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Characterisation of marsupial PHLDA2 reveals
eutherian specific acquisition of imprinting
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Abstract

Background: Genomic imprinting causes parent-of-origin specific gene expression by differential epigenetic
modifications between two parental genomes. We previously reported that there is no evidence of genomic
imprinting of CDKN1C in the KCNQ1 domain in the placenta of an Australian marsupial, the tammar wallaby
(Macropus eugenii) whereas tammar IGF2 and H19, located adjacent to the KCNQ1 domain in eutherian mammals,
are imprinted. We have now identified and characterised the marsupial orthologue of PHLDA2, another gene in the
KCNQ1 domain (also known as IPL or TSSC3) that is imprinted in eutherians. In mice, Phlda2 is a dose-sensitive
negative regulator of placental growth, as Cdkn1c is for embryonic growth.

Results: Tammar PHLDA2 is highly expressed in the yolk sac placenta compared to other fetal tissues, confirming a
similar expression pattern to that of mouse Phlda2. However, tammar PHLDA2 is biallelically expressed in both the
fetus and yolk sac placenta, so it is not imprinted. The lack of imprinting in tammar PHLDA2 suggests that the
acquisition of genomic imprinting of the KCNQ1 domain in eutherian mammals, accompanied with gene dosage
reduction, occurred after the split of the therian mammals into the marsupials and eutherians.

Conclusions: Our results confirm the idea that acquisition of genomic imprinting in the KCNQ1 domain occurred
specifically in the eutherian lineage after the divergence of marsupials, even though imprinting of the adjacent IGF2-
H19 domain arose before the marsupial-eutherian split. These data are consistent with the hypothesis that genomic
imprinting of the KCNQ1 domain may have contributed to the evolution of more complex placentation in the
eutherian lineage by reduction of the gene dosage of negative regulators for both embryonic and placental growth.

Background
Genomic imprinting produces monoallelic gene expres-
sion resulting from the parent-of-origin-dependent epige-
netic modifications. Both DNA methylation and histone
modifications are required to establish the paternal and
maternal imprinting during development of the germ cells
and to maintain it after fertilisation [1-4]. In humans and
mice defects in some epigenetic modifiers or co-factors
cause global disorders of genomic imprinting and of
imprinted gene expression with early embryonic lethality,
demonstrating that genomic imprinting is essential for
mammalian development [5-10].
It is still unclear, however, why genomic imprinting

has arisen in mammalian evolution, because adopting
monoallelic gene expression means abandoning the

merits of diploidy. In higher vertebrates, genomic
imprinting has been found so far only in the viviparous
therian mammals (eutherians and marsupials), but not
in the egg-laying mammals, the monotremes [11,12].
Since only viviparous mammals have genomic imprint-
ing, and many imprinted genes regulate fetal and pla-
cental growth, some authors have suggested that
genomic imprinting is correlated with the evolution of
mammalian viviparity [13-17]. It is therefore of great
interest to compare genomic imprinting between euther-
ians and marsupials that diverged between 130 and 148
million years ago [18-20].
Most eutherians form a chorioallantoic (allantoic) pla-

centa that is the site of highly efficient nutritional
exchange between fetus and mother, allows lengthy
intra-uterine growth, and in many cases supports the
growth of a precocial young. In contrast, most marsupials
depend on a relatively short-lived chorio-vitelline (yolk
sac) placenta. Although often ignored, a yolk sac placenta
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is also present and functions for varying periods of time
in all eutherian mammals [21-23]. Marsupials give birth
to altricial young that are at a much earlier developmen-
tal stage than the neonates of most eutherians, but have
developed a complex and advanced lactation system that
supports further development and growth after birth,
usually in a pouch [24,25].
Nearly 100 imprinted genes have been isolated in mice

and humans. Imprinting has been studied in fourteen
orthologues of these genes in marsupials but only 6 are
imprinted [11,17,26-33]. These are IGF2, IGF2R, PEG1/
MEST, PEG10, INS and H19, and are from 4 indepen-
dent domains. We have previously reported that there is
no evidence of genomic imprinting of CDKN1C (also
known as p57KIP2) in a marsupial, the tammar wallaby
(Macropus eugenii) [28,34]. CDKN1C is located in the
KCNQ1 domain mapped adjacent to the IGF2-H19
domain in eutherians and marsupials. Genomic imprint-
ing of the IGF2-H19 domain is highly conserved
between eutherians and tammars [33]. Although the
imprinting regulatory mechanisms of the KCNQ1 and
IGF2-H19 domains are known to be independent in
mouse, the two domains are only 300 kb distant from
each other and both contain several important genes
that control fetal and placental growth. Therefore, to
confirm whether the only gene in the domain that is
not imprinted in the tammar is the CDKN1C gene, we
examined the imprinting status of the orthologue of the
PHLDA2 gene from the tammar wallaby KCNQ1
domain.
PHLDA2 negatively controls growth of the chorioal-

