TY - STD TI - Pfenninger M, Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol. 2007; 7:121. https://doi.org/10.1186/1471-2148-7-121. ID - ref1 ER - TY - STD TI - De Barro PJ, Liu SS, Boykin LM, Dinsdale AB. Bemisia tabaci: A statement of species status. Annu Rev Entomol. 2011; 56:1–19. https://doi.org/10.1146/annurev-ento-112408-085504. ID - ref2 ER - TY - STD TI - Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013; 3619(3):246–74. https://doi.org/10.11646/zootaxa.3619.3.2. ID - ref3 ER - TY - STD TI - Hendrichs J, Teresa Vera M, De Meyer M, Clarke AR. Resolving cryptic species complexes of major tephritid pests. ZooKeys. 2015; 540:5–39. https://doi.org/10.3897/zookeys.540.9656. ID - ref4 ER - TY - STD TI - Rugman-Jones PF, Hoddle MS, Stouthamer R. Nuclear-mitochondrial barcoding exposes the global pest Western flower thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. J Econ Entomol. 2010; 103(3):877–86. https://doi.org/10.1603/EC09300. ID - ref5 ER - TY - STD TI - Jacobson AL, Nault BA, Vargo EL, Kennedy GG. Restricted gene flow among lineages of Thrips tabaci supports genetic divergence among cryptic species groups. PLoS ONE. 2016;11(9). https://doi.org/10.1371/journal.pone.0163882. ID - ref6 ER - TY - STD TI - Skoracka A, Kuczynski L, Szydlo W, Rector B. The wheat curl mite Aceria tosichella (Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: Evidence from molecular and plant bioassay data. Biol J Linn Soc. 2013; 109(1):165–80. https://doi.org/10.1111/bij.12024. ID - ref7 ER - TY - STD TI - Miller AD, Skoracka A, Navia D, de Mendonca RS, Szydlo W, Schultz MB, Smith CM, Truol G, Hoffmann AA. Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Mol Phylogenet Evol. 2013; 66(3):928–40. https://doi.org/10.1016/j.ympev.2012.11.021. ID - ref8 ER - TY - STD TI - Umina P, Hoffmann A, Weeks A. Biology, ecology and control of the Penthaleus species complex (Acari: Penthaleidae). Exp Appl Acarol. 2004; 34(3-4):211–37. https://doi.org/10.1007/s10493-004-1804-z. ID - ref9 ER - TY - STD TI - Ashfaq M, Hebert PDN, Mirza MS, Khan AM, Mansoor S, Shah GS, Zafar Y. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan. PLoS ONE. 2014; 9(8):e104485. https://doi.org/10.1371/journal.pone.0104485. ID - ref10 ER - TY - STD TI - Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management: Problems, progress, and prospects. Annu Rev Entomol. 2013; 58:517. https://doi.org/10.1146/annurev-ento-120811-153605. ID - ref11 ER - TY - STD TI - Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string?J Econ Entomol. 2012; 105(4):1115–29. https://doi.org/10.1603/EC12107. ID - ref12 ER - TY - STD TI - Li Z, Feng X, Liu SS, You M, Furlong MJ. Biology, ecology, and management of the diamondback moth in China. Annu Rev Entomol. 2016; 61:277–96. https://doi.org/10.1146/annurev-ento-010715-023622. ID - ref13 ER - TY - STD TI - Endersby NM, McKechnie SW, Ridland PM, Weeks AR. Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.)Mol Ecol. 2006; 15(1):107–18. https://doi.org/10.1111/j.1365-294X.2005.02789.x. ID - ref14 ER - TY - STD TI - Furlong MJ, Spafford H, Ridland PM, Endersby NM, Edwards OR, Baker GJ, Keller MA, Paull CA. Ecology of diamondback moth in Australian canola: Landscape perspectives and the implications for management. Aust J Exp Agr. 2008; 48(12):1494–505. https://doi.org/10.1071/EA07413. ID - ref15 ER - TY - STD TI - Landry JF, Hebert PDN. Plutella australiana (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes. ZooKeys. 2013; 327:43–63. https://doi.org/10.3897/zookeys.327.5831. ID - ref16 ER - TY - JOUR AU - Saw, J. AU - