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Abstract

Background: The G-protein-coupled receptors (GPCRs) constitute one of the largest and most
ancient superfamilies of membrane proteins. They play a central role in physiological processes
affecting almost all aspects of the life cycle of an organism. Availability of the complete sets of
putative members of a family from diverse species provides the basis for cross genome comparative
studies.

Results: We have defined the repertoire of GPCR superfamily of Tetraodon complement with the
availability of complete sequence of the freshwater puffer fish Tetraodon nigroviridis. Almost all 466
Tetraodon GPCRs (Tnig-GPCRs) identified had a clear human homologue. 189 putative human and
Tetraodon GPCR orthologous pairs could be identified. Tetraodon GPCRs are classified into five
GRAFS families, by phylogenetic analysis, concurrent with human GPCR classification.

Conclusion: Direct comparison of GPCRs in Tetraodon and human genomes displays a high level
of orthology and supports large-scale gene duplications in Tetraodon. Examples of lineage specific
gene expansions were also observed in opsin and odorant receptors. The human and Tetraodon
GPCR sequences are analogous in terms of GPCR subfamilies but display disproportionate
numbers of receptors at the subfamily level. The teleost genome with its expanded set of GPCRs
provides additional and interesting comparators to study both evolution and function of these

receptors.

Background

The G-protein-coupled receptors (GPCRs) constitute one
of the largest and most ancient superfamilies of mem-
brane proteins, accounting for 1-2% of the vertebrate
genome. GPCRs are characterized by the presence of
highly conserved molecular architecture encoding seven
transmembrane (TM) hydrophobic regions linked by
three extracellular loops that alternate with three intracel-
lular loops [1]. The extracellular N-terminus is usually gly-
cosylated and the cytoplasmic C-terminus is generally
phosphorylated. The extracellular side of these receptors

contains residues that are specifically recognized by lig-
ands and is therefore involved in ligand-specific binding.
The endogenous ligands for GPCRs have exceptionally
high chemical diversity. They include biogenic amines,
glycoproteins, ions, lipids, nucleotides, peptides and pro-
teases. Moreover, the sensation of exogenous stimuli such
as light, odor and taste is also mediated via this super-
family of receptors. Ligand-induced activation of all
GPCRs leads to a conformational change of the receptor
and triggers a family of heterotrimeric GTP binding
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proteins (G proteins) and modulates several cellular sign-
aling pathways.

GPCRs have been aggressively pursued as drug targets due
to their central role in physiological processes affecting
almost all aspects of the life cycle of an organism [2].
Almost half of the GPCRs are likely to encode sensory
receptors and the rest of receptors could be considered as
potential drug targets [3]. It is estimated that about 50%
of all current drug targets are GPCRs and are the most suc-
cessful of any target class in terms of therapeutic benefit
[4,5]. A major goal of GPCR research is to expand the
knowledge of GPCR structure/function in order to vali-
date additional GPCR family members as tractable drug
targets. Much effort, therefore, has been made to identify
novel GPCRs and their ligands with potential therapeutic
value [6-8].

The completion of several other vertebrate and inverte-
brate genome sequencing projects paves the way for
"functional genomics". The quest for assigning function
to putative gene products exploits the sequence and struc-
tural similarities to known genes and further could be elu-
cidated using molecular biology techniques [9,10]. Such
studies have important implications in biology and in
understanding the evolution of distinct organisms.
Sequencing of the model organisms can be an important
source of information on the function of human target
class members. For example, evolutionary comparison of
GPCR sequences between species can help to identify con-
served motifs and may recognize key functional residues
[11-13]. The majority of GPCR functional data have been
derived from studies in genetic models such as mice, rat,
worm and Drosophila; additional species provide new
comparators for GPCR studies. Teleost fish, Tetraodon
nigroviridis is one of the smallest known vertebrate
genomes. It has all the specialized functions of higher ver-
tebrates and can be a good vertebrate model system to
study [14,15]. The first available nearly complete
sequence of T. nigroviridis genome now allows for the
identification and analysis of its full set of GPCRs. Here,
we describe the genome wide survey of Tnig-GPCR reper-
toire and a detailed analysis of opsin, fish-odorant recep-
tors (FOR) and taste receptors (T1R).