lantoic placenta in both human and mouse. In mice,
deletion of Phlda2 causes placental overgrowth [35]. In
contrast, biallelic expression of Phlda2, due to loss of
imprinting, contributes to placental growth retardation
and results in conceptuses with intrauterine growth
restriction (IUGR) [36]. Furthermore, a single extra dose
of Phlda2 has serious consequences for placental devel-
opment, driving the loss of the junctional zone and
reducing the amount of stored glycogen [37]. In
humans, whilst there is silencing of PHLDA2 in com-
plete hydatidiform moles [38], there is upregulation in
placentae of fetuses with IUGR [39,40]; consistent with
the results of genetic experiments in mice. Thus, the
importance of gene dosage of PHLDA2 in eutherian pla-
centation has been demonstrated by a number of stu-
dies. In this study, we characterise the orthologue of
PHLDA2 in a marsupial, the tammar wallaby and exam-
ine its imprinting status in the chorio-vitelline placenta
to clarify its possible contribution for the evolution of
chorioallantoic placenta in the eutherian linage by
dosage reduction consequent to acquisition of genomic
imprinting.

Results
Characterisation of tammar PHLDA2
A 272 bp fragment was amplified by RT-PCR using a
primer pair designed to a highly conserved sequence in
the open reading frame (ORF) of the PHLDA2 gene
among multiple species. Given the PCR product
sequence was highly similar to PHLDA2 of other spe-
cies, we next carried out 3’ RACE to obtain 3’ UTR
sequence of tammar PHLDA2 using the same forward
primer used to amplify the 272 bp fragment as the gene
specific primer. The 3’ UTR (477 bp) of tammar
PHLDA2 consisted of a short intron (937 bp) similar to
eutherian PHLDA2 (Figure 1A). The expected genomic
location of tammar PHLDA2 close to CDKN1C was
confirmed by tammar BAC clone sequences in GenBank
(NCBI). A 426 bp ORF encoding 142 amino acids was
predicted with the supplemental sequence data from
trace archive database (NCBI). Consistent with a pre-
vious comparison across vertebrates, that included fish,
frog, chicken, mouse and human [41], the amino acid
sequence of tammar PHLDA2 was also highly conserved
within the PH (pleckstrin homology) domain, but there
was lower conservation in the flanking sequences of
both terminals (Figure 1B). The PH domain in tammar
PHLDA2 shares 78% amino acid sequence similarity
with human, 67% with mouse, 73% with platypus and
77% with chicken PHLDA2 orthologues.

Tissue specific expression pattern of tammar PHLDA2
As PHLDA2 is highly expressed in the yolk sac and pla-
centa in human and mouse, we next analysed the
expression pattern of tammar PHLDA2 in the yolk sac
placenta as well as in several fetal tissues by quantitative
PCR (QPCR). The marsupial yolk sac placenta consists
of two regions, a bilaminar, avascular region and a trila-
minar, vascular region. Both regions are the sites for
fetal-maternal nutritional exchange while gases appear
to be transferred principally via the vascular system of
the trilaminar region [22,23,42,43]. The yolk sac pla-
centa also synthesizes and stores nutrients required for
fetal growth [22,23]. PHLDA2 mRNA expression in both
bilaminar and trilaminar yolk sac was dramatically upre-
gulated between day 24 to 26 of gestation (1-3 days
before birth), although the relative expression level was
lower in the bilaminar yolk sac (Figure 2). A lower level
of tammar PHLDA2 expression was also observed in
several fetal tissues, as observed for Phlda2 in the
mouse, but not the human [44].

