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Evolution of ultraviolet vision in the largest avian
radiation - the passerines
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Abstract

Background: Interspecific variation in avian colour vision falls into two discrete classes: violet sensitive (VS) and
ultraviolet sensitive (UVS). They are characterised by the spectral sensitivity of the most shortwave sensitive of the
four single cones, the SWS1, which is seemingly under direct control of as little as one amino acid substitution in
the cone opsin protein. Changes in spectral sensitivity of the SWS1 are ecologically important, as they affect the
abilities of birds to accurately assess potential mates, find food and minimise visibility of social signals to predators.
Still, available data have indicated that shifts between classes are rare, with only four to five independent
acquisitions of UV sensitivity in avian evolution.

Results: We have classified a large sample of passeriform species as VS or UVS from genomic DNA and mapped
the evolution of this character on a passerine phylogeny inferred from published molecular sequence data.
Sequencing a small gene fragment has allowed us to trace the trait changing from one stable state to another
through the radiation of the passeriform birds. Their ancestor is hypothesised to be UVS. In the subsequent
radiation, colour vision changed between UVS and VS at least eight times.

Conclusions: The phylogenetic distribution of SWS1 cone opsin types in Passeriformes reveals a much higher
degree of complexity in avian colour vision evolution than what was previously indicated from the limited data
available. Clades with variation in the colour vision system are nested among clades with a seemingly stable VS or
UVS state, providing a rare opportunity to understand how an ecologically important trait under simple genetic
control may co-evolve with, and be stabilised by, associated traits in a character complex.

Background
Colour perception is one of the disciplines where birds
excel. In general, interspecific variation in avian colour
vision falls into two discrete classes, which are charac-
terised by the spectral sensitivity of the most shortwave
sensitive of the four single cones, the SWS1 [1] (the
other, more long-wave sensitive being SWS2, MWS and
LWS). The wavelength of maximum sensitivity (lmax) of
the SWS1 ranges either from 355-380 nm in the ‘ultra-
violet sensitive’ class (UVS) or from 402-426 nm in the
‘violet sensitive’ (VS) (reviewed by [2] and [3]). The UVS
class is optimised for ultraviolet sensitivity, but the VS
class also has some degree of sensitivity in the ultravio-
let spectrum (Figure 1). Changes in spectral sensitivity
of the SWS1 are ecologically important, as spectral

tuning affects the abilities of birds to accurately assess
the quality of potential mates [4-14], spot elusive prey
or detect other food items [15-20] and minimise visibi-
lity of social signals in plumage coloration to predators
[21].
Non-conservative substitutions in the SWS1 cone

opsin protein that are located in the retinal binding
pocket close enough to interact with the retinal chromo-
phore may shift lmax from UVS to VS or vice versa
[22,23]. Replacement of cysteine by serine in the 90th

amino acid (aa) position, the substitution Cys90Ser, or
the reverse substitution, alone accounts for the whole
shift (all aa residues named in this article are numbered
according to bovine rhodopsin ([24]). Despite the simple
nature of the mechanism, very few shifts have been
described so far (e.g. review in [2]), suggesting that the
SWS1 cone spectral sensitivity is under strong stabilising
selection. The VS class is both ancestral and the most
common to birds; its members are distributed
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throughout the avian phylogeny [25,26]. Four or five
independent shifts to UVS are currently known: in
shorebirds, Passerida passerines, parrots, the rhea and
presumably trogons [[26] and references therein,
[27-30]].
The most promising group of birds for further investi-

gation into the spectral tuning of SWS1 cone opsins is
clearly the passerines (Passeriformes). This is the most
species rich of all avian orders and the only one except
the shorebirds (Charadriiformes) from which both
classes of spectral sensitivity are known. Every investi-
gated member of the Passerida clade of passerines
belongs to the UVS class [26,27,31-38] and it has
appeared that all other passerines can be placed in the
VS category (see [26,27,37,39] and Browne, et al. 2006
(GenBank only)). Recently, however, Ödeen et al. [40]
argued that the evolution of ultraviolet sensitive vision
in Passeriformes is more complex than a single VS to
UVS opsin shift in an ancestor of Passerida, presenting
molecular evidence for additional UV shifts from VS
colour vision outside Passerida, in fairywrens, genus
Malurus.
Since spectral tuning of the cone is under the genetic

control of a few amino acid residues in the opsin pro-
tein, it is possible to quickly classify almost any bird as
VS or UVS from a sample of genomic DNA [3,26].
The accuracy of this short-fragment genomic DNA
approach in distinguishing UVS from VS species has
been validated against all published MSP data [3]. We
have employed this method to search for gross differ-
ences in spectral tuning in a larger sample of passerine
species than has been investigated before. Our aims
with this survey were to assess how stable SWS1 cone
sensitivity has been in the course of passerine evolu-
tion and to trace the evolutionary sequence of shifts in
spectral tuning. As the basis for the study, we have

inferred a molecular phylogeny with sequence data
from GenBank.

