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Context-dependent codon partition models
provide significant increases in model fit in atpB
and rbcL protein-coding genes
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Abstract

Background: Accurate modelling of substitution processes in protein-coding sequences is often hampered by the
computational burdens associated with full codon models. Lately, codon partition models have been proposed as
a viable alternative, mimicking the substitution behaviour of codon models at a low computational cost. Such
codon partition models however impose independent evolution of the different codon positions, which is overly
restrictive from a biological point of view. Given that empirical research has provided indications of context-
dependent substitution patterns at four-fold degenerate sites, we take those indications into account in this paper.

Results: We present so-called context-dependent codon partition models to assess previous empirical claims that
the evolution of four-fold degenerate sites is strongly dependent on the composition of its two flanking bases. To
this end, we have estimated and compared various existing independent models, codon models, codon partition
models and context-dependent codon partition models for the atpB and rbcL genes of the chloroplast genome,
which are frequently used in plant systematics. Such context-dependent codon partition models employ a full
dependency scheme for four-fold degenerate sites, whilst maintaining the independence assumption for the first
and second codon positions.

Conclusions: We show that, both in the atpB and rbcL alignments of a collection of land plants, these context-
dependent codon partition models significantly improve model fit over existing codon partition models. Using
Bayes factors based on thermodynamic integration, we show that in both datasets the same context-dependent
codon partition model yields the largest increase in model fit compared to an independent evolutionary model.
Context-dependent codon partition models hence perform closer to codon models, which remain the best
performing models at a drastically increased computational cost, compared to codon partition models, but remain
computationally interesting alternatives to codon models. Finally, we observe that the substitution patterns in both
datasets are drastically different, leading to the conclusion that combined analysis of these two genes using a
single model may not be advisable from a context-dependent point of view.

Background
While the modelling of evolutionary processes in non-
coding sequences has received much attention from a
context-dependence point of view in the last two dec-
ades, the same cannot be said for modelling approaches
for coding sequences, at least not in terms of developed
model-based approaches. With the advent of new evolu-
tionary models and drastic increases in computation
power during the past decades, with desktop machines

becoming more powerful and the advent of computer
clusters with large amounts of processors (and processor
cores) and a vast amount of memory, Maximum likeli-
hood and Bayesian MCMC approaches now allow for
very complex evolutionary models to be used in the
analysis of large alignments.
Probabilistic modelling of sequence evolution has

become the norm in phylogenetic inference, but com-
plex evolutionary models are often not used in studies
on molecular evolution, in part due to their increased
computational burden but mainly due to the absence of
such models in popular model testing tools [1]. Indeed,
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while researchers are widely adopting model selection
techniques in phylogenetics in order to select the model
that best fits their dataset, this may be problematic
when complex evolutionary models are not included in
popular model selection tools, such as Modeltest [2].
For example, in the case of analyzing protein-coding
sequences, one needs to make sure to incorporate
codon models as well as codon partition models in the
model selection procedure.
Chloroplast genes, such as atpB and rbcL (the subjects

of the analyses in this paper), are protein-coding genes
that are often analyzed in concatenated alignments with
non-coding sequences using independent nucleotide
models (see e.g. [3,4]) or on their own using indepen-
dent nucleotide models (see e.g. [5,6]). While the choice
for an independent model of evolution, such as the gen-
eral time-reversible model (GTR; [7]) in combination
with varying rates across sites (RAS; e.g. [8]), is easily
made in the case of non-coding sequences, such a
choice is questionable when analyzing protein-coding
sequences. Indeed, an inappropriate choice of evolution-
ary model can affect the outcome of any phylogenetic
analysis (see [1] for an overview).
Models of codon substitution (i.e. full codon models)

consider a codon triplet as the unit of evolution and can
distinguish between synonymous and non-synonymous
substitutions when analyzing protein-coding sequences
[9]. This way, they are particularly effective in detecting
signals of natural selection acting on the protein. An
example of such a full codon model is the model of
Goldman and Yang [10]. Even though the use of this
model is computationally demanding due to the
increased dimension of the substitution matrix, it is well
suited for uncovering both recent and ancient diver-
gences [9]. Another category of models to analyse pro-
tein-coding sequences are the so-called codon partition
models, which use different nucleotide-based models to
describe the evolutionary process at the different codon
positions [1]. Codon partition models allow for different
models of substitution for different partitions of the
data. While full codon models - like the model of Gold-
man and Yang [10] - model biological reality more clo-
sely, codon partition models are much more
computationally efficient [1].
In this paper, we aim to provide an overview of cur-

rent codon partition models and present an extension of
these models based upon previous empirical observa-
tions. Morton [11] studied the rbcL and ndhF genes
from the chloroplast genome for signs of context depen-
dence. Specifically, the author tested substitutions at
four-fold degenerate sites for the existence of a correla-
tion between neighbouring base composition and substi-
tution bias and found that substitution bias, as
measured by the proportion of transversions, is

significantly different when neighbouring bases differ in
their A+T contents. By performing chi-square tests for
correlation on the numbers of observed transversions at
four-fold degenerate sites and the A+T content of its
neighbouring bases, Morton [11] found a significant dif-
ference in proportion of transversions in the three possi-
ble contexts (i.e. the three different levels of A+T
content), both in an rbcL and ndhF dataset. These
observations serve as the inspiration for this paper.
Here, we provide an overview of currently used codon

partition models and assess their increase in model fit
compared to the independent general-time reversible
model [7] and the full codon model of Goldman and
Yang [10]. Starting from the independent general-time
reversible model of evolution, we build these codon par-
tition models in a forward way, continually relaxing spe-
cific assumptions concerning evolution in protein-
coding regions and calculating the difference in model
fit each step of the way. We go on to extend these so-
called site-independent codon partition models to con-
text-dependent codon partition models by allowing for
the evolution of the third codon position to depend
upon the identities of its two immediate flanking posi-
tions (i.e. the second codon position of that same codon
and the first codon position of the following codon) and
by imposing specific Markov chains at the third codon
position in the ancestral root sequence. We show that
context-dependent evolution at the third codon position
is a valuable feature to increase model fit in protein-
coding sequences in general and that the properties of
four-fold degenerate sites need to be taken into account
when building a context-dependent codon partition
model.

Methods
Data
We have selected 26 sequences from the available 34 in
the work of Karol et al. [3], for the atpB and rbcL pro-
tein-coding sequences. The following sequences were
used: Arabidopsis thaliana, Huperzia spp., Psilotum
nudum, Dicksonia Antarctica, Anthoceros spp., March-
antia polymorpha, Chara connivens, Lamprothamnium
macropogom, Lychnothamnus barbatus, Nittelopsis
obtusa, Nitella opaca, Tolypella prolifera, Coleochaete
orbicularis, Coleochaete solute, Coleochaete irregularis,
Coleochaete sieminskiana, Onychonema sp., Cosmocla-
dium perissum, Gonatozygon monotaenium, Zygnema
peliosporum, Mougeotia sp., Klebsormidium flaccidium,
Klebsormidium subtilissimum, Chlamydomonas spp.,
Nephroselmis olivacea and Cyanophora paradoxa (as
the outgroup). The sequence lengths (for each of the
sequences) are 1203bp for the atpB dataset and 1206bp
for the rbcL dataset. Our analyses used a fixed consen-
sus tree for these 26 sequences, taken from the tree
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reported in Karol et al. [3], as can be seen in Figure 1
(branch lengths not drawn to scale).