Tammar PHLDA2 protein distribution in the yolk sac
placenta
To confirm tammar wallaby PHLDA2 protein expres-
sion and distribution in the yolk sac placenta, we carried
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Figure 1 Partial genomic structure and amino acid sequence of tammar PHLDA2. (A) Exons are depicted as open boxes. The start and end
of the ORF and the poly-A signal sequence are represented as ATG, TGA and AATAAA, respectively. The numbers indicate the nucleotide
distance from the start of the ORF. (B) The alignment was created using “CLC Sequence Viewer 6” software. Identical and similar amino acids are
indicated by the same color at each location. The bold red line represents the region of the PH domain. The amino acid sequences for human,
mouse, tammar, platypus and chicken PHLDA2 were derived from the following accession numbers respectively: Genbank:NM_003311, Genbank:
NM_009434, DDBJ:AB537423, GenBank:XM_001507454, GenBank:XM_421020.
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Figure 2 Relative expression levels of tammar PHLDA2 mRNA. The vertical axis represents the percentage expression levels when the
highest result is regarded as 100%. The numbers on the horizontal axis indicate the day of gestation of each sample. “BYS” represents the
bilaminar yolk sac; “TYS": trilaminar yolk sac; “Lm": limb and “Lu": lung.
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out immunohistochemistry using a mouse monoclonal
antibody raised against a partial recombinant human
PHLDA2. The immunogen included aa 1-110, encom-
passing the whole PH domain. There is a high degree of
similarity of amino acid sequences between human and
tammar PHLDA2 over this region (Figure 1B). Further-
more, we performed a genome-wide “TBLASTN” search
for the published tammar genome sequence in the
Ensembl database using the antigen peptide sequence
for the query. It revealed the highest similarity of 76.5%
for tammar PHLDA2 against whole sequence query
(1-110/110 aa) as expected. The second highest hit was
tammar PHLDA1, but this was aligned only partially
(40-107/110 aa) with a much lower similarity of 51.5%
for the aligned region. These data suggest that the
immunostaining is positive for tammar PHLDA2 pro-
tein, although the possibility of some cross-reaction with
PHLDA1 has not been completely excluded. Tammar
PHLDA2 protein was present in both bilaminar and tri-
laminar regions in the yolk sac placenta, with strong
immuno-staining in the cytoplasm of trophoblast cells
of both parts of the yolk sac (Figure 3A, B), despite the
substantially lower mRNA relative expression level in
the bilaminar yolk sac (Figure 2).

Allelic expression analysis of tammar PHLDA2
Finally, we analysed allelic expression pattern of tammar
PHLDA2 to determine whether it was imprinted. We
searched for polymorphisms to allow us to distinguish
between the two parental alleles. No exonic polymorph-
isms were found in any of the individuals (n = 18) tested.
However, there was a length polymorphism in some indi-
viduals in the intron characterised by the presence or
absence of repeats in the 31 bp of intronic sequence
(Figure 4A). Therefore, allelic expression could be deter-
mined directly by RT-PCR amplifying the unspliced
PHLDA2 transcript using a primer pair designed to

amplify the length polymorphic site. All RNA samples
were DNase I treated and the lack of detectable contami-
nation by genomic DNA was confirmed by PCR using
the templates without reverse transcription (data not
shown). Hence all intronic fragments amplified by
RT-PCR were derived from unspliced transcripts, not
from genomic DNA. The genomic PCR products showed
that all four individuals were heterozygous for the length
polymorphism and both alleles can be amplified equally
(Figure 4B). All samples tested, had clear biallelic expres-
sion, demonstrating no evidence of genomic imprinting
of tammar PHLDA2 (Figure 4B). On the other hand,
monoallelic expression of tammar IGF2 could be con-
firmed by the amplification of the unspliced transcript
using an intronic primer in the same way as the analysis
on PHLDA2 (Figure 4C).

Discussion
In this study, we identified and characterised the marsupial
orthologue of PHLDA2. The amino acid sequence of tam-
mar PHLDA2 shared highest conservation within the PH
domain and lower conservation in the flanking sequences
of both terminals, suggesting the essential role in the PH
domain in contrast to the flanking regions, consistent with
previous reports [41]. There was a similar high conserva-
tion of the amino acid sequences within the PH domain in
the platypus, tammar and human PHLDA2, suggesting
that this domain has a significant role with a similar func-
tion in marsupials and monotremes. The high level of
mRNA expression in the trilaminar yolk sac and the pro-
tein localisation to the cytoplasm of trophoblast cells sug-
gest that PHLDA2 functions in the tammar yolk sac
placenta during pregnancy. However, although murine
Phlda2 has the highest expression in the yolk sac [44], in
mice with a disrupted Phlda2 gene the only abnormalities
reported are in the chorioallantoic placenta [36]. There-
fore, an ancestral role for PHLDA2 in the yolk sac might
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Figure 3 PHLDA2 immunohistochemistry in the tammar yolk sac placenta. Both bilaminar and trilaminar yolk sac membranes are shown as
the cord like structure in the sections (A: bilaminar yolk sac, B: trilaminar yolk sac). “T” indicates trophoblast cells, the large cells with large nuclei,
and “En” indicates yolk sac endodermal cells, the flat and thin cells with relatively small nuclei.
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have been transferred to the chorioallantoic placenta dur-
ing the evolution of the mouse.
There was no evidence of genomic imprinting of tam-

mar PHLDA2 in this study. The mouse Kcnq1 domain
forms a large imprinted gene cluster including Phlda2,
Slc22a18, Cdkn1c, Kcnq1, Ascl2 (also known as Mash2)
and some placenta-specific imprinted genes. However,
we know now that at least two genes, CDKN1C and