Results
Opsin sequencing
We amplified the target fragment of the SWS1 opsin
gene in 56 passerine species from 30 families and one
falconiform species, Northern Crested Caracara Cara-
cara cheriway (Additional file 1). Cycle sequencing pro-
duced 50-107 bp long overlapping strands of identifiable
nucleotides. Sequences have been deposited in the Eur-
opean Nucleotide Archive (ENA) (accession numbers in
Additional file 1). Amino acid translations spanning the
spectral tuning sites 86, 90 and 93 [22] are presented in
Additional file 1. For unknown reasons, we failed to
amplify the SWS1 opsin in two species: Blue Jewel-bab-
bler Ptilorrhoa caerulescens (Psophodidae) and White-
bellied Erpornis Erpornis zantholeuca (Vireonidae).
Position 90 held either serine or cysteine residues, sig-

nifying VS and UVS opsins, respectively. Neither pheny-
lalanine nor any other aa residues suggesting a potential
major shift in spectral tuning through a non-conserva-
tive substitution was present at site 86 (cf. [28]). How-
ever, the Rifleman Acanthisitta chloris holds leucine in
spectral tuning site 93 (Leu93). This state is previously
undescribed in birds and probably the result of a non-
conservative substitution (see below).

Phylogenetic reconstruction
The inferred tree (Figure 2) is mostly well resolved and,
except for some short internal branches, well supported.
It agrees well with previously published passerine trees
based on fewer loci, such as a large-scale study of pas-
serine relationships based on RAG-1 and -2 [41], as well
as with more densely sampled studies of the Passerida
based on ODC, myo and b-fibrinogen intron 5 [42] and
of the ‘core Corvoidea’ based on ODC, myo, RAG-1 and
-2, and ND2 [43].
The character optimisation infers a minimum of six

changes, two from VS to UVS, two from UVS to VS
and two with uncertain direction due to three nodes
with ambiguous ancestral states near the root (Figure 2).
The number of inferred transitions are reduced to five,
if clades b and c in Figure 2, which are reconstructed
with low support, are collapsed, and Cnemophilus is
placed as sister to the ‘core Corvoidea’ clade (Additional
file 2). On the contrary, if all ‘basal’ nodes with posterior
probability < 0.95 are collapsed, eight transitions are
inferred (Additional file 3). The ancestor to all passer-
ines is reconstructed as UVS when only parrots (UVS)
form the outgroup, whereas it is ambiguous when falco-
niforms (VS) are also included in the outgroup (as
shown in Figure 2).

Figure 1 Examples of spectral sensitivities for VS and UVS
birds. Normalised single cone spectral sensitivities (from left to
right: SWS1, SWS2, MWS and LWS) of a VS bird (Indian Peafowl Pavo
cristatus) [68] and a UVS bird (Eurasian Blue Tit Cyanistes caeruleus)
[36] including the effects of ocular medium absorption. Human
visible range is approximately 400-700 nm, with wavelengths
shorter than 400 nm being ultraviolet.
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Figure 2 Phylogenetic recontruction of SWS1 opsin evolution. Majority rule (50%) consensus tree of passerines based on concatenated
mitochondrial cytochrome b and ND2, nuclear myoglobin intron 2, ODC introns 6 to 7, TGFb2 intron 5, and protein-coding nuclear c-myc exon
3, RAG-1 and RAG-2 sequences (> 9 kbp), inferred by Bayesian inference, analysed in eight partitions, with two parrots and two falconiforms as
outgroup. Posterior probabilities given at nodes, * indicating ≥0.95. Long Ailuroedus branch truncated. VS/UVS optimisation represented by violet
for VS, black for UVS and dotted for ambiguous. Transitions from one state to another are indicated by numbers; 1a and 1b, and 2a and 2b,
respectively, represent uncertainties due to ambiguous ancestral state. a, b and c refer to insignificantly supported nodes discussed in the text. #
Sister clade, genus Malurus (not included), contains both VS and UVS species [40].
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Discussion
The evolution of colour vision in birds has apparently
involved many more than the four to five independent
shifts between SWS1 cone opsin types that previously
available data have indicated. In Passeriformes, the pic-
ture is indeed more complex than a single VS to UVS
opsin shift in an ancestor of Passerida; our phylogenetic
trait mapping reveals more variation among the passer-
ines than what is known from other birds combined.
The class of colour vision of the most recent common
ancestor to the passerines is ambiguous as a result of
different states in parrots (UVS) and falconiforms (VS).
As parrots are suggested to be the sister group to the
passerines [44], the passerine ancestor is hypothesised to
be UVS (as inferred when falconiforms are excluded
from the optimisation analyses). In the subsequent pas-
serine radiation, colour vision has changed between
UVS and VS at least eight times, including two shifts in
the family Maluridae (signified by # in Figure 2) [40].
It is interesting to note that two major clades, the Pas-