Site-independent evolutionary models
Site-independent models of evolution have been the
main subject of many phylogenetic studies since the
inception of the model of Jukes and Cantor [12]. Prob-
ably one of the most used evolutionary models is the
general time-reversible model [7] with gamma-distribu-
ted rate heterogeneity (i.e. among-site rate variation, see
e.g. [8,9]) and a proportion of invariant sites (although it
is often argued that invariant sites are included in the
category of lowest rates in the gamma distribution
describing rate heterogeneity; see e.g. [9]), often denoted
as GTR+Γ+I. For the combined alignment of the four
genes (atpB (plastid), rbcL (plastid), nad5 (mitochon-
drial) and the small subunit (SSU) rRNA gene
(nuclear)), Karol et al. [3] identified this model using a
model selection approach as their model of choice for
phylogenetic inference, although it is highly unlikely
that this is the model that provides the highest fit to the
data since more complex models for protein-coding
sequences are often not present in popular packages for
model selection (see e.g. [1]). We only consider two

truly site-independent models in this paper, i.e. the GTR
and the GTR+ Γ model. We have modelled the gamma-
distributed rate heterogeneity using Yang’s discrete
approximation with 4 rate categories [8].

Context-dependent (CD) models
Over the past two decades, various context-dependent
models have been developed for analysing non-coding
sequence (see [13] for a review). In previous work [13],
we have developed a context-dependent model that
employs a GTR model for each of the 16 possible neigh-
bouring base combinations. We have introduced the
notation “GTR16C” for this context-dependent model.
A single set of site-independent base frequencies is used
for all 16 GTR models, as well as to describe the ances-
tral root sequence distribution. This model drastically
outperforms the independent GTR model, as well as the
independent GTR model augmented with the assump-
tion of gamma-distributed rates, for a dataset of primate
ancestral repeats.
Even though protein-coding sequences can in princi-

ple not benefit from such models, we have tested the
performance of our previously introduced context-
dependent model [13] on both protein-coding datasets
presented here. However, the main use of this context-
dependent model lies in its introduction to the develop-
ment of so-called context-dependent codon partition
models, which will be discussed later in this paper.

Full codon models
Goldman and Yang [10] developed one of the first
codon-based evolutionary models, i.e. models that have
codons as their states, incorporating biologically mean-
ingful factors such as transition/transversion bias, varia-
bility of a gene and amino acid differences. Previous
models describing the evolution of protein-coding genes
in the field of phylogenetics worked either on the mono-
nucleotide level in DNA sequences or on the amino acid
level in protein sequences. While nucleotide models
have 4 states and amino acid models have 20 states, the
codon model of Goldman and Yang [10] has 61 states, i.
e. the 61 sense codons, as it does not consider the 3
nonsense (stop) codons, given that mutations to or from
stop codons can be assumed to drastically affect the
structure and function of the protein and therefore will
rarely survive.
Goldman and Yang [10] assume that mutations occur

independently at the three codon positions and there-
fore allow only single-nucleotide substitutions to occur.
Codons are also assumed to evolve independently from
one another. The model multiplies rates of substitution
involving a transition by a factor �, which directly
affects the ratio of transition and transversion substitu-
tions. To account for selective restraints at the amino
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Figure 1 Fixed consensus tree, based on the original tree
inferred by Karol et al. [3], branch lengths not drawn to scale.
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acid level, substitution rates are further modified by a
multiplicative factor if the two codons code for different
amino acids. To do so, the matrix of physicochemical
distances between the 20 amino acids, as composed by
Grantham [10], is used. In the implementation of this
model, which we denote “GY94”, we have used the
averages of the observed codon frequencies, as sug-
gested by Goldman and Yang [10]. We also allow for
among-codon rate variation and denote such a model
as “GY94+Γ”.

Codon Partition (CP) models
Codon partition (CP) models are nucleotide models that
accommodate the differences in the evolutionary
dynamics at the three codon positions (see e.g. [9,14]).
For example, Yang [14] takes into account the nucleo-
tide frequency bias, the substitution rate bias and the
difference in the extent of rate variation among the
three codon positions. While Yang [14] only used the
HKY evolutionary model [15] in his analyses, Shapiro et
al. [1] also included the GTR model. In their compara-
tive study of suitable models for protein-coding
sequence, Shapiro et al. [1] found that for only 2 out of
283 multiple sequence alignments, the GTR+Γ+I model
was the best model and for only 1 of them, GTR+ Γ
was the model of choice. Likewise, the HKY+I model
was only favoured in 1 out of the 283 alignments. As
shown by Shapiro et al. [1], codon partition (CP) models
are biologically motivated and are a computationally fea-
sible alternative to codon-based models for the analysis
of protein-coding sequences, since the dimensions of
the evolutionary matrices do not increase.
We here describe currently used codon partition mod-

els (along with their notation in this paper) but restrict
ourselves to those models that use the general time-
reversible (GTR) evolutionary model. We do not use
nor describe models of invariable sites plus gamma-dis-
tributed rates (so-called ‘’I+ Γ’’ models), given the strong
correlation between the proportion of invariable sites
and the gamma shape parameter (see e.g. [9]). All the
codon partition models discussed in this section assume
that the different codon positions evolve independently
from one another.
A first series of models, denoted GTR112 and GTR123,

employ different general time-reversible models depend-
ing on codon position. While the GTR112 model groups
the first and second codon position together and hence
uses 2 models (10 free parameters), the GTR123 model
considers each codon positions separately and hence
uses 3 models (15 free parameters). This is also referred
to as the accommodation of substitution rate bias.
These two models can be linked with one common set

of base frequencies (3 free parameters) in which case we
simply denote them as GTR112 and GTR123. However,

these two models can also be combined with 2 sets of
base frequencies (6 free parameters) for the GTR112

model and 3 sets of base frequencies (9 free parameters)
for the GTR123 model and we denote such models with
a “+F” notation, i.e. GTR112+F112 and GTR123+F123. This
is also referred to as the accommodation of nucleotide
frequency bias.
An assumption concerning the evolutionary behaviour

of sites in an alignment that typically greatly improves
model fit as well as phylogenetic tree reconstruction is
that of gamma-distributed rate-heterogeneity, although
typically used in non-coding sequence data. In the case
of a discrete approximation to rate heterogeneity for all
positions, we use the typical “+Γ” notation. Modelling
rate heterogeneity requires only one extra parameter.
However, given the difference in evolutionary dynamics
across codon positions, it may be important to allow for
the extent of rate variation to vary across sites. This
means using two independent gamma distributions
when the first and second codon positions are grouped
together and using three independent gamma distribu-
tions when the three codon positions are modelled sepa-
rately. We denote these distributions, which require two
and three extra parameters, respectively with a “+Γ112“
and a “+Γ123“ notation.
When simply allowing for different distributions for

the rate heterogeneity at different codon positions, it is
assumed that the mean rate for each of these distribu-
tions is 1. As this may turn out to be unrealistic, so-
called rate ratios can be added to allow for different
mean rates in the gamma distributions (i.e. to allow for
variable mutation rates among the different codon posi-
tions). We have used the random-rates approach pre-
sented in the work of Burgess and Yang [16] to
accommodate variable mutation rates among codon
positions (i.e. the average rate is fixed at 1). In accor-
dance with the work of Shapiro et al. [1], we use the
notations “+CP112“ and “+CP123“ to indicate the models
with variable mutation rates among codon positions.

