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Abstract
Background: Aminoadipate reductase (Lys2) is a fungal-specific protein. This enzyme contains an
adenylating domain. A similar primary structure can be found in some bacterial antibiotic/peptide
synthetases. In this study, we aimed to determine which bacterial adenylating domain is most
closely related to Lys2. In addition, we analyzed the substitution rate of the adenylating domain-
encoding region.

Results: Some bacterial proteins contain more than two similar sequences to that of the
adenylating domain of Lys2. We compared 67 amino acid sequences from 37 bacterial and 10 fungal
proteins. Phylogenetic trees revealed that the lys2 genes are monophyletic; on the other hand,
bacterial antibiotic/peptide synthase genes were not found to be monophyletic. Comparative
phylogenetic studies among closely related fungal lys2 genes showed that the rate of insertion/
deletion in these genes was lower and the nucleotide substitution rate was higher than that in the
internal transcribed spacer (ITS) regions.

Conclusions: The lys2 gene is one of the most useful tools for revealing the phylogenetic
relationships among fungi, due to its low insertion/deletion rate and its high substitution rate. Lys2
is most closely related to certain bacterial antibiotic/peptide synthetases, but a common ancestor
of Lys2 and these synthetases evolutionarily branched off in the distant past.

Background
Not only fungi, but also certain prokaryotes synthesize
lysine through the 2-aminoadipate pathway [1–3]. How-
ever, the prokaryotic pathway is not identical to that of
fungi. The fungal process required to synthesize lysine
from 2-aminoadipate differs from that of prokaryotes [4].
The first step of this fungal-specific pathway is the reduc-
tion of 2-aminoadipate.

Aminoadipate reductase converts 2-aminoadipate to 2-
aminoadipate 6-semialdehyde via an adenosylated deriv-
ative. In Saccharomyces cerevisiae, this reaction requires

Mg2+ and the participation of the products of two genes,
lys2 and lys5 [5]. Recently, it has been shown that ami-
noadipate reductase is encoded by only lys2, and that the
Lys5 protein appears to be a specific phosphopantetheinyl
transferase for Lys2, converting the inactive apo-Lys2 to
the active holo-Lys2 [6,7].

The lys2 gene is a fungal-specific gene and generally ap-
pears to be present in a single copy in the genome. The
Lys2 protein has no extensive homologous protein in eu-
karyotes, with the exception of fungi, but it does possess
similarity to some bacterial antibiotic/peptide synthetases
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[4,8–10]. Recently, Drosophila and mouse were found to
have the analogue of Lys2, which function under degrada-
tion of lysine [11]. However, Lys2 is more similar bacterial
antibiotic/peptide synthetases than the animal proteins.
Lys2 has an adenylating, a peptidyl carrier, and a reductive
domain. This protein has twelve conserved motifs. The
adenylating domain contains nine conserved motifs [12].
In this study, we aimed to reveal which bacterial adenylat-
ing domain is the most closely related to Lys2.

In addition, in order to determine the substitution rate of
lys2, we compared the lys2 sequences from closely related
fungi. In this study, we sequenced lys2 fragments [13] and
compared them among black-koji molds of the Aspergillus
niger group.

Results and Discussion
The deduced amino acid sequences (each 343 amino-ac-
ids long) from Aspergillus awamori IAM 2112, A. awamori
IAM 2299, A. awamori IAM 2300, A. saitoi IAM 2210, A.
saitoi IAM 2215, A. saitoi IAM 14608, A. saitoi var. kagoshi-
maensis IAM 2190, and A. saitoi var. kagoshimaensis IAM
2191 were identical. Those from A. usamii IAM 2185 and
IAM 2186 differed from the other black-koji molds by one
amino acid. The nucleotide sequences from A. awamori
IAM 2112, IAM 2299, and IAM 2300 were identical. Those
from A. saitoi IAM 2210 and IAM 2215 were identical.
Those from A. saitoi var. kagoshimaensis IAM 2190 and
IAM 2191 were identical. Those from A. usamii IAM 2185
and IAM 2186 were identical. Aspergillus awamori's se-
quence was 10 nucleotides different from that of A. saitoi

IAM 2210 and IAM 2215, and 40 nucleotides different
from that of A. usamii.

We deposited the sequences in the DNA Data Bank of Ja-
pan under accession numbers AB079758, AB085587,
AB079759, AB085588, AB085589, AB079760,
AB085590, AB079761, and AB085591 for A. awamori IAM
2299, A. awamori IAM 2300, A. saitoi IAM 2210, A. saitoi
IAM 2215, A. saitoi IAM 14608, A. saitoi var. kagoshimaensis
IAM 2190, A. saitoi var. kagoshimaensis IAM 2191, A. us-
amii IAM 2185, and A. usamii IAM 2186, respectively.

Comparisons between A. awamori and Penicillium chrys-
ogenum (Table 1) and between A. awamori and A. fumiga-
tus (Table 2) showed that the rate of insertion/deletion in
lys2 was lower and the nucleotide substitution rate was
higher than that in ITS regions. We therefore believe that
lys2 is a more powerful tool to reveal phylogenetic rela-
tionships among fungi than are the ITS regions.

