TY - STD TI - Hwang J, Suh SS, Park M, Park SY, Lee S, Lee TK. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan. Environ Toxicol 2017;32:426–433. https://doi.org/https://doi.org/10.1002/tox.22246. ID - ref1 ER - TY - JOUR AU - Smith, L. C. AU - Clow, L. A. AU - Terwilliger, D. P. PY - 2001 DA - 2001// TI - The ancestral complement system in sea urchins JO - Immunol Rev VL - 180 UR - https://doi.org/10.1034/j.1600-065X.2001.1800102.x DO - 10.1034/j.1600-065X.2001.1800102.x ID - Smith2001 ER - TY - STD TI - Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol, 2017;427:203–211. https://doi.org/https://doi.org/10.1016/j.ydbio.2017.02.003. ID - ref3 ER - TY - STD TI - Nogueira P, Gambi MC, Vizzini S, Califano G, Tavares AM, Santos R, Martínez-Crego B. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO2 vents. Mar Environ Res 2017;127:102–111. https://doi.org/https://doi.org/10.1016/j.marenvres.2017.04.002. ID - ref4 ER - TY - BOOK AU - Lawrence, J. M. PY - 2013 DA - 2013// TI - Sea urchins: biology and ecology PB - Elsevier CY - Amsterdam ID - Lawrence2013 ER - TY - STD TI - Chang Y, Tian X, Zhang W, Han F, Chen S, Zhou M, et al. Family growth and survival response to two simulated water temperature environments in the sea urchin Strongylocentrotus intermedius. Int J Mol Sci 2016;17:1356. https://doi.org/https://doi.org/10.3390/ijms17091356. ID - ref6 ER - TY - BOOK AU - Chang, Y. PY - 2004 DA - 2004// TI - Biological research and culture of sea cucumber and sea urchin PB - China Ocean Press CY - Beijing ID - Chang2004 ER - TY - STD TI - Ding J, Chang Y, Wang C, Cao X. Evaluation of the growth and heterosis of hybrids among three commercially important sea urchins in China: Strongylocentrotus nudus, S. intermedius and Anthocidaris crassispina. Aquaculture. 2007;272:273–280. https://doi.org/https://doi.org/10.1016/j.aquaculture.2007.07.231. ID - ref8 ER - TY - STD TI - Jing C, Zhang W, Song J, Qi S, Zhou M, Zhao S, et al. Fertilization, hatching and larval development of sea urchin hybrid between Strongylocentrotus intermedius and Anthocidaris crassispina. J Dalian Ocean University 2015;30:620–626. https://doi.org/https://doi.org/10.16535/j.cnki.dlhyxb.2015.06.009. ID - ref9 ER - TY - STD TI - Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X. Comparative Transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0168802. ID - ref10 ER - TY - STD TI - Yang J, Luo S, Li J, Zheng Z, Du X, Deng Y. Transcriptome analysis of growth heterosis in pearl oyster Pinctada fucata martensii. FEBS Open Bio 2018;8:1794–1803. https://doi.org/https://doi.org/10.1002/2211-5463.12502. ID - ref11 ER - TY - STD TI - Yang, C., Kong J, Wang Q, Liu Q, Tian Y, Luo, K. Heterosis of haemolymph analytes of two geographic populations in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immun 2007;23:62–70. https://doi.org/https://doi.org/10.1016/j.fsi.2006.09.005. ID - ref12 ER - TY - STD TI - Dong Y, Zhou Z, Wang L, Song L. The gonad characteristics of F1 progeny crossed by sea urchin Strongylocentrotus intermedius(♀) and S. nudus(♂). Fisheries Sci China. 