Context-Dependent Codon Partition (CDCP) models
While the current codon partition (CP) models (see e.g.
[1,9,14]) allow for different evolutionary dynamics at the
three codon positions, such models do not incorporate
dependencies between the different codon partitions (i.e.
each codon position is still assumed to evolve indepen-
dently). Allowing for such dependencies is a particular
strength of full codon models. In this paper, we provide
a series of possible extensions for current codon parti-
tion models, based on the assumption that codon posi-
tions do not evolve independently from one another. As
stated in the introduction, our context-dependent mod-
elling assumptions are inspired by the work of Morton
[11], who detected a significant correlation between the
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number of transversions at four-fold degenerate sites
and the A+T content of the two immediate flanking
bases.
As a first attempt, we assume context-dependent evo-

lution of the third codon position on its two immediate
flanking bases (i.e. the second codon position of the
same codon and the first codon position of the succeed-
ing codon). The first and second codon positions how-
ever are still assumed to evolve independently from one
another. We model this dependence by assuming that
evolution at the third codon position occurs according
to our full context-dependent GTR16C model [13]. This
means that for the third codon position, 16 GTR models
(but each employing the same (single) set of base fre-
quencies) will be estimated, one for each neighbouring
base combination, resulting in 80 free evolutionary para-
meters to be estimated for the third codon position
(compared to 5 free evolutionary parameters for the first
codon position and the second codon position). We use
the notation “+CD16“ for this assumption.
One of the main conclusions of the study of Morton

[11] is that the number of transversions at the third
codon position are correlated with the A+T content of
its two immediate flanking bases. To incorporate this
finding, we have adapted our full context-dependent
model (GTR16C; see [13]) to only combine 3 GTR
models (or 15 free parameters) for the third codon posi-
tion: 1 for an A+T content of 0 (i.e. none of the two
immediate flanking bases is either A or T), 1 for an A
+T content of 1 (i.e. exactly one of the two immediate
flanking bases is either A or T) and 1 for an A+T con-
tent of 2 (i.e. both immediate flanking bases are either
A or T). We use the notation “+CD3“ for this assump-
tion. Note that both the first and second codon posi-
tions are still allowed to evolve independently.

Four-fold degenerate sites
A position of a codon is said to be a four-fold degenerate
site if any nucleotide at this position specifies the same
amino acid. For example, the third position of the glycine
codons (GGA, GGG, GGC, GGU) is a four-fold degener-
ate site, because all nucleotide substitutions at this site
are synonymous, i.e. they do not change the amino acid.
Only the third positions of some codons may be fourfold
degenerate. The following amino acids have four-fold
degenerate codon positions: alanine (GCX), arginine
(CGX), glycine (GGX), leucine (CUX), praline (CCX),
threonine (ACX), serine (UCX) and valine (GUX).
Here, we expand the context-dependent codon parti-

tion model introduced in the previous section in that
the context-dependent model at the third codon posi-
tion is only used for the four-fold degenerate sites, as
identified at the start of each branch. Non four-fold
degenerate sites are assumed to evolve according to a

separate site-independent general time-reversible model,
which shares the same (single) set of base frequencies as
the context-dependent model at the four-fold degener-
ate sites. When assuming the full context-dependent
model at the third codon position, we denote this model
“+FF16“; when using the context-dependent model at the
third codon position that is aimed at modelling a corre-
lation to the A+T context of its two immediate flanking
bases, we denote the model as “+FF3“.

Ancestral root sequence distribution
In previous work on context-dependent models for non-
coding sequences, we have extensively discussed the
importance of an adequate ancestral root sequence dis-
tribution to estimate the evolutionary parameters of
context-dependent models [17]. Indeed, while the con-
text-dependent models presented in the two previous
sections impose a dependency scheme at the third
codon position across the underlying tree, it does not in
any way impose a dependency pattern at the ancestral
root of the underlying phylogenetic tree. To ensure a
dependency scheme across the entire underlying phylo-
genetic tree, we therefore allow for different ancestral
root distributions for the third codon position.
The standard approach would be to use the values of

the base frequencies describing the contents of the third
codon position as the prior probability for the states of
the third codon position (see e.g. [18]), which assumes
independence at the ancestral root sequence. An
approach which we have shown to be practical when
modelling context-dependent evolution in non-coding
sequences [17], is to assume a zero-order Markov chain
(i.e. a separate set of independent base frequencies
πROOT = {πA, πC, πG, πT}) to describe the ancestral root
distribution at the third codon position. This approach
hence requires merely 3 additional free parameters.
An extension of this approach is to use a first-order

Markov chain to allow for dependence of the third
codon position on the second codon position (of the
same codon) in the ancestral root sequence, which
requires four independent sets of base frequencies
πROOT = {πX|A, πX|C, πX|G, πX|T}, with X Î {A,C,G,T} the
identity of the site at the second codon position of the
same codon. One could also choose to model a first-
order Markov chain in the opposite direction, i.e. where
the identity of the third codon position would depend
upon the identity of the first codon position of the suc-
ceeding codon. However, it is realistic to expect that
this approach will be less optimal in terms of model fit,
so we did not attempt to include this dependency
scheme. Note that our notation for the distribution at
the root sequence differs from the typical notation for
conditional probabilities in that we put the conditional
part before the ‘pipe’ symbol (’|’).
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A final approach to model context-dependence at the
third codon position in the ancestral root sequence is to
allow its identity to depend upon the identity of its two
immediate flanking bases, i.e. the identity of the second
codon position of the same codon and the identity of
the first codon position of the succeeding codon. We
model this “second-order” dependence through 16 sets
of base frequencies πROOT = {πX|A|Y, πX|C|Y, πX|G|Y, πX|T|
Y}, with X Î {A, C, G, T} the identity of the site at the
second codon position of the same codon and Y Î {A,
C, G, T} the identity of the site at the first codon posi-
tion of the succeeding codon.

