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Abstract
Background: Fluctuating asymmetry is assumed to measure individual and population level
developmental stability. The latter may in turn show an association with stress, which can be
observed through asymmetry-stress correlations. However, the recent literature does not support
an ubiquitous relationship. Very little is known why some studies show relatively strong
associations while others completely fail to find such a correlation. We propose a new Bayesian
statistical framework to examine these associations

Results: We are considering developmental stability – i.e. the individual buffering capacity – as the
biologically relevant trait and show that (i) little variation in developmental stability can explain
observed variation in fluctuating asymmetry when the distribution of developmental stability is
highly skewed, and (ii) that a previously developed tool (i.e. the hypothetical repeatability of
fluctuating asymmetry) contains only limited information about variation in developmental stability,
which stands in sharp contrast to the earlier established close association between the repeatability
and developmental instability.

Conclusion: We provide tools to generate valuable information about the distribution of
between-individual variation in developmental stability. A simple linear transformation of a previous
model lead to completely different conclusions. Thus, theoretical modelling of asymmetry and
stability appears to be very sensitive to the scale of inference. More research is urgently needed to
get better insights in the developmental mechanisms of noise and stability. In spite of the fact that
the model is likely to represent an oversimplification of reality, the accumulation of new insights
could be incorporated in the Bayesian statistical approach to obtain more reliable estimation.

Background
As a consequence of the stochastic nature of cellular proc-
esses, the development of any trait is disturbed by the ac-
cumulation of small random errors. This developmental
noise (DN) may be counteracted by individual-specific
buffering mechanisms that ensure a controlled develop-

ment [i.e. Development stability (DS)] [1]. DS is not di-
rectly observable from the trait values but can presumably
be measured by small random deviations from perfect
symmetry of bilateral traits [i.e. Fluctuating asymmetry
(FA)]. The underlying idea is that left and right sides of a
bilaterally symmetric trait are under the control of the
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same set of genes and experience similar environmental
conditions. Ideally, both sides should follow exactly the
same developmental pathways leading to a perfectly sym-
metric morphology. Any deviation from symmetry is as-
sumed to reflect failure to buffer development against
random noise.

FA has been studies intensively in the area of evolutionary
biology and conservation because FA could act as a gener-
al measure of the adverse fitness effects of environmental
and/or genetic stress [2]. It is often postulated that all in-
dividuals experience noise during development irrespec-
tive of the levels of stress they experience. While
controlled growth should be able to correct for these per-
turbations under ideal developmental conditions. Yet, un-
der levels of stress, insufficient amounts of energy remain
available to assure controlled stable development. The re-
lationship between DS and FA on the one hand, and stress
and fitness on the other hand, together with their genetic
background has been the subject of many debates in the
evolutionary literature. Many, but certainly not all, studies
show a positive relationship between FA and stress at the
individual and population level. These observations have
led to the assumption that the unobservable DS decreases
with environmental and/or genetic stress, and that DS
may express individual (genetic) quality and population
health [2]. Yet, because of many caveats in the literature,
the generality of these associations has been questioned
[3,4].

The most appealing feature of FA as potential estimator of
stress and fitness is that a biologically complex and poorly
understood property (i.e. DS) can be estimated by simply
measuring both sides of a bilaterally symmetric trait. In
sharp contrast to this seeming lucidity stand statistical
complexity, difficulties in interpretation and lack of a
mechanistic approach [1,5]. If we restrict our arguments
to FA only – and neglect directional asymmetry and an-
tisymmetry of which the link with DS is subject of many
debates as well [1,6,7] – the controversy is the result of
two phenomena. Firstly, levels of asymmetry are often
small and measurement error biases FA-estimates upward.
Repeated measurements on each side and mixed-model
analysis yield unbiased estimates [8,9]. Secondly, DS and
DN cannot be observed directly and independently, and
very little is known about the developmental mechanisms
that lead to asymmetric trait expression (although
progresses in this field have been made that [1]). Based on
statistical arguments the association between individual
asymmetry and DS is presumed to be weak [10–15]. Con-
sequently, associations between FA and other factors un-
derestimate the degree of association with DS. Yet, model
assumptions have been challenged for both mechanistic
[1] and statistical [13] reasons.