The result of the homology search using BLAST showed
that Lys2 had a more similar sequence to that of certain
bacterial antibiotic/peptide synthetases than did any oth-
er existing proteins. In addition, some bacterial antibiotic/
peptide synthetases were shown to contain more than two
homologous regions. For example, RS05859 in Ralstonia
solanacearum GMI1000 has five homologous regions.
Therefore, we obtained 57 amino acid sequences, with a
value of E < 10-25, from 39 proteins (see Materials and
Methods).

Table 1: Comparison between Aspergillus awamori and Penicillium chrysogenum

Region Alignment length (A) Insertions/Deletions 
(B)

Substitutions (C) B/A C/(A-B)

18S rDNA 1734 3 25 1.7 × 10-3 1.4 × 10-2

ITS1 185 10 34 5.4 × 10-2 1.9 × 10-1

ITS2 169 5 22 3.0 × 10-2 1.3 × 10-1

lys2 1032 9 242 8.7 × 10-3 2.4 × 10-1

Table 2: Comparison between Aspergillus awamori and A. fumigatus

Region Alignment length (A) Insertions/Deletions 
(B)

Substitutions (C) B/A C/(A-B)

18S 1733 0 11 0 6.3 × 10-3

rDNA
ITS1 188 6 23 3.2 × 10-2 1.3 × 10-1

ITS2 170 4 22 2.4 × 10-2 1.3 × 10-1

lys2 1032 0 202 0 2.0 × 10-1
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The phylogenetic tree (Fig. 1ab) shows that the adenylat-
ing domains from some bacterial antibiotic/peptide syn-
thetases are distributed quite widely, and that
duplications and/or horizontal transfers occurred many
times. For example, Anabaena sp. PCC 7120 has 12 similar
sequences within itself. In this tree, these 12 sequences
were distributed among at least 6 groups. The present
findings indicate that duplication and/or horizontal
transfer occurred in the genome of Anabaena sp. PCC
7120. On the other hand, the adenylating domains from
Lys2 formed a monophyletic cluster. However, the neigh-
bor-joining tree presented here did not clarify which bac-
terial domain was most closely related to that of Lys2.

In order to determine which bacterial domain was most
closely related to that of Lys2, a maximum likelihood
analysis using PHYLIP version 3.6 [14] was carried out.
We selected 27 amino acid sequences from the 67 se-
quences used in the neighbor-joining analysis. The align-
ment used in maximum likelihood analysis is shown in
Fig. 2. The phylogenetic tree (Fig. 3) indicates that a pro-
tein (AGR L 2311) from Agrobacterium tumefaciens is most
closely related to a common ancestor of Lys2, but this re-
sult had only weak bootstrap support (17%). In the boot-
strap consensus tree (Fig. 3), the branch points at the early
stage of evolution are very weak support. Animals and
plants have no Lys2. If the common ancestor of eukaryo-
tes had a similar protein, the other eukaryotes except for
fungi had lost it.

Conclusions
This study indicated that Lys2 is more closely related to
certain bacterial antibiotic/peptide synthetases than it is
to any other known proteins. However, in the distant past,
a common ancestor of Lys2 branched off from the bacte-
rial antibiotic/peptide synthetase. This study did not find
evidence for a direct horizontal transfer (i.e., at least not a
recent horizontal transfer) between bacteria and a com-
mon ancestor of fungi. The lys2 gene has been inherited
during fungal evolution. On the other hand, in the course
of bacterial evolution, the duplication and/or horizontal
transfer have occurred.

Materials and Methods
In this study, we used Aspergillus awamori IAM 2299, A.
awamori IAM 2300, A. saitoi IAM 2210, A. saitoi IAM 2215,
A. saitoi IAM 14608, A. saitoi var. kagoshimaensis IAM
2190, A. saitoi var. kagoshimaensis IAM 2191, A. usamii
IAM 2185, and A. usamii IAM 2186. Potato dextrose agar
was used for the cultivation. Genomic DNA isolation,
DNA amplification, and the sequencing of lys2 fragments
were performed according to the method of An et al. [13].

We compared the nuclear small subunit rRNA genes (18S
rDNAs), ITS1 regions, ITS2 regions, and lys2 genes be-

tween A. awamori and Penicillium chrysogenum and be-
tween A. awamori and A. fumigatus. The following
nucleotide-sequence accession numbers were used:
D63695, A. awamori 18S rDNA [15]; U03518, A. awamori
ITS1 [16]; U03519, A. awamori ITS2 [16]; AB076077, A.
awamori lys2 [13]; M55628, P. chrysogenum 18S rDNA;
AJ270768, P. chrysogenum ITS1 and ITS2 [17]; Y13967, P.
chrysogenum lys2 [18]; AB008401, A. fumigatus 18S rDNA
[19]; AF455542, A. fumigatus ITS1 and ITS2. The prelimi-
nary sequence of lys2 was obtained from The Institute for
Genomic Research website at http://www.tigr.org.