Bayesian Markov Chain Monte Carlo using data
augmentation
Bayesian inference of phylogeny is based on a quantity
called the posterior probability function of a tree, in the
same way as maximum-likelihood inference is based on
the likelihood function. While the posterior probability
is generally tedious to calculate, simulating from it is
relatively easy through the use of Markov chain Monte
Carlo (MCMC) methods ([19,20]). Relaxing the assump-
tion of independent evolution leads to more parameter-
rich evolutionary models and computational difficulties,
which we handle via a data augmentation scheme [21].
As previously discussed [22], consistency problems may
arise with such high-dimensional models, along with
potential computational burdens. In view of this, a
model-selection approach should be used that penalizes
the addition of extra parameters unless there is a suffi-
ciently impressive improvement in fit between model
and data [22]. To compare the different assumptions
concerning the root distribution, we have calculated
(log) Bayes Factors [23]. Log Bayes Factors are typically
divided into 4 categories depending on their value: from
0 to 1, indicating nothing worth reporting; from 1 to 3,
indicating positive evidence of one model over the
other; from 3 to 5, indicating strong evidence of one
model over the other; and larger than 5, indicating very
strong evidence of one model over the other. We have
chosen to calculate Bayes Factors using thermodynamic
integration [24], since the traditional harmonic mean
estimator of the marginal likelihood systematically
favours parameter-rich models and is hence unfit to
compare these complex context-dependent models. A
detailed discussion of the data augmentation approach
in our proposed Bayesian Markov chain Monte Carlo
approach and in the thermodynamic integration frame-
work for model comparison can be found in previous
work [13,25].

Prior Distributions
Let T be the set of branch lengths with tb (tb≥0) one
arbitrary branch length and μ a hyperparameter in the

prior for tb in T (see e.g. [26]). The following prior dis-
tributions q (·) are chosen for our analysis, with Γ(·) the
Gamma function. Dirichlet priors (which are uninforma-
tive priors) assign densities to groups of parameters that
measure proportions (i.e., parameters that must sum to
1). For each set of base frequencies (which we here
denote π1,2,3) that describes the nucleotide composition
of a codon position (and also the ancestral root distribu-
tion), the following prior distribution is assumed:

π1,2,3∼ Dirichlet (1,1,1,1) , q(πROOT) = �(4).

For each set of model frequencies of which the ances-
tral root sequence is composed, the following prior dis-
tribution is assumed:

πROOT∼ Dirichlet (1,1,1,1) , q(πROOT) = �(4).

As mentioned earlier, we have used the random-rates
approach presented in the work of Burgess and Yang
[16] to accommodate variable mutation rates among
codon positions. Let the rate at codon position i be ri,
with i = 1,2,3. To avoid overparameterization, the aver-

age rate is fixed at one: r̄ =
i=1∑

3
ri/3

and a Dirichlet prior

is assigned on the variables ri
/
3 . For additional informa-

tion on this prior assignment, we refer to the work of
Burgess and Yang [16].
For each codon position, the parameter ai, with i =

1,2,3, describing the among-site rate variation gamma-
distribution at that codon position, is assumed to follow
a uniformly distributed prior between 0 and 50.
For the model parameters of each context (i.e. neigh-

bouring base combination) independently, the following
prior distribution is assumed (see e.g. [27]):

θ∼ Dirichlet (1,1,1,1,1,1) , q(θ) = �(6).

Further, branch lengths are assumed i.i.d. given μ:

tb |μ ∼ Exponential (μ), q(tb |μ) = 1
μ
e−(1/μ)tb for each tb in T

and

μ ∼ Inv − gamma (2.1, 1.1) , q(μ) =
(1.1)(2.1)

�(2.1)
μ−(2.1+1) e−1.1/μ, μ > 0.

Results
atpB dataset
Using the model-switch thermodynamic integration
scheme, we have compared all site-independent, codon
partition and context-dependent codon partition model
to the independent general time-reversible model
(GTR). Figure 2 shows all calculated bidirectional mean
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log Bayes Factors for those evolutionary models that
group first and second codon positions, while Figure 3
shows the results for those evolutionary models that
consider each codon position separately (annealing and
melting thermodynamic integration results can be found
in Tables S1, S2 and S3 in Additional file 1). The pre-
sented models are constructed from the bottom up, i.e.
from left to right in Figures 2 and 3, each time an addi-
tional evolutionary assumption is relaxed with respect to
the models (i.e. additional parameters are added). For
matters of comparison, the left-hand side of Figures 2
and 3 show the performances of 4 models that can be
used in the analysis of non-coding sequences: GTR
(black line; mean log Bayes Factor of 0), GTR+Γ (white
bar; using 4 discrete rate categories; mean log Bayes
Factor of 1398.01); GTR16C (yellow bar; mean log
Bayes Factor of 275.08); and GTR16C+Γ (orange bar;
mean log Bayes Factor of 1585.80).
The overall trend in Figures 2 and 3 is identical, albeit

that the results presented in Figure 3 (where each codon
position is treated separately) systematically outperform
those presented in Figure 2 (where the first and second
codon positions are grouped together). The basic model
in Figure 2 is hence the GTR112 model, while the basic

model in Figure 3 is the GTR123 model. To start the
various model comparisons, both the GTR112 and
GTR123 models are augmented with the “+CD3“,
“+CD16“, “+FF3“ and “+FF16“ context-dependent
assumptions. In both Figures 2 and 3 it can clearly be
seen that the context-dependent substitution patterns
for the third codon position increase model fit substan-
tially, even without accommodating additional evolu-
tionary effects such as nucleotide frequency bias or
assuming among-site rate variation for each codon posi-
tion (see Tables S1, S2 and S3 in Additional file 1 for
numerical results). These context-dependent codon par-
tition models continue to outperform the traditional
codon partition models with the inclusion of all the evo-
lutionary assumptions discussed in the Methods section.
Allowing for among-site variation ("+Γ” in both Fig-

ures 2 and 3; using 4 discrete rate categories, as is con-
ventional when analyzing non-coding sequences) yields
the largest increase in model fit. As it makes more sense
in coding sequences to assume a specific pattern of
among-site rate variation for either the first and second
codon positions grouped together ("+Γ112“ in Figure 2)
or for each codon position separately ("+Γ123“ in Figure
3), the corresponding models clearly outperform a
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Figure 2 atpB dataset: Comparison of all models presented in this paper to the GTR model, when grouping the first and second
codon positions together. The performance of “traditional” codon partition models (up to the dotted horizontal line) can be improved
significantly by assuming context-dependent evolution at the third codon position. As can be seen from this figure, such context-dependent
codon partition models systematically outperform the (independent) codon partition models in terms of model fit.
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model which imposes 1 general pattern of among-site
rate variation for all sites. To relax the restriction that
each codon position has a mean evolutionary rate of 1.0,
which is deemed unrealistic, this is usually accompanied
by a different mean evolutionary rate per codon position
("+CP112“ in Figure 2 and “+CP123“ in Figure 3).
Given that up to this point, one single set of base fre-

quencies has been used for the different codon posi-
tions, we have relaxed this assumption and have
modelled the so-called nucleotide frequency bias
("+F112“ in Figure 2 and “+F123“ in Figure 3). For both
the GTR112 and GTR123 models without the assumption
of context-dependence for the third codon position, this
latest inclusion marks the optimal model fit as presented
in the literature. We have marked the corresponding
increase in model fit in both Figures 2 and 3 by a dotted
horizontal line. Assuming context-dependence for all
third codon positions on the A+T context of the two
immediate flanking bases (GTR112+Γ112+CP112+F112
+CD3 and GTR123+Γ123+CP123+F123+CD3) does not
yield an increase over its independence counterpart
(GTR112+Γ112+CP112+F112 and GTR123+Γ123+CP123

