in higher plants.

Discussion
Hypotheses of origin
Our phylogenetic reconstruction suggests a complex pat-
tern of genome transfers, losses and duplications in the
evolution of groEL sequences from photosynthetic taxa. In
the earliest cyanobacterial-like prokaryotes, the ancestral
groEL sequence appears to have duplicated to form an "A"
and a "B" type sequence that is still present today in the
genome of Gloeobacter [14,15]. It appears that the "A"
(groEL2-like) and "B"(more groEL1-like) forms have been
inherited by most cyanobacteria, and also the endosymbi-
ont(s) involved in primary plastid endosymbiosis. During
the process of endosymbiosis, the groEL2-like orthologue
has been transferred from the endosymbiont genome to
the nuclear genome in heterokonts, red algae, green algae
and high plants, and cryptophytes. We predict that this
also will be true for haptophytes and glaucocystophytes.
Less certain may be prediction of the pattern of evolution
in peridinin-containing dinoflagellates, which in other
respects appear highly distinctive in their evolution
[16,17]. An interesting observation is that Cyanophora par-
adoxa, the molecular prototype of the glaucophytes,
shows not only archaic features by encoding a groES in its

Optimal PhyML tree, built assuming an RtREV + G(α = 0.92) substitution modelFigure 1
Optimal PhyML tree, built assuming an RtREV + G(α = 0.92) substitution model. Internal branches relevant to the discussion 
and which receive greater than 74% have been shown. Branch lengths are indicated. However, those subtending Bigelowiella and 
Plasmodium have been truncated. Cyanobacteria have been given number identifiers: [1] Anabaena variabilis 29413, [2] Anabaena 
sp. strain L-31, [3] Crocosphaera watsonii WH 8501, [4] Gloeobacter violaceus PCC 7421, [5] Nostoc punctiforme ATCC 29133, 
[6] Anabaena sp. PCC 7120, [7] Prochlorococcus marinus subsp. marinus str. CCMP1375, [8] Prochlorococcus marinus str. MIT 
9312, [9]Prochlorococcus marinus str. MIT9313, [10] Prochlorococcus pastoris str. CCMP1986, [11] Prochlorococcus marinus str. 
NATL2A, [12] Synechococcus sp. CC9605, [13] Synechococcus elongatus 7942, [14] Synechococcus vulcanus, [15] Synechococcus 
sp. wh8102, [16] Synechococcus sp. CC9902, [17] Synechocystis PC 6803, [18] Trichodesmium erythraeum IMS101, [19] Cyanobac-
teria bacterium Yellowstone A-Prime, and [20] Cyanobacteria bacterium Yellowstone B-Prime.
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plastid genome, but also by containing a groEL1 sequence,
somewhat intermediate in sequence identity between
cyanobacterial and plastid encoded groEL1 genes. In the
case of the chlorophyte lineage, it appears that it has been
the groEL1 form that has been lost, and in Chlamydomonas
and higher plants, this has been replaced by a duplicated
form of a groEL2-like sequence. This situation may also be
true for the endosymbiont of the chlorarachniophyte B.
natans (generally assumed to have been a green alga [16]),
since phylogenetic reconstructions, including those with
partial Chlamydomonas GroEL sequences (not shown),
provide some support for Bigelowiella and cpn60α con-
taining taxa being most closely related (e.g. Figure 1). Sev-
eral investigations on the evolution of the Plasmodium
apicoplast indicate a red algal origin for this organelle
[18,19]. If so, then based on the generalisations stated
above, one would expect that the groEl/cpn60 distribution
should be similar to the situation found in heterokonts.
Additional duplications, of groEL1 genes (in the presence
of groEL2) have also occurred in some species of filamen-
tous cyanobacteria and this observation is discussed in the
following section.

GroEL proteins and protein folding
In all eukaryotes and prokaryotes that carry out oxygenic
photosynthesis, and for which genome data is complete,
two different forms of groEL/cpn60 are known to exist.
Thus, at least two copies of the gene or protein seem to be
necessary for a complete chaperon function. Further, the
importance of having two divergent forms of GroEL for
protein folding is suggested from observations on GroEL
sequences in Synechocystis sp. PCC 6803, where it has been
observed that GroEL1 and GroEL2 respond differently to
heat shock and light conditions [20,21]. An interesting
speculation is that the number and genetic diversity of
GroEL homologues reflects complexity of morphotype in
cyanobacteria. This is suggested from comparison within
filamentous cyanobacteria. Those strains that harbour
three GroEL genes exhibit complex developmental stages
(akinetes and hormogonia) whereas filamentous strains
with a simpler morphotype, such as Nostoc sp. PCC 7120,
harbour only two GroEL genes. Further study is needed to
evaluate whether particular groEL homologues are specifi-
cally expressed in different developmental stages. Interest-
ingly, P. falciparum encodes one cpn60 gene, but no groEL1
in the apicoplast genome. If phylogenetic inferences of a
close relationship with red algae [18,19] are correct, then
this observation may reflect relaxed constraints for protein
folding for proteins of the apicoplast, and this speculation
is also worth further investigation.

Conclusion
Although, phylogenetic reconstruction of individual gene
histories is inherently problematic for anciently diverged
taxa [5,10,11] phylogenetic reconstruction for groEL

homologues nevertheless provides a framework for devel-
oping understanding of genome-wide patterns of gene
loss, relocation and multiple events of gene duplication.
Our results presented here support and extend the
hypothesis of groEL/cpn60 evolution by Wastl et al. [6]
which suggests a pattern of differential serial gene transfer
and gene duplication.