2007;26:311–314. https://doi.org/https://doi.org/10.3969/j.issn.1003-1111.2007.06.001. ID - ref13 ER - TY - STD TI - Wang Z, Cui J, Song J, Wang H, Gao K, Qiu X, et al. Comparative Transcriptome analysis reveals growth-related genes in juvenile Chinese Sea cucumber, Russian Sea cucumber, and their hybrids. Mar Biotechnol 2018;20:193–205. https://doi.org/https://doi.org/10.1007/s10126-018-9796-6. ID - ref14 ER - TY - STD TI - Freeman SM. Size-dependent distribution, abundance and diurnal rhythmicity patterns in the short-spined sea urchin Anthocidaris crassispina. Estuar Coast Shelf Sci 2003;58:703–713. https://doi.org/https://doi.org/10.1016/s0272-7714(03)00134-3. ID - ref15 ER - TY - STD TI - Mo B, Qin C, Chen P, Li X, Feng X, Tong F, Yuan H. Feeding habits of the purple sea urchin Heliocidaris crassispina based on stable carbon and nitrogen isotope analysis. J Fishery Sci China 2017;24:566–575. https://doi.org/https://doi.org/10.3724/SP.J.1118.2017.16278. ID - ref16 ER - TY - STD TI - Knebelsberger T, Landi M, Neumann H, Kloppmann M, Sell AF, Campbell PD, et al. A reliable dna barcode reference library for the identification of the north european shelf fish fauna. Mol Ecol Resour 2014;14:1060–1071. https://doi.org/https://doi.org/10.1111/1755-0998.12238. ID - ref17 ER - TY - STD TI - Sato-Okoshi W, Abe H. Morphological and molecular sequence analysis of the harmful shell boring species of Polydora (Polychaeta: Spionidae) from japan and australia. Aquaculture. 2012;368–369:40–47. https://doi.org/https://doi.org/10.1016/j.aquaculture.2012.08.046. ID - ref18 ER - TY - STD TI - Luo H, Chen P, Li X, Yuan H, Wang L, Feng X. Analysis on morphological variations among six wild groups of Anthocidaris crassispina from South China Sea. Agric Sci Technol China 2015;16:2774–2778,2808. https://doi.org/https://doi.org/10.3969/j.issn.1009-4229.2015.12.043. ID - ref19 ER - TY - STD TI - Liu C, Zeng X. A comparative study on the morphological characteristics of Hemicentrotus Pulcherrimus from different populations. Periodical Ocean University China 2015;25:40–50. https://doi.org/https://doi.org/10.16441/j.cnki.hdxb.20140037. ID - ref20 ER - TY - STD TI - Margit J. The Strongylocentrotidae (Echinoidea), a morphologic and systematic study. Sarsia. 1974;57:113–148. https://doi.org/https://doi.org/10.1080/00364827.1974.10411273. ID - ref21 ER - TY - STD TI - Schlüter N, Wiese F, Kutscher M. Heterochronic evolution in the late cretaceous echinoid Gauthieria (Echinoidea, Phymosomatidae). Cretac Res 2015;57:294–305. https://doi.org/https://doi.org/10.1016/j.cretres.2015.09.005. ID - ref22 ER - TY - STD TI - Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, et al. Biparental inheritance of mitochondrial DNA in humans. P Natl Acad Sci USA 2018;115:13039–13044. https://doi.org/https://doi.org/10.1073/pnas.1810946115. ID - ref23 ER - TY - STD TI - Liao S, Lu C. Progress on animal mitochondrial genome. Prog Biochem Biophysics China 2000;27:508–512. https://doi.org/https://doi.org/10.3321/j.issn:1000-3282.2000.05.014. ID - ref24 ER - TY - JOUR AU - Zhang, G. AU - Chang, Y. AU - Zhao, Y. PY - 1997 DA - 1997// TI - A perspective of mitochondrial DNA research in marine animals JO - Mar Sci China VL - 21 ID - Zhang1997 ER - TY - STD TI - Galaska MP, Li Y, Kocot KM, Mahon AR, Halanych KM. Conservation of mitochondrial genome arrangements in brittle stars (Echinodermata, Ophiuroidea). Mol Phylogenet Evol 2019;130:115–120. https://doi.org/https://doi.org/10.1016/j.ympev.2018.10.002. ID - ref26 ER - TY - STD TI - Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M. Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.): further evidence for an ancient origin. Aquaculture. 2006;257:68–77. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.03.040. ID - ref27 ER - TY - STD TI - Mastrantonio V, Latrofa MS, Porretta D, Lia RP, Parisi A, Iatta R, et al. Paternal leakage and mtDNA heteroplasmy in Rhipicephalus spp ticks Sci Rep 2019;9:460. https://doi.org/https://doi.org/10.1038/s41598-018-38001-8. ID - ref28 ER - TY - STD TI - Hoeh WR, Blakley KH, Brown WM. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science. 1991;251:488–490. https://doi.org/https://doi.org/10.1126/science.1672472. ID - ref29 ER - TY - STD TI - Hirose M, Schilf P, Gupta Y, Zarse K, Künstner A, Fähnrich A, et al. Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Sci Rep 2018;8:5872. https://doi.org/https://doi.org/10.1038/s41598-018-24290-6. ID - ref30 ER - TY - STD TI - Russell OM, Fruh I, Rai PK, Marcellin D, Doll T, Reeve A, et al. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep 2018;8:1799. https://doi.org/https://doi.org/10.1038/s41598-018-20064-2. ID - ref31 ER - TY - STD TI - Tranah GJ, Katzman SM, Lauterjung K, Yaffe K, Manini TM, Kritchevsky S, et al. Mitochondrial DNA m.3243A > G heteroplasmy affects multiple aging phenotypes and risk of mortality. Sci Rep. 2018;8:11887. https://doi.org/https://doi.org/10.1038/s41598-018-30255-6. ID - ref32 ER - TY - STD TI - Gandolfi A, Crestanello B, Fagotti A, Simoncelli F, Chiesa S, Girardi M, et al. New evidences of mitochondrial dna heteroplasmy by putative paternal leakage between the rock partridge (Alectoris graeca) and the chukar partridge (Alectoris chukar). PLoS One. 2017. https://doi.org/10.1371/journal.pone.0170507. ID - ref33 ER - TY - STD TI - Radojičić JM, Krizmanić I, Kasapidis P, Zouros E. Extensive mitochondrial heteroplasmy in hybrid water frog (Pelophylax spp.) populations from Southeast Europe. Ecol Evol 2015;5:4529–4541. https://doi.org/https://doi.org/10.1002/ece3.1692. ID - ref34 ER - TY - JOUR AU - Magnacca, K. N. AU - Brown, M. J. PY - 2010 DA - 2010// TI - Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae) JO - BMC Evol Biol VL - 10 UR - https://doi.org/10.1186/1471-2148-10-174 DO - 10.1186/1471-2148-10-174 ID - Magnacca2010 ER - TY - STD TI - Chu Z, Guo W, Hu W, Mei J. Delayed elimination of paternal mtDNA in the interspecific hybrid of Pelteobagrus fulvidraco and Pelteobagrus vachelli during early embryogenesis. Gene. 2019;704:1–7. https://doi.org/https://doi.org/10.1016/j.gene.2019.04.022. ID - ref36 ER - TY - STD TI - Dudu A, Georgescu SE, Berrebi P, Costache M. Site heteroplasmy in the mitochondrial cytochrome b gene of the sterlet sturgeon Acipenser ruthenus. Genet Mol Biol 2012;35:886–891. https://doi.org/https://doi.org/10.1590/S1415-47572012005000058. ID - ref37 ER - TY - STD TI - Peng L, Wen M, Liu Q, Peng J, Tang S, Hong Y, et al. Persistence and transcription of