+F123). All other dependency patterns at the third codon
position have however resulted in increases vis-à-vis the
current state-of-the-art codon partition models, with the

GTR123+Γ123+CP123+F123+FF3 model yielding the largest
increase in model fit.
Of the different ancestral root distributions proposed

to model a dependency scheme at the third codon posi-
tion, the first-order Markov chain (i.e., model GTR123

+Γ123+CP123+F123+FF3+3F) offers the largest improve-
ment in model fit across the different model compari-
sons, followed by the GTR123+Γ123+CP123+F123+FF16+3F
model. The same pattern can be seen when grouping
first and second codon positions together, but these
models are consistently outperformed by those models
that treat each codon position separately.
Figure 3 also shows the performance of the full codon

model of Goldman and Yang [10]. The GY94 model
yields an increase in model fit vis-à-vis the GTR model
of 3134.49 log units (annealing 95% CI: [3096.16;
3130.80]; melting 95% CI: [3136.83; 3174.19]) and the
GY94+Γ model (annealing 95% CI: [3277.70; 3331.63];
melting 95% CI: [3416.64; 3472.83]) an increase of
3374.70 log units. We have included this result for the
sake of comparison, as these models mimic full codon
models. We thus find that the proposed context-depen-
dent codon partition models improve upon the existing
codon partition models and partially close the gap with
full codon models. Note, however, that this is not the
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Figure 3 atpB dataset: Comparison of all models presented in this paper to the GTR model, when treating each codon position
separately. The performance of “traditional” codon partition models (up to the dotted horizontal line) can be improved significantly by
assuming context-dependent evolution at the third codon position. As is confirmed in this figure, such context-dependent codon partition
models systematically outperform the (independent) codon partition models in terms of model fit. Further, the models that assume that first and
second codon positions evolve according to a separate evolutionary model (in this figure) systematically outperform those models that treat first
and second codon positions identically (from an evolutionary perspective).
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main point of such a comparison, given that the pre-
sented models include dependencies across the codon
boundaries and are hence not exclusively aimed towards
mimicking codon models more closely.
As we have shown in previous work [25], parameter

clustering may drastically increase model fit of a given
context-dependent evolutionary model. While this is not
the aim of this study, it is thus quite realistic that clus-
tering several parameters together will result in the
GTR123+Γ123+CP123+F123+FF16+3F model being the
optimal codon partition model for the atpB dataset.
This is why we go on to discuss the parameter estimates
for this model. The parameter estimates shown in Fig-
ure 4 support the model building approach we have
taken in this paper. For instance, the evolutionary esti-
mates for those third codon position that are four-fold
degenerate sites, are clearly different from those of the
first two codon positions, which are clearly different
from one another as well (for example, the rGC, rCG
and rTC estimates), justifying the use of a separate evo-
lutionary model for all three codon positions. Particu-
larly interesting is the increased rCT substitution rate at
those third codon positions that are not four-fold
degenerate sites.
The context-dependent substitution rates, which are

grouped by the identity of the left neighbouring base,
form the most interesting aspect of Figure 4. Note that,
given the small size of the (single-gene) alignment and
the multitude of substitution rates to be estimated, the
95% credibility intervals are quite wide. Further, it is
important to assess whether there are bidirectional
dependencies on the third codon position, i.e. whether
there is an influence of the identities of both left and
right neighbouring bases on the substitution rate. We
discuss the context-dependent substitution rates for the
four-fold degenerate sites, as grouped by the identity of
their left neighbouring base, in Additional file 1. Impor-
tant to notice is that the relationship between these sub-
stitution rates and the immediate neighbouring bases
extends well beyond an influence of the A+T context of
those bases, as proposed by Morton [11].
Table 1 shows drastic differences in the nucleotide

frequency estimates for the three codon positions, illus-
trating the importance of not grouping first and second
codon positions together, as shown by the calculated
(log) Bayes Factors in Tables S1 through S3 in Addi-
tional file 1. Further, there are clearly large differences
in the degree of among-site rate variation across codon
positions. All three gamma distributions are L-shaped,
meaning that for each codon position, most sites have
very low substitution rates or are virtually invariable,
while a few sites exist with very high rates [8]. While
the first codon positions evolve on average twice as fast
as the second codon positions, the mean rate for the

third codon position is drastically elevated compared to
the first and second codon positions, as indicated by the
estimates for the relative rates in Table 1.
Table 2 shows the estimates of the first-order Markov

chain imposed on the third codon position in the ances-
tral root sequence for the atpB dataset. While the mean
values of the estimates reveal large differences in the
first-order estimates, they are often accompanied by
very wide 95% credibility intervals, which is why this
ancestral root distribution at the third codon position
offers only a small improvement on average over the
other assumptions (zero-order Markov chain and depen-
dence on both neighbouring bases; see Table S3 in
Additional file 1).

rbcL dataset
As for the atpB dataset, we have compared all codon parti-
tion and context-dependent codon partition model to the
independent general time-reversible model using the
model-switch thermodynamic integration scheme. Figure
5 shows all the calculated bidirectional mean log Bayes
Factors for those evolutionary models that group first and
second codon positions, while Figure 6 shows the results
for those evolutionary models that consider each codon
position separately (annealing and melting thermodynamic
integration results can be found in Tables S4, S5 and S6 in
Additional file 1). For matters of comparison, the left-
hand side of Figures 5 and 6 show the performances of 4
models that can be used in the analysis of non-coding
sequences: GTR (black line; mean log Bayes Factor of 0),
GTR+Γ (white bar; using 4 discrete rate categories; mean
log Bayes Factor of 1106.06); GTR16C (yellow bar; mean
log Bayes Factor of 323.17); and GTR16C+Γ (orange bar;
mean log Bayes Factor of 1381.77).
The overall trend in Figures 5 and 6 is identical to

that in Figures 2 and 3. Comparing Tables S1 through
S6 in Additional file 1 reveals that not only the hierar-
chy of the models is identical, but also that the exact
same model is preferred for the rbcL dataset as for the
atpB dataset. However, despite the fact that the rbcL
alignment is only 3 sites shorter than the atpB align-
ment (i.e. 0.25% shorter), there are large differences in
the calculated log Bayes Factors across the models eval-
uated. For example, the log Bayes Factor for the GTR123

+Γ123+CP123+F123+FF16+3F model compared to the
GTR model for the atpB datasets is 313 log units higher
than the corresponding log Bayes Factor for the rbcL
dataset. Hence, as was the case for the atpB dataset, it
can be seen from Figures 5 and 6 that the context-
dependent substitution patterns for the third codon
position increase model fit substantially, even without
accommodating additional evolutionary effects such as
nucleotide frequency bias or among-site rate variation
for each codon position (see Tables S4, S5 and S6 in
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Additional file 1 for numerical results) and that these
context-dependent codon partition models outperform
traditional codon partition models.
Figure 6 also shows the performance of the full codon

model of Goldman and Yang [10], which outperforms
all other models as was the case for the atpB dataset.
The GY94 model yields an increase in model fit vis-à-
vis the GTR model of 3134.49 log units (annealing 95%
CI: [3309.51; 3339.88]; melting 95% CI: [3349.88;
3382.22]) and the GY94+Γ model (annealing 95% CI:
[3356.12; 3408.43]; melting 95% CI: [3459.73; 3505.79])
an increase of 3374.70 log units.