Methods
Resources for sequences
Cyanobacterial groEL genes were retrieved from Genbank
and the cpnDB chaperonin sequence database [22]. Two
groEL genes were found to be present in Synechocystis sp.
PCC 6803. One of these genes, termed groEL1 (slr2076),
is arranged in an operon together with groES, whereas the
other, groEL2 (sll0416), is not adjacent to a small subunit
gene [23]. In comparing homologues from other cyano-
bacteria to those of Synechocystis sp. PCC 6803, we have
adopted the terminology of "groEL1" and "groEL 2". All
unicellular forms of cyanobacteria retrieved from data-
base searches were found to contain two GroEL genes. In
contrast, filamentous strains showed variation in the
number of groEL genes. Nostoc punctiforme and Anabaena
variabilis ATCC29413 harbour three groEL genes, whilst
Nostoc sp. PCC 7120 with two groEL genes, was similar to
that of unicellular forms. Genbank also provided us with
several entries for cpn60 from several land plants,
Chlamydomonas reinhardii and the nucleomorph of the
cryptophyte Guillardia theta. In a recently finished genome
project on the nucleomorph genome of the chlorarachni-
ophyte Bigelowiella natans (Gilson & McFadden, unpub-
lished), a further nucleomorph-encoded cpn60 gene has
been annotated. Two new genome projects on Cyanidio-
schyzon merolae [24] and Thalassiosira pseudonana [25] were
also the source for additional nuclear-located cpn60 genes.
In PlasmoDB [26], the genome data base for Plasmodium
falciparum, two different cpn60 genes have been annotated
in the nuclear genome [27], one encodes a mitochondrial,
and the other an apicoplast targeted copy [28]. Addi-
tional, BLAST searches of NCBI were made against availa-
ble plastid genomes using cyanobacterial groEL genes.
Significant hits were obtained with the plastid genomes
from red (Gracilaria verrucosa, Cyanidium caldarium, Por-
phyra purpurea, Cyanidioschyzon merolae) and secondary
red plastids (Odonetella sinensis, Guillardia theta, Pyrenom-
onas salina, Thalassiosira pseudonana). These sequences,
together with the nuclear, nucleomorph, plastid, and
cyanobacterial sequences were aligned using the progres-
sive alignment procedure implemented in CLUSTALX
[29], edited to remove any ambiguously aligned regions,
and conserved blocks of aligned residues (containing 495
amino acids) were used for phylogenetic analyses. The
aligned data matrix and accession details are available
from the authors on request.
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Substitution model selection
The online version of ProtTest v1.2.6 [30,31], implement-
ing the Akaike Information criterion (AIC) was used to
select the most appropriate amino acid substitution mod-
els for tree building analyses. The cyanobacteria GroEL1
and GroEL2 datasets used for estimating parameters had
identical taxon sampling (10 taxa: Synechocystis PC 6803,
Crocosphaera watsonii WH 8501, Trichodesmium erythraeum
IMS101, Synechococcus elongatus 7942, Synechococcus vulca-
nus, Synechococcus sp. wh8102, Prochlorococcus marinus str.
MIT9313, Prochlorococcus marinus str. CCMP1375, Prochlo-
rococcus pastoris str. CCMP1986). Estimates were also
made for bacteria (9 taxa: Thermus thermophilus, Rhodos-
pirillum rubrum, Neisseria meningitidis, Geobacter metallire-
ducens, Pseudomonas aeruginosa, Mycobacterium avium,

Bacillus subtilis, Aquifex aeolicus and Chlorobium tepidum;
and for red/brown algal chloroplast located orthologues
(8 taxa: Guillardia theta, Pyrenomonas salina, Cyanidium
caldarium, Porphyra purpurea, Gracilaria tenuistipitata var.
liui, Odontella sinensis, Thalassiosira pseudonana and Cya-
nidioschyzon merolae) and also for highly diverged Cpn60-
like sequences (5 taxa: Thalassiosira pseudonana, Cyanidio-
schyzon merolae, Plasmodium falciparum, Bigelowiella natans
and Guillardia theta).

Evolutionary tree building
Trees were reconstructed from amino acid sequences
using the windows version of PhyML [32]. Trees were
built assuming an RTRev model and the optimal tree
shown in Figure 1 displayed using SplitsTree4.0 [33]. The

Scheme depicting an evolutionary hypothesis that explains genome locations of groEL and cpn60Figure 2
Scheme depicting an evolutionary hypothesis that explains genome locations of groEL and cpn60. An ancestral eubacterial-like 
groEL duplicated in cyanobacteria to give two homologues: groEL1 and groEL2. Both copies were inherited by phototrophic 
eukaryotes. One of the copies, groEL1, has been lost from the plastid genome in some lineages. groEL2 was transferred into the 
cell nucleus and gave rise to cpn60 in the case where groEL1 is still maintained in the plastid genome, or into cpn60α and 
cpn60β, where groEL1 has been deleted. For details see text. P.D. = predicted.
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robustness of phylogenetic reconstructions to variations
in assumptions of positional rate heterogeneity was inves-
tigated by assuming (a) different proportions of variable
sites (pvar range = 0.3–1.0) and (b) a discrete gamma dis-
tribution of rate classes and a range of alpha shape param-
eter values (0.2–1). Non-parametric bootstrap trees were
analyzed to assess the significance of sampling variability.
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