paternal mtDNA dependent on the delivery strategy rather than mitochondria source in fish embryos. Cell Physiol Biochem, 2018;47:1898–1908. https://doi.org/https://doi.org/10.1159/000491070. ID - ref38 ER - TY - STD TI - Wen M, Peng L, Hu X, Zhao Y, Liu S, Hong Y. Transcriptional quiescence of paternal mtDNA in cyprinid fish embryos. Sci Rep 2016;6:28571. https://doi.org/https://doi.org/10.1038/srep28571. ID - ref39 ER - TY - STD TI - Steel DJ, Trewick SA, Wallis GP. Heteroplasmy of mitochondrial DNA in the ophiuroid Astrobrachion constrictum. J Hered 2000;91:146–149. https://doi.org/https://doi.org/10.1093/jhered/91.2.146. ID - ref40 ER - TY - STD TI - Liu Y, Xiao Z, Xu Z. Morphological and main economic characteristics of several common carp (Cyprinus carpio L.) hybrids. Fisheries Sci China 2007;2:619–621. https://doi.org/https://doi.org/10.3969/j.issn.1003-1111.2007.11.008. ID - ref41 ER - TY - JOUR AU - He, G. AU - Fang, C. AU - Wang, W. AU - Xu, Y. AU - Cheng, B. AU - Yang, X. AU - Gan, J. PY - 2011 DA - 2011// TI - Study on the morphology and genetics of F_1 hybrids of Silurus meridionalis and Silurus soldatovi JO - Hubei Agri Sci VL - 23 ID - He2011 ER - TY - JOUR AU - Ma, H. AU - Han, C. AU - Teng, Z. AU - Liu, X. AU - Yang, J. AU - Tian, Y. AU - Jiang, H. PY - 2014 DA - 2014// TI - Morphological analysis to scophthalmus maximus, platichthys stellatus and their hybrid JO - Oceanologia Limnologia Sinica China VL - 6 ID - Ma2014 ER - TY - STD TI - Jung G, Choi HJ, Pae S, Lee YH. Complete mitochondrial genome of sea urchin: Mesocentrotus nudus (Strongylocentrotidae, Echinoida). Mitochondrial DNA 2013;24:466–468. https://doi.org/https://doi.org/10.3109/19401736.2013.766181. ID - ref44 ER - TY - STD TI - Jung G, Choi HJ., Myoung JG, Lee YH. Complete mitochondrial genome of sea urchin: Hemicentrotus pulcherrimus (Camarodonta, Strongylocentrotidae). Mitochondrial DNA 2014;25:439–440. https://doi.org/https://doi.org/10.3109/19401736.2013.766181. ID - ref45 ER - TY - STD TI - Jung G, Lee YH. Complete mitochondrial genome of Chilean sea urchin: Loxechinus albus (Camarodonta, Parechinidae). Mitochondrial DNA 2015;26:883–884. https://doi.org/https://doi.org/10.3109/19401736.2013.861442. ID - ref46 ER - TY - STD TI - Bronstein O, Kroh A, Haring E. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids BMC Evol Biol 2018;18:80. https://doi.org/https://doi.org/10.1186/s12862-018-1198-x. ID - ref47 ER - TY - STD TI - Havelka M, Fujimoto T, Hagihara S, Adachi S, Arai K. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific bester hybrid. Sci Rep 2017;7:1694. https://doi.org/https://doi.org/10.1038/s41598-017-01768-3. ID - ref48 ER - TY - STD TI - Zhou Q, Li H, Li H, Nakagawa A, Lin JL, Lee ES, et al. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science. 2016;353:394–399. https://doi.org/https://doi.org/10.1126/science.aaf4777. ID - ref49 ER - TY - STD TI - Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 2000;63:582–590. https://doi.org/https://doi.org/10.1095/biolreprod63.2.582. ID - ref50 ER - TY - STD TI - Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2015;33:1870–1874. https://doi.org/https://doi.org/10.1093/molbev/msw054. ID - ref51 ER -