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Abstract
Background: Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a
diverse group of reiterated sequences related to foamy viruses and widely distributed among
mammals. As shown in previous investigations, in many primates and rodents this class of elements
has remained transpositionally active, as reflected by increased copy number and high sequence
diversity within and among taxa.

Results: Here we examine whether proviral-like sequences may be suitable molecular probes for
investigating the phylogeny of groups known to have high element diversity. As a test we
characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian
and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more
diverse than previously suspected, and there is sequence evidence for active expansion, particularly
in elephantids. Many of the elements characterized have protein coding potential suggestive of
activity.

Conclusions: In general, the evidence supports the hypothesis that the complement had a single
origin within basal Uranotheria.

Background
ERV-Ls are retroviral elements (retroelements) lacking the
envelope gene (env) and exhibiting homology to the class
of human endogenous retroviruses designated as HERV-L
by [1]. Similar retroelements have been identified in sev-
eral eutherian groups (see below), but their incidence in
metatherians and monotremes is not known at present.
They presumably arose from successful germ-line infec-
tion by foamy-like viruses, but when or how many times
this might have occurred during the course of eutherian
evolution is unknown. From the perspective of evolution-

ary biology it is of great interest that some classes of ERVs
are known to retain original functions, including the
capacity to produce infectious viral particles [2]. Others
have gained novel regulatory functions in the mammalian
genome [3]. Formation of the human placenta may
depend on expression of a HERV-W element env gene [4].
Human immunodeficiency virus (HIV) shares specific
functionally homologous sequences with endogenous ret-
roviruses, suggesting the possibility that recombination
with ERVs could change the properties of exogenous ret-
roviruses [5]. Thus, ERVs may serve as a variable pool
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from which exogenous viruses may diversify. Exogenous
retroviruses may have originated from ERVs and ERV-Ls in
particular may represent an intermediate between retro-
transposons and exogenous viruses [6].

Comparison of ERV-L polymerase (pol) gene sequences
from 22 mammalian species revealed ERV-Ls that have
expanded in copy number and remained active over long
periods of time [1]. Phylogenetic analysis of these
sequences demonstrated that primates and rodent ERV-L
sequences are both diverse and, with few exceptions,
monophyletic, whereas carnivore and ungulate ERV-L
sequences were polyphyletic. The phylogenetic picture
reflects the particularly robust expansion of the primate
and rodent ERV-L complement. Importantly, the primates
and rodents were the only groups that included ERV-L
sequences with protein coding potential and therefore
potential transpositional activity. These points suggests
that, if the history of active expansion of retroelements
within a group can be deciphered, it might be possible to
use this information in the same way that parasite data are
conventionally used [7], to perform tests of host phyloge-
netic relationships that are at least logically independent
of other data sources. In this connection, the superorder
Uranotheria is of particular interest.

Uranotheria [8] is the most recent nomen for a constella-
tion of relationships that has, in fact, been supported by
the majority of ungulate specialists throughout the past
century. Simpson [9] grouped proboscideans, hyraxes,
embrithopods and sirenians under the group-name Pae-
nungulata, but was not certain of its monophyly. Most
other authorities have supported this clade, albeit with
some variation in content, in the years since Simpson's [9]
publication (e.g., [10-14]). McKenna and Bell [8] divided
Uranotheria into three major groups, Hyracoidea,
Embrithopoda, and Tethytheria. The last is further subdi-
vided into Sirenia and Behemota; behemotans consist of
Proboscidea and Desmostylia. Only Hyracoidea, Sirenia,
and Proboscidea possess living members.

Morphologically, there is considerable evidence that sup-
ports the association of Proboscidea and Sirenia as sister
taxa to the exclusion of Hyracoidea [10], and little that
appears to contradict it. Fischer and Tassy [15] take the
position that alleged hyracoid morphological resem-
blances to tethytheres are either convergences or miscon-
strued, on the argument that hyraxes are in fact
perissodactyls or closely allied to them. This aspect of the
Fischer-Tassy hypothesis is not supported by molecular
data [14,16]. On the other hand, it must also be admitted
that sequence data have not provided especially strong
support for Tethytheria (and, by extension, the mono-
phyly of Uranotheria) [17]. In the most recent exercise in
this arena, Asher et al [18] were able to recover Tethytheria

under certain conditions when fossil and morphological
data were combined with sequence information, but not
when sequence data were used alone.