We performed a homology search using BLAST [20] with
the parameter values given in the Kyoto Encyclopedia of
Genes and Genomes [21]. The query amino acid sequence
was a fragment of Saitoella complicata Lys2 [13]. In this
study, we phylogenetically analyzed 57 amino acid se-
quences (all sequences had a value of E < 10-25, according
to the BLAST search results) separately from those of fun-
gi. Multiple alignment was created using CLUSTAL W [22]
among the 57 high-scoring sequences and those of 10
fungal Lys2 proteins. A neighbor-joining phylogenetic
tree was constructed using MEGA version 2.1 [23] with
1,000 bootstrap replicates. Based on this tree, we selected
27 amino acid sequences for a maximum likelihood anal-
ysis, which was performed using PHYLIP version 3.6 [14].
We used three programs (consense, proml, and seqboot)
for constructing phylogenetic tree with 100 bootstrap
replicates.

The protein names used in this study are AGR_L_2311,
Agrobacterium tumefaciens C58 (Cereon) AGR_L_2311;
all1647, Anabaena sp. PCC 7120 peptide synthetase;
all2642, Anabaena sp. PCC 7120 multifunctional peptide
synthetase; all2643, Anabaena sp. PCC 7120 microcystin
synthetase B; all2644, Anabaena sp. PCC 7120 peptide
synthetase; all2645, Anabaena sp. PCC 7120 peptide syn-
thetase; all2647, Anabaena sp. PCC 7120 microcystin syn-
thetase B; all2648, Anabaena sp. PCC 7120 peptide
synthetase; all2649, Anabaena sp. PCC 7120 probable
non-ribosomal peptide synthetase; all1695, Anabaena sp.
PCC 7120 probable peptide synthetase; Atu3682, Agrobac-
terium tumefaciens C58 (U.Washington/Dupont) non-ri-
bosomal peptide synthetase; b0586, Escherichia coli K-12
MG1655 enterobactin synthetase component F;
BG10168, Bacillus subtilis 168 surfactin synthetase subunit
1; BG10169, Bacillus subtilis 168 surfactin synthetase sub-
unit 2; BG10170, Bacillus subtilis 168 surfactin synthetase
subunit 3; BG10970, Bacillus subtilis 168 peptide syn-
thetase; BG10971, Bacillus subtilis 168 peptide synthetase;
BG10972, Bacillus subtilis 168 peptide synthetase;
BG11243, Bacillus subtilis 168 probable non-ribosomal
peptide synthetase; BG11961, Bacillus subtilis 168 peptide
synthetase; ECs0625, Escherichia coli O157:H7 Sakai en-
terobactin synthetase component EntF; JW0578, Es-
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Figure 1
a) Phylogenetic relationships among 67 amino acid sequences from the adenylating domain of Lys2 and bacterial antibiotic/pep-
tide synthetase. A total of 176 amino acid sites were considered without gap regions in alignment. b) The bootstrap consensus 
tree. The cut-off value for consensus was 50%. Protein names were shown in Materials and Methods.
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Figure 2
Alignment of the selected 27 amino acid sequences. This alignment was used in the maximum likelihood analysis. Protein names 
were shown in Materials and Methods.
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cherichia coli K-12 W3110 Enterochelin synthetase
component F; MT2448, Mycobacterium tuberculosis
CDC1551 peptide synthetase; OB0958, Oceanobacillus
iheyensis HTE831 monomodular nonribosomal peptide
synthetase; PA2399, Pseudomonas aeruginosa PA01 pyover-
dine synthetase D; PA2402, Pseudomonas aeruginosa PA01
probable non-ribosomal peptide synthetase; PA2424,
Pseudomonas aeruginosa PA01 probable non-ribosomal
peptide synthetase; RS05859, Ralstonia solanacearum
GMI1000 probable peptide synthetase protein; RS05860,
Ralstonia solanacearum GMI1000 probable peptide syn-
thetase protein; Rv2380c, Mycobacterium tuberculosis
H37Rv mbtE; SCO0492, Streptomyces coelicolor A3(2) pu-
tative peptide synthetase; SCO3230, Streptomyces coelicolor
A3(2) CDA peptide synthetase I; SCO3231, Streptomyces
coelicolor A3(2) CDA peptide synthetase II; SF0498, Shigel-
la flexneri 301 (serotype 2a) ATP-dependent serine activat-
ing enzyme; SMU.1342, Streptococcus mutans UA159

(serotype C) putative bacitracin synthetase 1; STM0588,
Salmonella typhimurium LT2 enterobactin synthetase, com-
ponent F (nonribosomal peptide synthetase); STY0631,
Salmonella typhi enterobactin synthetase component F;
XAC2097, Xanthomonas axonopodis pv. citri 306 ATP-de-
pendent serine activating enzyme; Z0727, Escherichia coli
O157:H7 EDL933 enterobactin synthetase component F.
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