Whitlock [10] and Houle [12] have initiated the develop-
ment of models that establish a link between FA and DS
based on the normal assumption of DN. Yet, the termi-
nology of the literature has been confusing. DS, develop-
mental noise, developmental imprecision, developmental
precision and developmental instability have been used
interchangeably, sometimes to indicate the same process
while they mean different things. Here we use DN to indi-
cate the random process that causes a developing trait to
deviate from its expected growth trajectory (given its gen-
otype and environmental conditions). DS is the buffering
capacity counteracting DN. The resulting developmental
imprecision or developmental instability (DI) is the result
of the joint action of DN and DS. Thus, FA relates positive-
ly to DN and DI and negatively to DS. Most importantly
it should be noted that DS is the biological property of in-
terest in this context since it refers to the feature of the in-
dividual.

The underlying assumption of the models that link FA and
DS, is that DI is expressed as a variance where individual
asymmetry can be regarded as a sample from a normal
distribution with zero mean and variance equal to 2×DI
[10]. Therefore, variation in asymmetry may be large in
spite of little or no variation in DI [10,11,16], resulting in
a downward bias of patterns in FA [10,12]. This down-
ward bias can be corrected for in two different ways. Asso-
ciations between FA and other factors and heritabilities
can be transformed using the so-called hypothetical re-
peatability (i.e. R, the proportion of variation in FA that is
due to variation in the underlying DI [10,11,14,15]). Or –
making use of a latent variable model in a Bayesian con-
text – estimates of slopes and heritabilities can be ob-
tained directly, taking all sources of uncertainty into
account [17].

The importance of the downward bias for heritabilities in
DI, between-trait correlations and the association be-
tween DI and fitness was evaluated twice in the recent lit-
erature [15,16]. Both papers reached different
conclusions. Based on data from several large datasets,
Gangestad and Thornhill [15] concluded that values of R
are often small (+ 0.04). They subsequently concluded
that a low heritability of FA or a weak FA-fitness associa-
tion could still be the result of a much stronger effect in
DI. Van Dongen and Lens [16] on the other hand con-
cluded that values of R may be much higher in some cases,
but observed that even in those cases heritabilities of DI
remain low. Houle [13] indirectly challenged the latter
conclusion. His analytical and numerical results showed
that in order to obtain high values of R, coefficients of var-
iation (CV) in DI should be unrealistically high (>100%)
relative to morphological traits (CV typically between 2
and 20%) and fitness components (CV typically between
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10 and 100%). Therefore, model assumptions may be in-
correct [13].

In this paper we propose an alternative model which is a
simple linear transformation of the previous one. Current
models consider variation at the level of DI, the joint ac-
tion of DN and DS [10–15,17]. Yet, DS is the individual-
specific trait of interest that is presumably related with
stress and fitness. We therefore treat individual DS as the
proportion by which DN is reduced resulting in an indi-
vidual-specific value of DI. Our numerical simulations in-
dicate that only small amounts of variation in DS are
required to obtain high values of R. In addition, the rela-
tionship between variation in DS and R depends on the
shape of the distribution of between-individual variation
in DS. Thus, there is no simple and direct relationship be-
tween the amount of variation in DS and R. Nevertheless,
the common feature of both models is the high skewness
in the distributions of either DI [13] or DS (below). In a
final section, a statistical framework is proposed that pro-
vides estimates of this distribution of DS. We apply the
method to both simulated and real data.

Results and Discussion
A simple model of DN, DS and DI
We assume that in the absence of a mechanism that buff-
ers development against random noise, developmental er-
rors will accumulate and result in a phenotype that
deviates from its expected value given the individuals'
genotype and environmental conditions. Each develop-
mental mistake is assumed to be independent of previous
ones and to follow a normal distribution with zero mean
and variance equal to σ2

noise. It is important to note that
these assumptions which also hold in previous models,
may be an unrealistic oversimplification of real develop-
mental processes [1,13]. Representing development as a
high number of small discrete growth events, any trait val-
ue is a sample from a normal distribution with mean
equal to the expected trait value and variance the sum of
the many small errors over a range of growth events:

The asymmetry of a bilaterally symmetric trait then fol-
lows:

N(0,DN)  (2)

where developmental noise is defined as the cumulative
effect of mistakes:

  

DS, the process that buffers development against mis-
takes, can be incorporated in this model as the propor-

tional reduction in σ2
noise during development.