To investigate whether ERV-L and other retroelements
may be useful in resolving phylogenetic questions involv-
ing uranotheres at multiple taxonomic levels, we utilized
an ERV-L polymerase gene (pol) fragment using degener-
ate primers tested in other mammalian orders. Extending
our previous work [19], we found that ERV-L sequence
diversity was high in all members of this group and that
phylogenetic analysis of our data to a limited extent sup-
ported Uranotheria as a distinct clade when sequences
that lack coding potential are used. By contrast, sequences
that are potentially active form separate monophyletic
groups, indicating a more recent origin. Thus, it appears
that ancient ERVs reflect the phylogeny of their host like
classic genes and more recently active ERVs will tend to be
more similar to one another as opposed to their host.

Results
Among-clone comparisons
A ~330 bp PCR product was amplified for African ele-
phant, Asian elephant, manatee, and rock hyrax. The
products were cloned and 10 clones sequenced for each
product. Of the 40 sequences thus developed, only one
Asian elephant sequence had no homology to ERV-Ls and
was removed from analysis (not shown). No identical
sequences were shared among taxonomic groups. All nine
Asian elephant and all 10 manatee clones were unique.
However, one Asian elephant clone, designated Max3
(accession number AY394573), was a recombination
product of clone Max2 (accession number AY394572)
and clone Max6 (accession number AY394576). Whether
this represents a PCR artifact or is a genomic recombina-
tion event is not known. However, it is not expected that
recombinational PCR would be observed in modern
undamaged DNA [20].

Among the African elephant runs, four clones differed at
0–1 positions. As PCR errors probably account for these
minor differences we assume only 6 unique ERV-Ls were
discovered for this individual. Similarly, the hyrax sample
yielded 3 groups comprised of 2 identical sequences,
while two other sequences differed at 5 positions. Thus, 5
unique ERV-Ls were also obtained for Procavia.

Recovered sequences were compared to a mouse element
with full coding potential in the gag and pol genes
(MuERV-L, GenBank no. Y12713). Twelve clones were in
frame with no stop codons. However, only 6 of the total
12 were unique (Figure 1). This is surprising, as 87
sequences from 22 mammalian species previously
revealed only 7 sequences with coding potential [1].
Among the 39 sequences determined here, 6 unique
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Endogenous retrovirus type L (ERV-L) phylogenyFigure 1
Endogenous retrovirus type L (ERV-L) phylogeny. Non-uranothere sequence designations taken from [1]. Uranothere designa-
tions are, Max (Elephas maximus), Lox (Loxodonta africana), Mana (Manatus trichechus), and Hyrax (Procavia capensis). Neighbor-
joining tree of all uranothere sequences including representative ERV-L elements from other mammalian orders. "*" designates 
sequences with coding potential.
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sequences had coding potential among only 4 species.
The observed sequence diversity and frequency of
observed coding potential is consistent with active ERV-L
expansion in these four species and consistent with results
with a smaller internal fragment from the same groups
(plus extinct woolly mammoth in the proboscidean sam-
ple) [19].