Results and discussion

Recent analysis of the genome sequence of the fresh water
pufferfish Tetraodon nigroviridis genome (>90% sequence
coverage) has shown that it possesses one of the smallest
known vertebrate genomes and revealed a set of 27,918
predicted genes, much similar to the number of predicted
genes in human genome [16,17]. In order to identify com-
plete set of putative GPCRs within Tetraodon genome, we
developed a comprehensive strategy (Figure 1). Table 1
summarizes 466 Tnig-GPCRs that were identified, out of
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which, to the best of our knowledge, 457 have not been
reported before. The complete list of Tnig-GPCRs, includ-
ing their sequence similarities to the functionally charac-
terized GPCRs from human and other organisms, is
available as Additional data file 1. GPCRs represent ~1.9%
of total number of genes predicted from 340 mega base
pair T. nigroviridis genome [14], which is comparable to
those predicted in fly, mosquito and mammalian
genomes [18]. Despite the higher sequence diversity of
GPCRs in fly, mosquito, C. elegans and other vertebrates,
sequence analysis suggests evolutionary conservation of
GPCRs across phyla and that they might have ancient ori-
gins (data not shown). For almost all Tnig-GPCRs, a puta-
tive human GPCR homologue could be identified. 189
putative human and Tetraodon GPCR orthologous pairs
are identified (see Additional data file 1).

Rhodopsin family in Tetraodon has up to one and half
times the number of receptors compared with human
(excluding olfactory receptors), whereas about two fold as
many GPCR sequences as in fugu and about three fourth
of the zebrafish GPCRs [19]. Tetraodon also has similar
numbers of frizzled receptors as expected in mammals
and fish genomes. Some of the gene families in Tetraodon
like opsins and fish odorant receptors have shown spe-
cies-specific expansions similar to trace amine receptors in
zebrafish [20]. However, taste receptors type 2 (TAS2) and
mas related (MRG) receptors seem to be absent in Tetrao-
don like other known fish genomes [19].

Analysis of the chromosomal distribution of Tnig-GPCRs
show their distribution across all the chromosomes and
GPCRs on one chromosome show a greater tendency to
have duplicated copies located on another chromosome
(Figure 2; shaded in gray in Additional data file 1). Com-
parative genomic studies of Tetraodon and humans show
many GPCRs for which there are two copies in Tetraodon
but one in the human genome. Chromosomal distribu-
tion of putative Tetraodon-human GPCR orthologous
pairs and corresponding Tnig-GPCR paralogs show corre-
spondence between two different chromosomal regions
in Tetraodon genome to one region in the human genome
(Figure 2). This two to one (2:1) association also supports
the hypothesis that these genes arose through a large-scale
gene duplication event, probably involving whole
genome duplication in Tetraodon [14,21,22], since almost
all Tetraodon chromosomes are involved.

GPCR classification has been proposed by Fredriksson,
and Schioth in human and other fully sequenced
genomes into five main families; glutamate (G), rho-
dopsin (R), adhesion (A), frizzled (F) and secretin (S)
(GRAFS classification) [19,23,24].Tetraodon GPCRs also
show five main GRAFS [G with 36 members; R, 368 (see
Additional data file 2); A, 29; F, 12 and S, 21] families
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Comprehensive approach for the identification and validation of Tnig-GPCRS. All GPCR sequences from GPCRDB
were compared against Tetraodon proteome database using BLASTP and hits were searched against GPCRDB using reverse
BLAST. As complementary approaches, Tetraodon sequences were compared using Hmmpfam against Pfam and RPS-BLAST
against CDD respectively. Finally, GPCR sequences are subjected to phylogenetic analysis as described in Methods.

(Figure 3). It is observed, however, in Tetraodon that there
were shifts of some of the receptors between the main
groups of rhodopsin family [24]. Under the rhodopsin
family, there are nine opsin receptor representations in
humans, but T. nigroviridis displays an expansion where
we have identified 27 Tnig-opsin receptors. The phyloge-
netic analysis divides Tetraodon opsins into three
branches: classical visual pigments, neuropsin/RGR like,
and encephalopsin/melanopsin like (Figure 4). There are
at least four copies of genes under each of these branches
in Tetraodon, but only one orthologous copy each has
been identified in human genome, indicating fish specific

gene duplications as observed earlier for trace amine
receptors in zebrafish [20,25].