Asymmetry of bilateral symmetric traits then follows:

N(0,DN × (1 - DS))  (3)

where DS ∈ [0,1[ and large values of DS indicate high
buffering capacity. Note that 1 is not included in the do-
main of DS since this would lead to a zero variance. The
model hereby assumes that perfect symmetry does not ex-
ist in nature [18].

Numerical simulations
In this section the attributes of model (3) are investigated
by simulating datasets under different conditions. A range
of distributions of DS is evaluated and results are com-
pared with earlier conclusions.

Simulation conditions
Assume that the development of a particular trait of inter-
est experiences the same amount of noise in each individ-
ual (i.e. DN constant), but that variation in DS exists. The
beta-distribution is a good candidate distribution to mod-
el variation in DS because it is bounded between 0 and 1
and can take many different shapes. It is determined by
two parameters β1 and β2 that can only take positive val-
ues. When both parameters exceed 1 the distribution is
unimodal and when β1 equals β2 it is symmetric. When
β1<β2 or β1>β2 the distribution is skewed to the right and
the left respectively. When both β1 and β2 are smaller than
1 the distribution becomes bimodal. Distributions used
here are represented graphically in Figure 1. For each pa-
rameter combination, 1000 samples of 10000 individuals
were generated in WINBUGS (Version 1.3 freely available
at  [http://www.mrc-bsu.cam.ac.uk/bugs] ), and the coef-
ficients of variation in DS and DI as well as R were estimat-
ed. Mean values were calculated across the 1000 samples
to keep stochastic variation minimal.

Results
The beta-distributions applied to model variation in DS
generated a broad range of CV values for both DS and DI
and of values of R (Table 1). In agreement with earlier re-
sults [13,15], R was closely and positively associated with
the CV of DI (Fig. 2). Values larger than 100% were re-
quired to obtain relative large values of R (>0.4). Howev-
er, when examining the relationship at the level of DS, the
association was negative (Fig. 2) indicating that only
small amounts of variation in DS were required to obtain
large values of R. For example, the largest value of R was
obtained with a left skewed distribution of DS with a val-
ues of CV equal to only 17% (Table 1), hereby lying well
within the range of morphological and fitness traits [13].

When examining Table 1 and Figure 2 in more detail, the
overall negative association between R and the CV of DS

N noiseexpected, σ2 1∑( ) ( )

DN noise= ∑2 2σ
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did not appear to hold when the distribution of DS was
symmetrical. Values of the CV's of DS and DI were identi-
cal and in both cases correlated positively with R. Thus,
the association between the CV's of DS and R depends on
the shape of the distribution of between-individual varia-
tion in DS.

Empirical estimates of the distribution of DS: a Bayesian 
model
In addition to the amount of variation, distributional
characteristics of DS have an important impact on the re-
lationship with values of R. As a result, values of R do not
consistently reflect variation in DS and distributional
characteristics of variation in DS need to be evaluated ad-
ditionally. Below we first propose a statistical model
based on Bayesian statistical principles, to estimate the

Figure 1
Overview of distributions of DS that were used to simulate datasets. The bottom three rows of distributions are
skewed to the left. The same right-skewed distributions (obtained by interchanging β1 and β2) are also used (Table 1)
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distribution of DS and then apply it to both simulated
and empirical data.

A Bayesian approach
The first step in any Bayesian analysis is to construct the
full joint probability model of both the parameters of the
model (a vector indicated by θ) and the data (indicated by
y) as p(θ,y). This model can be decomposed in a set of sub-
models, which are then completed with prior distribu-
tions [p(θ)]. In contrast to more traditional methods, pa-
rameters are considered to be stochastic rather than fixed.
Conclusions about the parameter space θ are made in
terms of probability statements conditional on the data y.
These probability statements are based on the posterior
distribution of each parameter [p(θ|y) = p(θ)p(y|θ)/p(y)]
which can either be obtained analytically or by Monte
Carlo Markov Chain simulation (MCMC) [19,20].