Phylogenetic analysis
A heuristic search of the entire uranothere ERV-L data set
yielded 12 equally parsimonious trees, a strict consensus
of which (Figure 2) showed poor recovery of accepted
clades within Uranotheria and low bootstrap support at
each node. While neighbor-joining analysis produces a
tree with uranothere sequences as a monophyletic group,
branch lengths in some cases were very short and boot-
strap support under any method used was not statistically
significant (Figure 1). On the assumption that sequences
with potential RT activity may have been under different
evolutionary constraints and may differ in their phyloge-
netic resolution, the sequences with no stop codons in the
retrieved pol gene were analyzed separately from those
with stop codons (Figure 3, 4 and 5). Those with potential
RT activity grouped as distinct monophyletic groups, pos-
sibly reflecting their more recent activity and thus show-
ing closer affinity to one another as opposed to other
related ERV-L sequences (Figure 3). Those with stop
codons showed a different picture with modest support
for Uranotheria as one might expect for single or low copy
sequences that have been transmitted vertically over time
(Figure 4). Likelihood analysis of the data produced simi-
lar groupings, though with weak support, suggesting the
associations found are not an artifact of the phylogenetic
analysis methodology (Figure 5). However, ME analysis
did not produce statistically significant resolution for any
ERV group examined including non-uranothere ERVs (not
shown). Poor resolution within Uranotheria with all anal-
yses could be due to several factors, although the likeliest
is different ages of individual element copies. This is not
unlike the situation with various sequences recovered
from primates and rodents: some sequences reconstruct
accepted ordinal groupings, while others do not. For
example, in the study by Bénit et al. [1], one New World
monkey sequence (As2) grouped with two dog sequences
and not with other primates. In other mammals,
sequences (e.g., those retrieved from cow and horse) were
dispersed in no evident pattern.

Discussion
The most important finding resulting from this study is
that elements that have undergone expansion–i.e. have
remained transpositionally active–are the ones that are
most likely to group monophyletically and those that
have not tend to be consistent in their higher-level taxo-
nomic distribution (in this case, at the superordinal level).

Thus, there are different elements within the same family
demonstrating different evolutionary trajectories. It is rea-
sonable to suppose that for some groups, such as rodents,
primates, and uranotheres, continued expansion of active
ERV-L elements was tolerated by the host. By contrast, in
other ungulate and carnivore lineages active elements
were not inherited or were silenced early during their evo-
lution and ERV-L expansion did not occur. Older ele-
ments tend to evolve as typical orthologous sequences. An
advantage of the great diversity of elements is that with a
single PCR, cloning, and determination of multiple clone
sequences one retrieves multiple independent sequences
with which to do phylogenetic analysis. In these regards,
the uranothere evidence is consistent with results previ-
ously reported for primates and rodents in which older
elements and elements that have undergone bursts of
transposition were found coexisting. In each of these
groups there is now good sequence evidence for retroele-
ments that have retained coding capacity, which is of
some interest since HERV-L pol (for example) is known to
be expressed in specific tissue types [21]. This indicates
that, in addition to potential transpositional activity, ret-
roelements other than syncytin may have acquired biolog-
ical functions important for their hosts.

Conclusions
In terms of our general results, elephants and the manatee
were found to contain the most diverse sequences, while
hyrax showed comparatively less diversity. This finding is
consistent with results from our previous study involving
extinct elephantids [19]. Elements that have been investi-
gated in other ungulates (bovids and suids) do not yield
monophyletic groupings and are represented by low copy
numbers [1], suggesting that expansion did not occur (or
has not recently occurred) in these taxa. Although critical
studies would have to be undertaken to demonstrate the
matter conclusively, it appears that amplification and
diversification of ERV-L elements were independent
events in primates, rodents and uranotheres.

Although this study shows that the value of ERV-Ls for the
narrow purpose of phylogenetic reconstruction is limited
at higher taxonomic levels, ERV-L is only one class among
many different groups of ERVs in mammalian genomes.
Some regions of ERVs have been used successfully to
reconstruct phylogenies at lower taxonomic levels [22].
Additional transposable elements could serve as phyloge-
netic markers in a manner similar to ERV-L in the present
study, while providing multiple independent sequences
to test ordinal level phylogenies.