serida/Petroicidae and the suboscines, are homogeneous
with respect to colour vision (albeit different classes),
whereas there is considerably more variation in the rest
of the tree, particularly within Maluridae. It is not imme-
diately apparent what the selective advantage of either
VS or UVS might be, as both classes are present in taxa
represented on all continents and in similar habitats. For
example, the ancestor to the mostly forest-dwelling New
World Vireonidae has changed from VS to UVS, whereas
the mainly forest-inhabiting New World suboscines are
VS. Moreover, the UVS Passerida/Petroicidae clade is
mainly distributed in Afro-Eurasia and the New World,
with few representatives in Australasia; the VS suboscines
occur predominantly in the New World, with relatively
few species in Africa, Madagascar, Asia and Australasia;
the mostly VS, but also UVS, ‘basalmost’ oscines
(Menura-Orthonyx) plus Philesturnus, Cnemophilus and
Toxorhampus are chiefly Australasian; and the ‘core Cor-
voidea’ have representatives on all continents. The ances-
tral area of the passerines has been inferred to be eastern
Gondwana, i.e. proto-Australasia [45,46], whereas the
Philesturnus/Cnemophilus/Toxorhampus/’core Corvoi-
dea’ clade has been inferred to have originated in the
proto-Papuan archipelago [43].
Unlike Maluridae (represented by Amytornis in Figure

2), none of the multi-sampled families from the present
study are polytypic in gross tuning of the SWS1 opsin,
but either contain VS or UVS taxa. In common with the
Australian-Papuan Maluridae, the African-Eurasian
genus Motacilla (wagtails) is rich in species and subspe-
cies with strong differentiation in male plumage colora-
tion. Yet, all the members of Motacilla sampled have
base-pair identical SWS1 opsin gene fragments.

Unknown differences in other traits than SWS1 could
explain why UVS-VS shifts are so unequally distributed
between Passerida/Petroicidae and other passerines.
Spectral tuning of the SWS1 cone opsin seems to be
under strong stabilising selection in birds [30], likely
partly due to gross spectral tuning shifts carrying costs,
such as increased retinal photooxidation and ocular
light scattering (reviewed in [47]). In addition, acute
short wave colour vision is dependent on a complex of
co-adapted physiological traits. Ultraviolet absorption by
the ocular media is usually stronger in VS than in UVS
species (reviewed in [48,49]), and the SWS2 cone class
(sensitive to ‘blue’, lmax 451-480 nm) is shifted toward
shorter wavelengths in UVS than in VS birds (see review
in [2]). A shortwave shift in lmax of a VS SWS1 pigment
will produce a virtually negligible increase in UV sensi-
tivity, unless it is accompanied by an increased UV
transmission in the ocular media [48]. A shortwave
shifted SWS1 will cause an uneven distribution of sensi-
tivities across the spectrum, possibly deteriorating col-
our discriminability, if not followed by a shift of the
SWS2 pigment towards the range vacated by SWS1. A
plausible evolutionary scenario is that increased UV
transmittance in an ancestor of passerines relaxed stabi-
lising selection on SWS1 spectral tuning, allowing a VS
to UVS shift of that opsin to reach fixation (see [48])
(the only close relative to passerines studied in this
respect is one with a UV transparent ocular media: Bud-
gerigar Melopsittacus undulatus [49]). Later, a short-
wave shift in SWS2 spectral tuning in an ancestor of
Passerida/Petroicidae may have improved spectral discri-
minability of UVS retinae and thereby reinstated stabi-
lising selection on SWS1 spectral tuning. In agreement
with this scenario, Passerida species where this cone has
been examined by MSP mostly show shortwave shifted
SWS2 lmax compared to VS species from other avian
orders (see review [2]), but unfortunately the character
state is not known from any VS or non-Passerida pas-
serine. The realised spectral sensitivities of the two
shortwave sensitive cones in non-Passerida passerines
may be different from that of characteristic VS and UVS
types (cf. review in [2]). Due to a general paucity of data
on SWS2 lmax and ocular transmission, one can merely
speculate at this point.
Shifts from UVS to VS in passerines seem to be con-