Bayesian statistics were introduced into the field of DS
and FA to model heterogeneity in measurement error
(ME) [5] and to obtain unbiased estimates of DI-fitness
associations [17]. One aspect of these models – which we
adopt here – was to construct a fully Bayesian mixed-effect
regression model. Each observation (i.e. measurement on
each side) is modelled as a sample from a normal distri-

bution with mean equal to the unknown trait value and
variance equal to the degree of measurement error (σ2

ME):

where i = 1..N and j = 1..K with N = number of individuals
and K = number of within subject repeats.

The expected value of a single measurement (i.e. expected
[i,j]) is modelled by the sum of a population-specific part
(i.e. the fixed-effects) and an individual-specific part (i.e.
the random-effects). As fixed-effects an intercept and a
slope are included, modelling directional asymmetry. An
individual-specific random intercept (interc_ind [i]) and
slope (slope_ind [i]) model individual variation in size
and asymmetry around this regression line, reflected in
ind_profile [i,j]. Random effects are assumed to follow a
normal distribution with zero means and variances re-
flecting variation in size (σ2

size) and asymmetry (σ2
FA) re-

spectively:

The model is then completed with the following prior dis-
tributions [19]:

The parameter estimates obtained from this model have
exactly the same interpretation as for the empirical Bayes'
approach [21]. However, because each parameter is treat-
ed as a stochastic variable, standard deviations become
slightly larger [5]. The main importance of this part of the
model is to obtain unbiased estimates of individual asym-
metry, here treated as distributions instead of fixed values.

The next step in the model – and this part of the model
differs from the previous two approaches – is to establish
a link between the observable individual asymmetry and
both the unobservable DN and DS. This can be achieved
by assuming that each individual asymmetry value reflects
a sample from a normal distribution with zero mean and
variance σ2

FA [i], the latter representing the individual-
specific degree of DI [10]. Note that in contrast to equa-
tion 8, here each individual is assumed to have a specific
degree of DI, or in other words that there is variation in
the underlying DI. In agreement with equation 3, DI can
be modelled as the joint effect of DN and DS, where DS
follows a beta distribution:

Figure 2
Relationship between the coefficient of variation
(CV) of both DS and instability and the hypothetical
repeatability (R). Mean values and their standard deviation
were obtained for a range of distributions of variation in DS.
Details are provided in Figure 1 and Table 1. The theoretical
upper limit of R equals 0.637 and is indicated by a horizontal
line
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The so-called hyperparameters β1 and β2 and DN are giv-
en the following prior distribution with a lower limit of
zero (i.e. parameters of beta distribution or variances can-
not be negative):

N(10,1000)  (12)

Posterior distributions of the parameters of interest could
in theory be obtained analytically, but in practice our
model is to complex. Alternatively, simulation techniques
provide a convenient option. The computer package WIN-
BUGS applied here to analyse the different datasets,
makes use of MCMC with Gibbs sampling and the Me-

Table 1: Results of numerical simulations Hypothetical repeatability of single trait unsigned asymmetry (R) and the coefficient of vari-
ation of DS (CV-DS) and instability (CV-DI) for simulated datasets were the distribution of DS followed a beta-distribution with different 
shapes (Fig.1). Results are means (SD) of 1000 samples of 10000 observations.

β1 β2 shape of 
β-distribution

CV-DS CV-DI R

Symmetrical distributions

1 1 Uniform 0.58 (0.004) 0.58 (0.004) 0.16 (0.008)
2 2 Symmetric around 0.5 0.45 (0.003) 0.45 (0.003) 0.10 (0.007)
5 5 Symmetric around 0.5 0.30 (0.002) 0.30 (0.002) 0.04 (0.008)
10 10 Symmetric around 0.5 0.14 (0.001) 0.14 (0.001) 0.01 (0.010)
0.75 0.75 Bimodal 0.63 (0.004) 0.63 (0.004) 0.20 (0.006)
0.5 0.5 Bimodal 0.71 (0.005) 0.71 (0.005) 0.25 (0.006)
0.1 0.1 Bimodal 0.90 (0.008) 0.90 (0.008) 0.40 (0.004)
0.05 0.05 Bimodal 1.03 (0.01) 1.03 (0.008) 0.41 (0.004)

Skewed unimodal distributions

3 5 Right skewed 0.43 (0.003) 0.26 (0.002) 0.04 (0.010)
2 5 Right skewed 0.56 (0.004) 0.21 (0.002) 0.02 (0.009)
1 5 Right skewed 0.81 (0.005) 0.17 (0.002) 0.01 (0.009)
1 10 Right skewed 0.93 (0.007) 0.09 (0.007) 0.00 (0.009)
0.75 1 Right skewed 0.69 (0.005) 0.52 (0.004) 0.14 (0.007)
0.5 1 Right skewed 0.89 (0.006) 0.45 (0.004) 0.12 (0.007)
0.1 1 Right skewed 2.16 (0.02) 0.22 (0.004) 0.03 (0.008)
0.05 1 Right skewed 3.13 (0.04) 0.16 (0.003) 0.02 (0.009)
5 3 Left skewed 0.26 (0.002) 0.43 (0.004) 0.08 (0.009)
5 2 Left skewed 0.22 (0.002) 0.56 (0.004) 0.13 (0.008)
5 1 Left skewed 0.18 (0002) 0.80 (0.005) 0.22 (0.007)
10 1 Left skewed 0.09 (0.001) 0.91 (0.007) 0.26 (0.007)
1 0.75 Left skewed 0.52 (0.004) 0.70 (0.005) 0.22 (0.007)
1 0.5 Left skewed 0.45 (0.004) 0.90 (0.006) 0.30 (0.006)
1 0.1 Left skewed 0.22 (0.004) 2.15 (0.02) 0.55 (0.002)
1 0.05 Left skewed 0.17 (0.004) 2.85 (0.04) 0.58 (0.002)

Asymmetric bimodal distributions

0.5 0.75 Right asymmetric 0.82 (0.006) 0.54 (0.005) 0.17 (0.007)
0.1 0.75 Right asymmetric 2.01 (0.021) 0.27 (0.004) 0.06 (0.008)
0.05 0.75 Right asymmetric 2.89 (0.037) 0.19 (0.004) 0.03 (0.009)
0.1 0.5 Right asymmetric 1.77 (0.017) 0.35 (0.005) 0.10 (0.008)
0.75 0.5 Left asymmetric 0.55 (0.005) 0.82 (0.006) 0.28 (0.006)
0.75 0.1 Left asymmetric 0.28 (0.004) 2.00 (0.019) 0.54 (0.002)
0.75 0.05 Left asymmetric 0.19 (0.004) 2.86 (0.041) 0.58 (0.001)
0.5 0.1 Left asymmetric 0.35 (0.005) 1.75 (0.018) 0.51 (0.001)
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tropolis-Hastings algorithm [19,20]. In each analysis per-
formed below, 5 independent chains were run with a burn
in period of 500 iterations and 1000 iterations from
which the posterior distributions were estimated. Each
distribution is thus based on 5000 iterations. Conver-

gence was checked with the Gelman and Rubin 'shrink
factor' in combination with visual inspection of the
chains and their degree of autocorrelation [22,23]. Unless
mentioned otherwise, convergence behaviour was good.

Figure 3
Posterior distributions of DS. Posterior distributions indicated by the black bars were obtained for datasets with three dif-
ferent sample sizes (left: N = 500; middle: N = 1000; right: N = 5000) and six different underlying shapes generated from differ-
ent beta-distributions (row 1: β1 = 2, β2 = 5; row 2: β1 = 1, β2 = 0.5; row 3: β1 = 1, β2 = 0.1; row 4: β1 = 0.1, β2 = 1; row 5: β1
= 0.5, β2 = 1; row 6: β1 = 0.1, β2 = 0.1; indicated by the gray lines)
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The analysis of simulated data
In order to evaluate the usefulness and limitations of the
proposed technique, datasets with six different distribu-
tional characteristics of DS and three different sample siz-
es were generated and subsequently analysed. Posterior
means and medians of DN are given in Table 2. These es-
timates appeared to be biased upward for the two left-
skewed (β1>β2) distributions and the bimodal one. For
the other shapes of the distribution of DS (see Fig. 3), es-
timates of DN were more accurate. This result is not unex-
pected. In left-skewed distributions relatively few
individuals are developmentally unstable (i.e. low DS),
while those individuals contain most information about
the size of DN.