The parameter estimates for the optimal GTR123+Γ123
+CP123+F123+FF16+3F model, which are shown in Figure
7, are discussed in Additional file 1. Important to notice
is once again that the relationship between these substi-
tution rates and the immediate neighbouring bases
extends well beyond an influence of the A+T context of
those bases, as proposed by Morton [11]. In short, com-
pared to Figure 4 which contains the context-dependent
estimates for the atpB dataset, it can be concluded from
Figure 7 that the overall rCT substitution rate is drasti-
cally lower in the rbcL dataset across all the neighbour-
ing base combinations (as was the case for the non
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Figure 4 atpB dataset: Estimated substitution patterns for the independent evolutionary models at first, second and third codon
positions and the context-dependent evolutionary model at the third codon position for the GTR123+Γ123+CP123+F123+FF16+3F model.
At the left of this figure, i.e. the first two columns, the independent model estimates for first (1st CP), second (2nd CP) and third (3rd CP) codon
positions are shown. At the right of the figure (columns 3 through 10), the context-dependent estimates for the third codon position are shown for
each evolutionary context, i.e. each neighbouring base combination. In the figure, the substitution parameter types (i.e. rAG, rAC, ..., rTC) each have
a unique colour, as indicated in the legend panel within the figure, and the same colour is used for every model (context-dependent or not).
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four-fold degenerate sites); the 95% credibility intervals
are much smaller. Moreover, the rCT estimates do not
differ all that much depending on the neighbouring base
combinations, as opposed to the atpB dataset. Further,
the rCA and rCG substitution rates are also lower than
in the atpB dataset and have much smaller 95% credibil-
ity intervals as well. On the other hand, the 95% cred-
ibility intervals for the rAG and rAT estimates are
larger than in the atpB dataset. In short, the main differ-
ences in terms of the context-dependent substitution
rates at the four-fold degenerate sites can be found in
the rGC, rGT and rGA parameters.
The observation that the overall substitution beha-

viour as well as the context-dependent substitution pat-
terns at the fourfold degenerate sites differs between the
atpB and the rbcL genes is not surprising as Morton
[11] already reported that rbcL is the exceptional case in
the chloroplast genes in terms of the relationship
between context and substitution bias. As a possible

explanation for this observation, Morton [11] suggested
that a more complex context dependency exists than
the relationship between substitution bias and A+T con-
text that the author has studied. However, given that we
have estimated more complex context-dependent substi-
tution patterns at the fourfold degenerate sites, in that
we don’t refrain ourselves from only distinguishing
between transitions and transversions, we still observe
clearly different substitution behaviour between the two
datasets. Additional datasets, such as the ndhF, psbA,
matK, atpA, ..., genes, should be studied to further clar-
ify the substitution patterns in the chloroplast genes.
Unfortunately, these genes have not yet been sequenced
for the majority of the organisms used in this paper.
As for the atpB dataset, Table 3 shows drastic differ-

ences in the nucleotide frequency estimates for the
three codon positions, which is reflected in the higher
log Bayes Factors for those models that treat all three
codon positions separately (see Tables S4 through S6 in
Additional file 1). A notable difference between the two
datasets is the underrepresentation of cytosine at the
third codon position in the atpB dataset, which is not
the case in the rbcL dataset. Further, while the among-
site rate distribution parameters for the first and second
codon positions are quite similar for both datasets, this
is not the case for the third codon position, where the
gamma distribution parameter is three times higher for
the rbcL dataset. Hence, only the gamma distributions
for the first and second codon positions are L-shaped,
meaning that for each codon position, most sites have
very low substitution rates or are virtually invariable,
while a few sites exist with very high rates. The gamma
distribution for the third codon position is bell-shaped,
meaning that most sites have intermediate rates while
few sites have very low or very high rates [8]. The rela-
tive rate estimates for the rbcL dataset also show some
differences compared to the estimates of the atpB data-
set. The mean rates of the first and second codon posi-
tions are two to three times higher than in the atpB
dataset, with the mean rate at the third codon position
dropping about 10 percent.
Table 4 shows the estimates of the first-order Markov

chain imposed on the third codon position in the ancestral
root sequence for the rbcL dataset. The mean values of the
estimates are once again accompanied by wide 95% cred-
ibility intervals, although not to the extent of the atpB
dataset. While the distribution of frequencies is quite simi-
lar when the preceding base is adenine, for the other pre-
ceding bases this isn’t the case, with the largest difference
occurring when the preceding base is cytosine.

Discussion
While nucleotide context-dependent models can offer
large improvements in terms of model fit to the data as

Table 1 atpB dataset: estimates per codon position for
the nucleotide frequencies, among-site rate variation
distribution and relative rates (for the GTR123+Γ123+CP123
+F123+FF16+3F model)

Frequencies

CP A C G T α̂ CP123

1 0.2396
[0.21;
0.28]

0.2216
[0.19;
0.26]

0.3717
[0.33;
0.42]

0.1671
[0.14;
0.20]

0.1579
[0.11;
0.24]

0.1066
[0.08;
0.14]

2 0.2804
[0.24;
0.33]

0.2298
[0.19;
0.27]

0.1656
[0.13;
0.20]

0.3242
[0.28;
0.38]

0.0946
[0.01;
0.15]

0.0512
[0.04;
0.07]

3 0.3784
[0.35;
0.41]

0.0875
[0.08;
0.10]

0.0707
[0.06;
0.08]

0.4634
[0.43;
0.50]

0.8716
[0.73;
1.04]

2.8422
[2.80;
2.88]

Shown are mean estimates of 100.000 MCMC iterations, discarding the first
20.000 iterations as the burn-in, and the corresponding 95% credibility
intervals. The values in the table clearly illustrate the different substitution
dynamics at the three codon positions.