trolled exclusively by the Cys90Ser substitution. Car-
valho et al. [28] has reported a significant short
wavelength tuning effect of substitution Ser86Phe, but
we did not find phenylalanine in position 86 (Phe86) in
any of the species we sequenced. The effects of all tun-
ing site substitutions found in this study are known
[22,23], with one exception: a leucine residue in the
spectral tuning site 93 of the Rifleman Acanthisitta
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chloris. The most likely evolutionary event given the
phylogeny in Figure 2 is the substitution Thr93Leu. This
is a non-conservative substitution, changing from polar
and mildly hydrophilic threonine to nonpolar, hydro-
phobic leucine. Site 93 is located in the retinal binding
pocket, on the inner side of the opsin’s alpha-helices
close enough to interact with the retinal chromophore.
Thr93Leu is therefore potentially important to spectral
tuning (see [50]), but its effect in the avian SWS1 opsin
is presently unknown.
The reconstruction of the evolution of colour vision in

passerines is conditional on the true phylogeny having
been inferred. The tree inferred here is based on a larger
number of loci than any previous study of passerine
relationships. As it is overall well supported by the data,
and in good agreement with previous analyses of differ-
ent datasets (e.g. [41-43], it is a well founded hypothesis
of relationships. Although the tree has some nodes with
low posterior probability, only two of these affect the
interpretation of the evolution of colour vision (indi-
cated by a and b in Figure 2). With respect to the
poorly supported node a, switching position between
Pomatostomus and Orthonyx, as is possible if this node
is collapsed, would require one more step in the VS/
UVS optimisation and result in eight further internal
nodes having ambiguous states. Further collapsing of
poorly supported ‘basal’ nodes leads to more steps in
the UV optimisation. Accordingly, the opsin data lend
further support to the present topology, and the
favoured topology results in a more parsimonious opti-
misation than the alternative topologies. However, if the
insignificantly supported nodes b and c are collapsed,
and Cnemophilus is placed as sister to the ‘core Corvoi-
dea’, one fewer change is required to explain the evolu-
tion of colour vision. More sequence data might resolve
this issue in the future.

Conclusions
Spectral tuning of the SWS1 cone opsin in birds is a
trait of great ecological importance. It appears to be
under strong stabilising selection and varies categori-
cally between different clades in the avian phylogenetic
tree. In the radiation of the very species rich order
Passeriformes, sequencing of a small gene fragment
allows us to map and trace the change from one stable
state to the other. Clades with variation in the colour
vision system are nested among clades with a see-
mingly stable VS or UVS state, providing a rare oppor-
tunity to understand how an ecologically important
trait under simple genetic control may co-evolve with,
and be stabilised by, associated traits in a character
complex.

Methods
Opsin sequencing
We isolated genomic DNA from tissues and blood sam-
ples, which we took from live birds in the field or bor-
rowed from museums and colleagues. As far as feasible
we included representatives from clades of expected
importance to tracing the radiation of passerines. As
demonstrated in the fairywren case [40], closely related
groups of passerine taxa might be polytypic with respect
to spectral tuning of the SWS1 opsin. Acknowledging
this possibility, we sampled multiple taxa in selected
genera. We used a GeneMole® automated nucleic acid
extraction instrument (Mole Genetics) and the DNeasy
Blood and Tissue Kit (QIAGEN) for the DNA isolation.
Standard procedures were applied. With the same pro-
tocol and primers as are described in [3] and [26] we
then amplified a fragment of the SWS1 opsin gene, con-
taining the aa residues at positions 81-94, all located in
the 2nd a-helical transmembrane region.
We translated the DNA sequences into amino acids to

identify the spectral tuning sites 86, 90, and 93 of SWS1
[22,23]. Then we calculated lmax from the tuning sites
following in vitro changes in lmax reported by Wilkie et
al. [22]. We assumed the effects of the key tuning sites
to be additive. This assumption should provide reason-
able approximations of lmax [51], although it disregards
potential interactions between the tuning sites (see [52]).