Figure 3 shows expected and estimated distributions of
between individual variation in DS. In most occasions the
estimated distribution, although sometimes roughly, ap-
proximated the expected distribution (Fig. 3), except for

the bimodal case where the peak of developmentally un-
stable individuals was not detected (Fig. 3 bottom row).
In general, and ignoring the bimodal case, the shape of
the distribution was detected even so for sample sizes of
500 individuals. Still, in one occasion the MCMC failed to
converge. Convergence problems occur even more fre-
quently for smaller sample sizes (i.e. N = 250), but upon
convergence the obtained estimate of the distribution re-
flected the true shape (data not shown).

An example where the method fails
We treat DI as the joint effect of DN and DS (equation 3).
Because the observable FA of a trait depends on the mag-
nitude of DI, DN and DS can only be separated statistical-
ly from each other under particular conditions. That is
when one of the two is held constant (in our simulations
we keep DN constant) and when values of the other span
the whole range of possible values (between 0 and 1 for
DS). Suppose we limit the distribution of between-indi-

Table 2: Posterior mean (SD) and median values of the degree of developmental noise (DN). Data were generated for three different 
sample sizes and for six different shapes of the distribution of DS, as determined by two parameters β1 and β2 of the beta-distribution. 
The true underlying value of DN equalled 1. Estimated distributions of variation in DS are presented graphically in Figure 3.

Sample size 500 1000 5000

mean (SD) median mean (SD) median mean (SD) median

β1 = 2; β2 = 5 0.83 (0.18) 0.78 1.14 (0.82) 1.18 1.02 (0.11) 0.99
β1 = 1; β2 = 0.5 2.66 (2.97) 1.41 2.84 (1.67) 2.50 1.43 (0.26) 1.36
β1 = 1; β2 = 0.1 2.18 (2.54) 1.08 3.12 (1.72) 2.80 2.71 (0.69) 2.70
β1 = 0.1; β2 = 1 1.05 (0.14) 1.02 1.26 (0.17) 1.21 0.99 (0.06) 0.97
β1 = 0.5; β2 = 1 no convergence 1.17 (0.48) 1.10 1.18 (0.10) 1.18
β1 = 0.1; β2 = 0.1 4.76 (3.70) 4.00 1.68 (0.48) 1.59 2.63 (0.68) 2.50

Table 3: Overview of empirical datasets used to estimate developmental noise and the distribution of variation in DS simultaneously.

'Speciesa Trait Sample size Rb

Winter moth (Operophtera brumata)1 tibia length 728 0.50
Indian meal moth (Plodia interpunctella)2 tibia length 433 0.56
Greenfinch (Carduelis chloris)3 femur length 452 0.22
Greenfinch (Carduelis chloris)3 mandibular foramen 452 0.18
Greenfinch (Carduelis chloris)3 humerus lengthc 433 0.04NS

Greenfinch (Carduelis chloris)3 ulna lengthc 443 0.10NS

White-starred robin (Pogonocichla stellata)4 eye stripe length 214 0.49
Taita thrush (Turdus helleri)4 tarsus length 313 0.37

a References: 1) [25]; 2) [26]; 3) Karvonen, Merilä, Rintamäki & Van Dongen., unpublished; 4) [27] b significantly larger than zero unless mentioned 
otherwise (NS: p > 0.05) c MCMC showed no convergence when analysed
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vidual variation in DS between 0 and 0.5 and use a value
of DN equal to 1. The variance component DI that leads
to the observable FA values, then varies between 1 and
0.5. However, the same range can be obtained for, for ex-
ample, a value of DN equal to 10 and DS ranging between
0.1 and 0.05. In other words, different solutions are
equally likely. This is illustrated by the posterior distribu-
tions of DS and DN obtained for this particular example
with a sample of 500 individuals (Fig. 4). For both DS and
DN multimodal distributions are obtained and the MC-
MC's did not show convergence. Together with problems
of small sample sizes a restricted range of the distribution
of DS appears to lead to convergence problems.