PHLDA2 that are involved in embryonic and placental
growth in eutherians, are not imprinted in this marsupial
[28]. Considering that both genes are located to the mid-
dle of the domain and that all the imprinted genes in this
domain are co-ordinately regulated by a single imprinting
centre in the mouse, our data strongly suggests that the
whole KCNQ1 domain lacks genomic imprinting in mar-
supials. Interestingly, the IGF2-H19 imprinted domain,
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Figure 4 Allelic expression analysis of tammar PHLDA2. (A) The difference of genomic structure by the length polymorphism is described.
The open boxes represent exonic regions. Each black arrow represents a single 31 bp repeat unit. The longer allele has two units as a tandem
repeat while the shorter allele has no repeat. The gel picture shows the PCR results using genomic DNA extracted from three different
individuals having each genotype. “S” represents shorter allele; “L": longer allele. (B) Electrophoresis of RT-PCR products. Two different bands
correspond to the amplified products from the longer and shorter allele. “gDNA” represents genomic DNA; “mDNA": maternal DNA; “YSP": yolk
sac placenta. Three independent RT-PCR results were shown for the fetus #3 and pouch young #1. (C) The results of direct sequencing for
tammar IGF2 PCR products amplified the unspliced transcript.
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located adjacent to the KCNQ1 domain shares a highly
conserved imprinting regulatory mechanism complete
with a differentially methylated region and associated
miRNA between eutherians and marsupials [33]. This
study thus confirms that the origin of imprinting of the
KCNQ1 domain evolved in the eutherian lineage after the
divergence of marsupials, whereas that of the IGF2-H19
domain appeared before the marsupial-eutherian split,
regardless of the close proximity of these two domains
[34].
In the Kcnq1 domain of mice, while Cdkn1c is a negative

regulator for embryonic growth [45], Phlda2 negatively
controls placental growth [35-37] and acts as a true rheo-
stat for placental growth [36]. Recently, using a single copy
transgenic mouse, Tunster et al., (2010) reported that
Phlda2 regulates extraembryonic energy stores. Two-fold
over-expression of Phlda2 caused a 60% loss of the spon-
giotrophoblast layer with a 25-35% reduction of glycogen
storage. Since acquisition of genomic imprinting of
PHLDA2 in the KCNQ1 domain by silencing of the pater-
nal allele was accompanied by gene dosage reduction in
eutherians, this might have affected the evolution of placen-
tal structure and/or energy stores. In laboratory mice that
have two active copies of Phlda2 with the second copy pro-
vided by the BAC transgene, there was only a slight pro-
gressive slowing of embryonic growth [37]. However,
greater reduction of fetal growth may have been seen if the
mice had had restricted food intake, as is often the case in
the wild, so that limited nutrition would need to be parti-
tioned between mother and fetuses. In this situation,
reduced expression of PHLDA2 could have had a selective
advantage through greater placental development. We
hypothesise that acquisition of imprinting in the KCNQ1
domain in the ancestral line that gave rise to the eutherian
mammals may have allowed increased the placental growth
and extended gestation that characterises this group of
mammals.

Conclusions
The high level of mRNA expression in the trilaminar yolk
sac placenta and the protein localisation to the cytoplasm
of trophoblast cells suggest that tammar PHLDA2 is
functional in their placenta. The lack of imprinting in the
tammar PHLDA2 confirms an earlier conclusion that
acquisition of genomic imprinting to the KCNQ1 domain
occurred specifically in the eutherian lineage after the
divergence of therian mammals into marsupials and
eutherians, despite the fact that imprinting of the adja-
cent IGF2-H19 domain arose before the marsupial-
eutherian split (Figure 5). Thus genomic imprinting of
the KCNQ1 domain might have contributed to the devel-
opment of complex placentation and the lengthening of
gestation in the eutherian lineage by reducing gene

dosage of negative regulators for both embryonic and
placental growth.

Methods
Animals and tissue collection
Tammar wallabies of Kangaroo Island origin were main-
tained in our breeding colony in grassy, outdoor enclo-
sures. Lucerne cubes, grass and water were provided ad
libitum and supplemented with fresh vegetables. Fetuses
and yolk sac placenta tissue were collected between days
21 and 26 of the 26.5 days gestation as previously
described [24,42]. Experimental procedures conformed
to Australian National Health and Medical Research
Council (2004) guidelines and were approved by the
Animal Experimentation Ethics Committees of the Uni-
versity of Melbourne.