Table 2 atpB dataset: estimates for the first-order
Markov chain distribution at the ancestral root sequence
(for the GTR123+Γ123+CP123+F123+FF16+3F model)

Root

X πX|A πX|C πX|G πX|T

A 0.5049
[0.38; 0.61]

0.4089
[0.28; 0.52]

0.0382
[0.00; 0.13]

0.0480
[0.00; 0.16]

C 0.1018
[0.00; 0.31]

0.2481
[0.01; 0.75]

0.1993
[0.01; 0.55]

0.4507
[0.06; 0.79]

G 0.0402
[0.00; 0.15]

0.1610
[0.00; 0.52]

0.1088
[0.01; 0.40]

0.6899
[0.16; 0.94]

T 0.1010
[0.01; 0.25]

0.3925
[0.22; 0.54]

0.4490
[0.29; 0.59]

0.0575
[0.00; 0.20]

Shown are mean estimates of 100.000 MCMC iterations, discarding the first
20.000 iterations as the burn-in, and the corresponding 95% credibility
intervals. Despite the wide 95% credibility intervals, the estimates show why
such a first-order dependence is useful.
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compared to independent evolutionary models, their
performance has to be compared to the performance of
both codon-based and codon partition (CP) models.
Shapiro et al. [1] state that few analyses in the literature
on protein-coding sequences actually take into account
the genetic code. Moreover, commonly employed model
selection techniques (such as Modeltest by Posada and
Crandall [2]) exclude codon-based models from the
model comparisons, presumably due to the associated
computational cost. Shapiro et al. [1] show, in align-
ments of 177 RNA virus genes and 106 yeast genes, that
the codon-based GY94 model [10] is the model of
choice for all the yeast genes and for 67% of the virus
genes. However, due the computational cost the GY94
model seems only of use in smaller datasets. Compared
to the independence models (such as the frequently
used GTR + Γ + I model), the CP models performed
better on average for all the alignments analyzed. Such
biologically motivated CP models are hence a computa-
tionally feasible alternative to codon-based models for
use with protein-coding sequences, frequently outper-
forming standard nucleotide models.
We have shown in this paper that the computational

requirements for integrating full codon models in a

thermodynamic integration framework for model com-
parison increase drastically. While we have focused on
the model of Goldman and Yang [10] as the full codon
model of choice in this paper, better performing codon
models have been developed (we refer to [28] for a
review on codon substitution models). A study on full
codon models is however beyond the scope of this
paper, as the main goal was to show that current codon
partition models can be approved upon at a computa-
tional cost below that of full codon models.
We have shown in this work that codon partition

models that are extended with a context-dependence
pattern for the third codon position across the entire
underlying phylogenetic tree (so-called context-depen-
dent codon partition models) significantly improve
model fit compared to traditional codon partition mod-
els. While this work was mainly inspired by empirical
findings [11], other context-dependent assumptions to
extend traditional codon partition models can be
devised and tested, which is the subject of ongoing
work. The models proposed in this paper illustrate the
complex (context-dependent) substitution patterns at
the third codon position, along with increased rates of
evolution at that position.
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Figure 5 rbcL dataset: Comparison of all models presented in this paper to the GTR model, when grouping the first and second
codon positions together. The performance of “traditional” codon partition models (up to the dotted horizontal line) can be improved
significantly by assuming context-dependent evolution at the third codon position. As can be seen from this figure, such context-dependent
codon partition models systematically outperform the (independent) codon partition models in terms of model fit.
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The approach we have taken to model context-
dependent evolution at the third codon position selects
one of 16 models using the neighbouring base combi-
nation at the start of each branch, which means that
for a given site the context might change at each inter-
nal node of the underlying phylogenetic tree. A limit-
ing aspect of this approach however is that the
neighbouring base combination is assumed not to
change along the length of a branch. This leads to only
one in three codon positions (i.e. the third codon posi-
tion and its two immediate neighbours) that can
undergo substitutions, which is an assumption similar
to that of full codon models (i.e. only one position in
the codon can undergo substitutions). Contrary to the
original context-dependent model developed for non-
coding sequences [13], the evolution of the third
codon position could be allowed to depend upon the
neighbouring base combination at both the start and
the end of each branch. However, such an assumption
leads to 256 possible combinations of neighbours,
instead of 16 used in this paper. It therefore seems
highly unlikely that a sufficient performance increase is
obtained to overthrow the penalty in model fit for the
additional parameters. We have hence refrained from
testing such an assumption in this paper.

Apart from drastically increasing the number of para-
meters to model the evolution at the third codon posi-
tion more closely, as indicated in the previous
paragraph, a continuous-time approximation is often
used to allow the neighbouring base combinations to
evolve along the length of a branch. The approach we’ve
taken to do this partitions each branch into parts with
length no greater than 0.005 [29]. As we have shown for
non-coding sequences [17], this approach does not yield
significantly differing substitution parameter estimates
or ancestral root distribution estimates. However, such
an approach does lead to higher log Bayes factors com-
pared to when the branches are not split into parts.
Given that this approach does not lead to significantly
different parameter estimates, the increased log Bayes
factor can be attributed to the more accurate approxi-
mation of the context-dependent Markov substitution
process by allowing the ancestral sequences to change
in between the internal speciation nodes [17].
The results shown in this paper hence support the

notion that four-fold degenerate sites in the atpB and
rbcL protein-coding genes of land plants have a substi-
tution process that is dependent on the composition of
its neighbouring bases. In the work that inspired this
paper, Morton [11] suggested that a plausible
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Figure 6 rbcL dataset: Comparison of all models presented in this paper to the GTR model, when treating each codon position
separately. The performance of “traditional” codon partition models (up to the dotted horizontal line) can be improved significantly by
assuming context-dependent evolution at the third codon position. As is confirmed in this figure, such context-dependent codon partition
models systematically outperform the (independent) codon partition models in terms of model fit. Further, the models that assume that first and
second codon positions evolve according to a separately evolutionary model (in this figure) systematically outperform those models that treat
first and second codon positions identically (from an evolutionary perspective).
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explanation for such context dependence lies with mis-
incorporations by either the DNA polymerase or the
mismatch repair process. We refer to different papers by
Morton [11,30] and Morton et al. [31,32] for additional
plausible explanations for context dependence in the
chloroplast genome and to the paper of Hawk et al. [33]
for a study on the variation in the efficiency of DNA
mismatch repair at different sites in the yeast genome.
Even though we have found that the same context-

dependent codon partition model performed best
amongst all considered competing models for both atpB
and rbcL genes, we have shown that the (context-

dependent) substitution patterns at the third codon
position differ greatly between both datasets. This
means that, should both genes be concatenated to form
a larger alignment, different context-dependent codon
partition models may need to be used for each gene to
perform accurate phylogenetic reconstruction for such a
concatenated alignment. The substitution patterns dis-
cussed in this paper hence provide additional indications
that great care needs to be taken in the analysis of con-
catenated genes.
As we have introduced the concept of context-depen-