Methods
Samples
African elephant (Loxodonta africana) DNA was supplied
by N. Georgiadis of the M'Pala Research Centre, Kenya.
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Maximum parsimony bootstrap consensus tree of all uranothere ERV-L sequencesFigure 2
Maximum parsimony bootstrap consensus tree of all uranothere ERV-L sequences. Bootstrap values over 50% are shown. The 
scale bar indicates the number of steps.
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Bootstrap consensus tree of Uranothere ERV-L sequences with coding potential onlyFigure 3
Bootstrap consensus tree of Uranothere ERV-L sequences with coding potential only.
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Bootstrap consensus tree of Uranothere ERV-L sequences without coding potentialFigure 4
Bootstrap consensus tree of Uranothere ERV-L sequences without coding potential.
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Quartet Puzzle maximum likelihood tree of sequences without coding potentialFigure 5
Quartet Puzzle maximum likelihood tree of sequences without coding potential. Puzzle support for each node is indicated.
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Asian elephant (Elephas maximus) blood was provided by
J. Hektor of the Tierpark Hellabrunn, Munich. Manatee
(Trichechus manatus) blood was provided by D. Murphy of
the Lowry State Park, Florida. Hyrax (Procavia capensis)
muscle was provided by G. Amato of the Bronx Zoo, New
York.

DNA extractions
One ml of blood or approximately one gram of tissue was
incubated in 1–2 ml 10 mM Tris-/Cl (pH 7.5), 10 mM
EDTA (pH 8.0), 50 mM NaCl, 2% SDS, and 0.6 mg/ml
Proteinase K overnight at 37 C, extracted with phenol and
chloroform, and subsequently concentrated with 50 ul
Millipore Ultrafee MC 30,000 NMWL columns or precip-
itated in 2.5 volumes ethanol and 1% NH4 Oac.

PCR, cloning, and sequencing
PCR primers for the ERV-L pol gene are described in [1].
Three µl of extract was added to 50 µl PCR containing
standard buffer supplied by Boehringer Mannheim and
30 PCR cycles performed. PCR products were cloned
using the pGEM-T cloning system (Promega). After heat
shock into bacteria, ampicillin and blue/white selection,
colonies were picked with a sterile pipette tip and added
to 30 µl PCR reactions where M13 forward and reverse
primers were used to amplify inserts for 25 cycles using
the same buffer system described for ERV-L amplifications
and as described in [19]. Five µl of the colony PCR prod-
ucts were visualized on ethidium-stained gels. Insert pos-
itive PCR reactions were purified with QIAquick columns
and sequenced with T7 and SP6 primers using an ABI 377
sequencer.

Phylogenetic analysis
Alignment
Representatives of each clade determined by Bénit et al.
[1] were included in an alignment with the elephant,
manatee, and hyrax sequences determined. HERV-L,
X89211; MERV-L, Y12713; NWM (AS2), AJ233633;
Lemur CM8, AJ233645; horse1, AJ233650; horse24,
AJ233654; horse26, AJ233655; horse27, AJ233656; pig1,
AJ233661; cow1, AJ233662; cow2, AJ233663; dog1,
AJ233665; rabbit4, AJ233627. Alignments were per-
formed using ClustalX [23] and adjusted where necessary.
Elephant, manatee and hyrax sequences have been depos-
ited in GenBank (accession numbers AY394571-
AY394609)

Phylogenetic methods
Maximum parsimony and neighbor joining analysis was
performed using PAUP 4.0b [24]. Heuristic searching
including all uranothere ERV-L sequences yielded 12 max-
imum parsimony trees (MPTs). 100 bootstrap replicates
were performed to test MPT robustness, the strict consen-
sus of which is shown in Figure 2. A bootstrap consensus

tree using only sequences with no stop codons yielded 2
trees. The strict consensus of these trees following 1000
bootstrap replicates is shown in Figure 3. A consensus tree
of 1000 bootstrap replicates, this time excluding
sequences with coding potential, is shown in Figure 4.
Maximum likelihood was performed using quartet puzzle
in PAUP 4.0b after determining the evolution model as
HKY +G using Modeltest 3.5 [25]. 10,000 puzzling steps
were employed to determine the tree topology. Minimum
evolution trees were generated using the program Mega2
[26].
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