23 candidate odorant receptors (OR) were identified in
fish odorant receptor (FOR) subfamily of rhodopsins in
Tetraodon. These OR genes are found in clusters of 3-4
members in the Tetraodon genome, located on different
chromosomes. They display higher sequence identity
within a cluster suggesting tandem duplication events
might be responsible for OR gene family expansion in
Tetraodon as observed in the genomes of every vertebrate
organism investigated earlier, including zebrafish, mice
and humans [26]. Phylogenetic analysis of Tetraodon ORs
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Table I: G protein-coupled receptors of Tetraodon nigroviridis
(Tn). The numbers predicted in each family and sub-family are
shown in comparison to humans (Hs)

Receptor Tn Hs*

Glutamate-like

CAGSR like 9 |
GABA-B 4 2
Metabotropic glutamate 12 8
Tastel 4 4
Orphan 7 0
Rhodopsin-like
Amine 71 40
Chemokine 42 42
Glycoprotein hormone/LGRs 5 8
MECA 24 22
Melatonin 3 3
Olfactory 22 460
Opsins 27 9
Peptide 88 60
Prostaglandin 12 15
Purine 48 42
Orphan 26 23
Adhesion-like
BAI 3 3
CD97 | |
CELSR 3 3
EMR | 3
ETL | |
HEé 2 |
LEC 6 3
Orphan 12 9
Frizzled-like
Frizzled Il 10
Smoothened | |
Taste2 0 13
Secretin-like
CALCRL/CRHR 1+3=4 2+2 =4
GLPR/GCGR 1+2=3 1+2+]1 =4
PTHR 3 2
GHRHR/PACAP/SCTR/VIPR I+4+14+4 =10 1+2+1+1 =5
Orphan | 0

* Numbers and abbreviations are as described in [23].

with fish odorant receptor subfamily members (mainly
zebrafish, channel catfish, Japanese pufferfish, medaka
fish, goldfish etc) grouped them into six clusters of ortho-
logues with very high boot strap support (Figure 5). In tel-
eost lineage, different members of FOR subfamily have
shown species specific gene expansion. For example, there
is a large group of FORs with 18 zebrafish members, 6 cat-
fish members, 4 medaka fish and one each of Tetraodon
and channel catfish. Another group consists of 12 Tetrao-
don members, 2 medaka fish members and one each of
goldfish and Japanese pufferfish (Figure 5). High differ-
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Figure 2

Global distribution of GPCRs in the Tetraodon
genome. The 2| Tetraodon chromosomes are presented in a
circle and each line joins GPCR paralogs on a given pair of
chromosomes. The color of the line indicates the chromo-
somal location of the corresponding human orthologue.

ences in numbers of OR genes in specific fish reflect crea-
ture-specific lifestyle and these receptors are responsible
for binding ligands important to a particular species [18-
20,25].

Among the glutamate receptor family, we find four novel
members of candidate mammalian type-1 (T1Rs) taste
receptors in Tetraodon genome (Figure 6). They have been
implicated in sweet and umami detection in mammals by
forming homo and/or hetero dimers [27,28]. Tnig-taste
receptors retain several conserved ligand binding residues
when compared to rat mGluR1 metabotropic glutamate
receptor [27] (Accession no. P23385; PDB entry no.
1EWK; see Additional data file 3). Phylogenetic analysis of
T1R receptors in human, rat and Tetraodon reveals two
groups of Tnig-taste receptors: with one T1R1-like gene
and other with three T1R3-like genes. A putative human
GPCR orthologue has been identified for both groups.
The presence of T1R family members in the Tetraodon
genome suggests that the emergence of dimer-forming
chemosensory receptors of glutamate family antedate the
emergence of land vertebrates.
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Phylogenetic tree of the Tetraodon, human and rat
taste receptors (TIRs). Tetraodon TIRs are represented
in bold.
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Conclusion

We have identified and analyzed repertoire of Tetraodon
GPCRs and found high level of orthology with human
counterparts. The human and Tetraodon GPCR sequences
are analogous in terms of GPCR subfamilies, but display
disproportionate number of receptors at the subfamily
level. The teleost genome, with its expanded set of GPCRs,
provides an additional and interesting model to study
both evolution and function of these receptors. The avail-
ability of repertoire of Tetraodon GPCRs will facilitate fur-
ther studies through "functional genomics" and "reverse
pharmacological" strategies to match their cognate lig-
ands and to elucidate biological functions. Systematic
mutation of Tetraodon GPCRs will help to determine their
neural, developmental and behavioral roles. They might
also yield novel insights into the physiological functions
and mutational pathologies of their human homologues
in particular and other vertebrate homologues in general.