dent codon partition models in this paper, we have not
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yet undertaken an attempt to perform phylogenetic
inference on protein-coding sequences using these mod-
els as the relationship between (increases in) model fit
and the ability to accurately reconstruct phylogenetic
trees is intricately complex [9]. In order to perform an
extensive phylogenetic study on the context-dependent
codon partition models we have introduced in this
paper, additional context-dependent codon partition
models need to be programmed and compared against
the models presented in this paper, which is the subject
of ongoing work. Indeed, while this paper introduces a
class of context-dependent codon partition models, only
one type of such models is discussed (i.e. those where
the evolution of the third codon position depends upon
its two immediate neighbours). However, a whole range
of such models can be developed, which may for

example be aimed towards mimicking full codon models
more closely, which was not the aim of this study. The
performance of these models can then be compared to
the performance of a range of full codon models, in the
interest of performing a study on inferring phylogenies.
Specifically, the comparison with the codon model of
Muse and Gaut [34] would be interesting, since this
model, and its derivative MG-type models, relies on esti-
mating only 12 equilibrium frequencies, whereas GY-
type models estimate 61 equilibrium codon frequencies
[28]. A thorough model comparison, like the one we’ve
performed on non-coding sequences [35], is necessary
to determine an accurate evolutionary model for phylo-
genetic inference.
The computational burden of our context-dependent

codon partition models is, as for standard CP models,
much lower than for actual codon models due to the
decrease in number of parameters and the easier com-
putation of eigenvalues and eigenvectors of the substitu-
tion matrices. Indeed, the spectral decomposition of the
codon probability matrix (i.e. model) as well as the com-
putation of its powers is considerably slower than for a
nucleotide model. Computational effort in computing
the eigenvalues and eigenvectors of a matrix rises as the
cube of the number of rows or columns, hence the
effort is 613/43 ≈ 3,547 times greater for a codon than
for a nucleotide model [36]. Since our best-performing
context-dependent codon partition model uses 20
nucleotide models to estimates its parameters, computa-
tional efforts of a codon model vis-à-vis this model are
to 613/(20×43) ≈ 222 times greater. In other words,
codon partition models (context-dependent or not)

replace the high dimensionality of codon models by a
series (or combination) of low dimensional matrices, for
which spectral decomposition requires much less com-
putational efforts.
The computational differences listed in the above para-

graph are theoretical however, since often other estima-
tions (such as data augmentation) need to be performed
alongside eigenvalue decompositions, which do not
require calculation of new eigenvalues. We have hence
measured the computation time for the different classes of
model present in this paper and have listed the results in
Table 5. Given the many different calculations we had to
perform, two different systems were used to obtain the
results. The architecture used to perform the thermody-
namic integration for the codon partition models (CP),
context-dependent codon partition models (CDCP) and
GY94 model with equal rates is a 4-core AMD Opteron
2356 processor (B3 stepping) clocked at 2.3 Ghz, which
has 2 Mb L3 cache, requires DDR2 memory and was
introduced in April 2008. The architecture used for the
GY94 model with among-codon rate variation is a 8-core
Intel Xeon X7560 clocked at 2.27 Ghz, which has 24 Mb

Table 3 rbcL dataset: estimates per codon position for
the nucleotide frequencies, among-site rate variation
distribution and relative rates (for the GTR123+Γ123+CP123
+F123+FF16+3F model)

Frequencies

CP A C G T α̂ CP123

1 0.2202
[0.19;
0.26]

0.2484
[0.22;
0.28]

0.3536
[0.31;
0.40]

0.1778
[0.15;
0.21]

0.1948
[0.15;
0.26]

0.2802
[0.23;
0.34]

2 0.2712
[0.22;
0.32]

0.2558
[0.20;
0.31]

0.2071
[0.16;
0.26]

0.2660
[0.22;
0.32]

0.0465
[0.00;
0.11]

0.1212
[0.09;
0.16]

3 0.2200
[0.18;
0.26]

0.2152
[0.19;
0.25]

0.0634
[0.05;
0.08]

0.5014
[0.46;
0.54]

2.6956
[1.92;
3.84]

2.5986
[2.53;
2.66]

Shown are mean estimates of 100.000 MCMC iterations, discarding the first
20.000 iterations as the burn-in, and the corresponding 95% credibility
intervals. The values in the table clearly illustrate the different substitution
dynamics at the three codon positions. There are many differences with the
estimates of the atpB dataset, shown in Table 1. The most notable differences
are the among-site rate variation distribution parameter and the nucleotide
frequencies for the third codon position.

Table 4 rbcL dataset: estimates for the first-order Markov
chain distribution at the ancestral root sequence (for the
GTR123+Γ123+CP123+F123+FF16+3F model)

Root

X πX|A πX|C πX|G πX|T

A 0.4225
[0.33; 0.51]

0.5464
[0.46; 0.64]

0.0159
[0.00; 0.06]

0.0151
[0.00; 0.06]

C 0.4454
[0.23; 0.69]

0.0111
[0.00; 0.04]

0.0364
[0.00; 0.11]

0.5071
[0.26; 0.73]

G 0.0164
[0.00; 0.07]

0.0147
[0.00; 0.06]

0.1294
[0.05; 0.25]

0.8395
[0.71; 0.93]

T 0.3319
[0.17; 0.48]

0.2020
[0.11; 0.31]

0.2660
[0.14; 0.43]

0.2001
[0.07; 0.34]

Shown are mean estimates of 100.000 MCMC iterations, discarding the first
20.000 iterations as the burn-in, and the corresponding 95% credibility
intervals. Despite the wide 95% credibility intervals, the estimates show why
such a first-order dependence is useful. Based on the mean estimates, many
differences with the estimates of the atpB dataset, shown in Table 2, can be
seen.

Baele et al. BMC Evolutionary Biology 2011, 11:145
http://www.biomedcentral.com/1471-2148/11/145

Page 15 of 17



L3 cache, requires DDR3 memory and was introduced in
March 2010. Note that our software routines are single-
threaded. Given the methodology we presented in this
paper, it can be concluded that in the thermodynamic
integration framework the CDCP models are roughly 2
times more demanding than the existing CP models,
whereas the GY94 model with equal rates requires roughly
26 times the computational demands of the existing CP
models. The comparison with the GY94 model with
among-codon rate variation is more difficult since a differ-
ent processor architecture was used for those calculations.

Conclusions
Designing accurate context-dependent models is a com-
plex process, with many different assumptions that
require testing using an accurate procedure for model
testing, which is computationally very demanding. In this
paper, we show that current codon partition models may
benefit from allowing the evolution of four-fold degener-
ate sites to depend upon the two immediate neighboring
sites. Hence, the models we present here do not simply
present an intermediate step between codon partition
models and full codon models, given that the dependency
patterns studied transcend the codon boundaries. Hence,
dependencies are inferred that cannot be inferred even
from high-dimensional full codon models.
Our analyses of the atpB and rbcL coding regions of a

dataset of land plants show that the context-dependent
codon partition models presented in this paper signifi-
cantly outperform current codon partition models.
Further, even though for both datasets the same model
is selected as yielding the highest increase in model fit,
the parameter estimates indicate different substitution

patterns in these datasets from a context-dependent
point of view. Additional datasets will need to be ana-
lyzed to further study these substitution patterns and
the way they differ among protein-coding genes.
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