Patterns in the real world
Analyses of simulated data showed that the presented
method provides reliable estimates of the distribution of
DS under a variety of conditions. In addition, unless the
MCMC failed to converge, the obtained distributions ap-
proximated the underlying ones. We therefore assume
that convergence offers a good criterion for the reliability
of obtained results. We apply the above model to 8 data-
sets from 5 different species and 7 different traits (Table
3), following the specifications detailed above. In two cas-
es, the MCMC did not converge. The hypothetical repeat-
abilities in these cases were low (Table 3) and not
significantly different from zero. Thus, the available data
do not allow concluding that variation in individual DS
was present. Distributions of between-individual varia-
tion in DS of the remaining six samples – which did show
good convergence behaviour – are given in Figure 5. Dis-
tributions are remarkably similar in shape, all showing a
highly left skewed distribution, irrespective of the value of
the hypothetical repeatability. In addition, values of R
were not correlated with the degree of variation in DS (Fig.
6).

Conclusions
The strength of the association between DS, DI and the
observable degree of asymmetry has been the subject of
intense debate in the recent literature [10–15]. In this pa-
per we rescale the current model and treat DS – the pre-
sumed biologically relevant trait – as a proportion by
which DN is reduced during development. This approach
yields three important results. First, in contrast to DI, var-
iation in DS does not need to be unrealistically high to ex-
plain observed distributional characteristics of FA.
Second, in agreement with findings for DI, highly skewed
distributions are required to generate high values of R, the
so-called hypothetical repeatability of FA [10]. Third,
there appeared no single unique association between var-
iation in DS and R. A method was developed that allows
the estimation of DN and of variation in DS simultane-
ously. Analyses of different simulated datasets revealed

that in general the shape characteristics of variation in DS
are detected unless it is bimodal or convergence problems
occurred. Using this Bayesian model to analyse different
empirical datasets revealed that high skewness may be a
general property of variation in DS for asymmetry data
with both high and low values of R. In addition, values of
R may not contain much information on the amount of
variation in DS.

Inherent to mathematical modelling, assumptions must
be made about the underlying processes that are incorpo-
rated in the model. Usually these are oversimplifications
of reality. This is likely to be the case here as well. This
model makes five fundamental assumptions with respect
to DN and DS:

1) Stochastic processes disturb developmental pathways

2) This random noise is additive, independent between
traits and follows a normal distribution

3) Noise does not vary between individuals, and thus is
not affected by stress or individual genotype

4) Organisms possess mechanisms to buffer their devel-
opment against stochastic variation

Figure 4
Expected (black) and observed (gray) distribution of
between-individual variation in DS (top graph) and
population level developmental noise (bottom
graph).
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5) The efficiency by which development is buffered varies
between individuals

Because relative little research has been conducted on the
mechanisms of DN and DS, validation of these assump-
tions remains difficult and speculative. Recently, Klingen-
berg [1] reviewed studies that provide evidence for the
existence of both DN and DS but emphasises the need for

a specific experimental approach. Random variation in
concentrations, delays in diffusion and stochastic switch-
ing of gene expression are all potential molecular mecha-
nisms of DN but it is not clear if they vary among
individuals and/or are affected by stress. Furthermore,
mechanisms like gene duplication and stabilisation of
proteins by chaperones (e.g. Heat shock proteins) could
ensure DS but again the effects of stress are only poorly

Figure 5
Between-individual variation in DS as estimated for six empirical datasets.
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understood [1]. Finally, the normal distribution of ran-
dom noise and the independence between two develop-
ing traits has been challenged as well. Although the
normal distribution appears to fit asymmetry data very
well [24], non-linear developmental mapping – which ap-
pears to be very widespread [1] – would result in skewed
distributions of trait values on left and right. This would
in turn result in a leptokurtic distribution of asymmetry
values, which appears to be widespread as well [13,16].

Taken altogether, the model developed here is likely to be
a serious oversimplification of reality where distributions
of noise may be non-normal and non-additive and where
between-individual variation in DN may exist next to var-
iation in DS [1,2]. However, Bayesian modelling has the
desired flexibility to take (some of) these above features
into account. When new experiments are being carried out
and more insight is gained in the developmental biology
of DN and DS, other distributional characteristics and cor-
relations could be incorporated to yield more realistic re-
sults. Until then the normal and independent model
could be viewed as a convenient approximation of the real
phenomena [1].
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