Phylogenetic reconstruction
A phylogeny was inferred from sequences in GenBank
(Additional file 4). We made a search in GenBank for
all falconiform, psittaciform and passeriform species for
which we and others had sequenced the SWS1 opsin
gene. We then selected eight loci for which sequences
were available for a large proportion of these species or
members of the same genus: the mitochondrial cyto-
chrome b (cytb) and NADH dehydrogenase II (ND2)
genes, the nuclear myoglobin gene, intron 2 (myo),
ornithine decarboxylase gene, introns 6 to 7 (ODC),
transforming growth factor beta-2 gene, intron 5
(TGFb2), and the protein-coding nuclear c-myc exon 3
and recombination-activating protein 1 and 2 genes
(RAG-1, RAG-2). Sequences were aligned using the
MUSCLE web server http://www.drive5.com/muscle;
some manual adjustment was necessary for the non-
coding sequences. The alignment is in Additional file 5.
The phylogeny was estimated by Bayesian inference

using MrBayes 3.1.2 [53,54], with the sequences conca-
tenated and partitioned by locus, using rate multipliers
to allow different rates for the different partitions
[55,56]. Ambiguous base pairs and indels were treated
as missing data. As outgroups, we chose two
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falconiforms and two parrots, as these have been shown
to be closely related to passerines [44,57]. Appropriate
substitution models were determined based on the Baye-
sian Information Criterion [58] calculated by jModelTest
version 0.1.1 [59]. For cytb, ND2 and RAG-1, the best-
fit model was the general time-reversible (GTR) model
[60-62], assuming rate variation across sites according
to a discrete gamma distribution with four rate cate-
gories (Γ; [63]) and an estimated proportion of invariant
sites (I; [64]) (GTR+Γ+I). For the other loci, the Hase-
gawa-Kishino-Yano (HKY) model [65] plus Γ was
selected (HKY+Γ), with the addition of I for myoglobin
and c-myc (HKY+Γ+I). Posterior probabilities (PPs)
were calculated in MrBayes using default priors. Four
Metropolis-coupled MCMC chains with incremental
heating temperature 0.1 were run for 7 × 106 genera-
tions and sampled every 1000 generations. Chain likeli-
hood and other parameter values and effective sample
sizes (> 200) were inspected in Tracer 1.5.0 [66]. The
first 25% of the generations were discarded as ‘burn-in’,
well after stationarity of most chain likelihood values
had been established, and the posterior probability was
estimated for the remaining generations. The analysis
was run eight times, and the topologies and posterior
probabilities were compared by eye and by the mean
estimates and the corresponding standard errors.
Optimisation of the VS/UVS character was performed

by parsimony in MacClade 4.08 [67], using default set-
tings (polytomies treated as soft).

Additional material

Additional file 1: SWS1 opsin aa sequences and accession numbers.
SWS1 opsin amino acid (aa) sequences from passerine plus falconiform
and psittaciform species analysed in the present study and previously.
The spectral tuning aa sites 86, 90 and 93 (see text) are marked in bold,
as are the ENA accession number of sequences new to this study. Type
of SWS1 opsin is estimated from the tuning sites as either VS (violet
sensitive) or UVS (UV-sensitive). The taxonomy follows the IOC World Bird
List [69]. Numbers after species names signify the number of individuals
sequenced. Information on geographic location for the new samples is
available at ENA http://www.ebi.ac.uk/ena/data/view/< ACCESSION
NUMBERS HE601811-HE601869 >.

Additional file 2: Alternative recontruction of SWS1 opsin evolution,
1. Same tree as in Figure 2, but with clades b and c, which are
reconstructed with low support, collapsed, and Cnemophilus placed as
sister to the ‘core Corvoidea’ clade. VS/UVS optimisation represented by
yellow for VS, blue for UVS, and barred for ambiguous.

Additional file 3: Alternative recontruction of SWS1 opsin evolution,
2. Same tree as in Figure 2, but with all ‘basal’ nodes with posterior
probability < 0.95 collapsed. VS/UVS optimisation represented by yellow
for VS, blue for UVS, and barred for ambiguous.

Additional file 4: Sequences used for phylogenetic reconstruction.
GenBank numbers for sequences used for phylogenetic reconstruction.

Additional file 5: Sequence alignment. Alignment of sequences used
for phylogenetic reconstruction. Details in Additional file 4.

List of abbreviations
λmax: wavelength of maximum absorbance; MSP: microspectrophotometry;
SWS1: short-wavelength sensitive pigment, type one; VS: violet sensitive;
UVS: ultraviolet sensitive.
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