Methods

Identification of Tnig-GPCRs

Sequences of the Tetraodon nigroviridis are obtained from
NCBI and Genoscope Tetraodon Genome Browser [29].
HumanGPCR sequences were identified using GPCRDB
[30] (Release 8.1) and based on earlier studies
[7,19,23,31]. GPCRs were identified using comprehensive
approach (Figure 1) that includes RPS-BLAST [32] (using
CDD v2.01 [33]: SMART [34], Pfam [35] and COG Data-
bases; E-value cut-off 10-5), Hmmpfam of HMMER 2.3.2
[36] (using Pfam15; E-value cut-off 0.01) and BLASTP
[37] homology comparisons against GPCRDB. Putative
GPCR sequences were manually checked for GPCR spe-
cific patterns and presence of 7TM domain (at least 70%
or more of Pfam 7TM should be aligned with each of the
sequence). This is followed by secondary structure (trans-
membrane helix(TMH)) predictions using one or more
methods like HMMTOP [38], SOSUI [39], MEMSTAT [40]
and TMHMM? [41]. A range of 6-8 predicted TM helices
acquired maximum coverage (96 percent; please see Addi-
tional data file 4 for details) when tested on a dataset of
327 annotated human GPCRs. A similar range was set to
recognize acceptable tetraodon protein sequences con-
taining transmembrane domain. Other examples, that
either have under predicted or over predicted number of
TM helices are earmarked separately ('#' symbol) in the
current analysis. Splice variants, polymorphism and
duplicates were eliminated by applying 90% sequence
identity cut-off using CD-hit [42] and also checked man-
ually. The corresponding genomic DNA sequences were
also searched against the EST database at NCBI using
BLASTN with a cutoff E-value of 1e12 [20]. We could not
obtain any Tetraodon nigroviridis EST hits, as there were few
or no Tetraodon nigroviridis EST sequences available in the
database.
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Ortholog identification

Two genes, A from genome GA and B from GB, were con-
sidered orthologs if B is the best match of gene A in GB
and A is the best match of B in GA using BLASTP [14].

Phylogenetic analysis

Preliminary phylogenetic analysis [43] was performed
using neighbor joining method with fewer number of
bootstrap replicas and no randomization of sequence
order. This was sufficient to separate GPCR sequences into
rhodopsin like receptors and non rhodopsin like recep-
tors. Rhodopsin like receptor and non-rhodopsin like
receptor sequence datasets (separately full length and
7TM domain only), along with respective human GPCRs,
were separately randomized twenty times with regard to
sequence input order using a script called RandSeq (avail-
able upon request). These twenty datasets of different
sequence order were aligned using clustalX 1.83 [44]
using multiple sequence alignment parameters with
protein weight matrix BLOSUM series, gap opening pen-
alty 10.0 and gap extension penalty 0.05 and delay diver-
gence of 35 percent. To obtain unrooted trees, each
alignment was bootstrapped 50 times and neighbor join-
ing method (NEIGHBOR; Phylip package [45]) was
employed to obtain tree topology using distance matrices
obtained from alignments by PRODIST [45]. Consensus
tree was obtained from 1000 neighbor trees using CON-
SENSE [45]. Only 500 boot strap replicas were used for
rhodopsin like receptors due to limitations in the CON-
SENSE program and the trees were generated using
Treeview [46]. Maximum-likelihood tree of non-rho-
dopsin like receptors were also inferred from the align-
ment using TREE-PUZZLE [47]. 10,000 quartet-puzzling
steps were performed to obtain support values (reliabil-
ity) for each internal branch.
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Additional data file 2

Phylogenetic relationship between GPCRs in the Tetraodon and
human rhodopsin family Eighty receptors from almost all subfamilies of
human rhodopsin family were randomly included along with all members
of thodopsin family of Tetraodon to construct the phylogenetic tree. Num-
bers in black refers to Tetraodon GPCRs as per number represented in
Additional data file 1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-41-S2.eps]|

Additional data file 3

Sequence alignment of the Tetraodon, human and rat taste receptors
(T1Rs) T1Rs of Tetraodon, human and rat are aligned with the rat
mGIuR1 metabotropic glutamate receptor (Accession no. P23385). Lig-
and binding residues of mGIuR1 are highlighted in red. The C-terminus
is not shown. Potential transmembrane segments are indicated using
arrows.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-41-S3.pdf]

Additional data file 4

Transmembrane Helix (TMH) prediction of human GPCRs by differ-
ent TMH prediction programs (HMMTOP, SOSUI, TMHMM and
MEMSAT) A dataset of 327 annotated human GPCRs are predicted for
Transmembrane Helices (TMH) by HMMTOP, SOSUI, TMHMM and
MEMSAT. A range of 6-8 predicted TM helices acquired maximum cov-
erage to predict 7TM domain region.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-41-S4.eps|
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