Amplification of tammar PHLDA2 sequence
The following primer pair for the amplification of the 272
bp tammar PHLDA2 fragment was designed from the
highly conserved region in the multi-species sequence
alignment:
272 forward 5’-GCGAGGGCGAGCTGGAGAAGCG-3’
272 reverse 5’-GATGGCCGCGTTCCAGCAGCTCT-3’
Thirty five cycles of PCR amplification were carried

out in 25 μl total volume with 5-10 ng tammar cDNA
from the yolk sac placenta using 0.5 U “TaKaRa Ex Taq
Hot Start Version” (TaKaRa), 10 pmol each primers and
5 nmol each dNTP mixture under the following cycle
conditions: 96°C × 15 s, 60°C × 30 s and 72°C × 30 s.
PCR product was purified by “ExoSAP-IT” (GE) before
sequencing. The 3’ terminal of PHLDA2 mRNA was
determined by “3’ RACE System for Rapid Amplification
of cDNA Ends” (Invitrogen) using the same forward pri-
mer described above as the gene specific primer. The
intronic sequence was amplified by genomic PCR under
the same conditions described above with 25 ng geno-
mic DNA and the following primer pair:
Exon1 forward 5’-CGACTTCCGCTGCCCCGACG-3’
Exon2 reverse 5’-AAGACAAGGTCCCCATCGAG-3’

Calculation of the amino acid sequence homology
The percentage homology of the amino acid sequence in
the PH domain between tammar and multiple species
was calculated using the homology search program in
the “GENETYX-MAC” software.

QPCR
Quantification of tammar PHLDA2 mRNA was per-
formed using “Mx3000P QPCR System” (Agilent Tech-
nologies) with “Brilliant II SYBR Green QPCR Master
Mix” (Agilent Technologies) under the following cycle
conditions: 95°C × 15 s, 60°C × 30 s, 72°C × 30 s. The
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following primer pairs were used for the amplifications
of PHLDA2 and ACTB as control:
PHLDA2 forward 5’-AGCCTCTTTCAGCTGTGGAA-3’
PHLDA2 reverse 5’-AAAATAGACGTGTTTGGCCG-3’
ACTB forward 5’-TTGCTGACAGGATGCAGAAG-3’
ACTB reverse 5’-AAAGCCATGCCAATCTCATC-3’
Total RNA was extracted from the fresh frozen fetal

tissues and yolk sac placentas using “TRI Reagent Solu-
tion” (Applied Biosystems) and reverse transcribed using
“SuperScript III First-Strand Synthesis System” (Invitro-
gen) with Oligo(dT) primer.

Immunohistochemistry
Tissue sections (8 μm) were treated with 5% hydrogen
peroxide in dH2O for 15 min to quench endogenous
peroxidase activity. Slides were blocked in 10% normal
goat serum in 0.1% BSA/TBS. Mouse monoclonal anti-
body raised against a partial recombinant human
PHLDA2 (ABNOVA, H00007262-M01) was applied to
sections at a 1:100 dilution at 4°C overnight. Antibody
binding was detected with goat anti-mouse biotinylated
secondary antibody (Dako) and amplified using the
“Strept ABC Complex/HRP” (Dako). Antibody localisa-
tion was visualised using “Liquid DAB+ Substrate-Chro-
mogen System” (Dako). Tissues were counterstained
with haematoxylin.

Allelic expression analysis
RNA was isolated using the “ISOGEN” (Nippongene).
Extracted RNA was then treated with DNase (RT grade;
Nippongene) at room temperature for 1 hr. Reverse

transcription was performed using “SuperScript III First-
Strand Synthesis System” (Invitrogen) with Oligo(dT)
primer. RT-PCR amplifications were carried out at the
same conditions as described in the previous section for
the fetus #1 and #2, and 30 cycles with 68°C of anneal-
ing temperature for the fetus #3 and the pouch young
#1, using following primer pair:
Exon1 forward 5’-CGACTTCCGCTGCCCCGACG-3’
Intron reverse 5’-TAGAGACTCCAGGAGCTGGC-3’
Three percent agarose gels were used for the electro-

phoresis. For amplification of IGF2, PCR conditions were
the same in the previous section except the annealing tem-
perature was 65°C and the primer pair:
Intron forward 5’-GACTCCACTTTCTTCCT

TCCCTT-3’
Exon reverse 5’-AAAGCATGGCAGCCCACACT-3’
PCR products were purified by “ExoSAP-IT” (GE)

before sequencing.
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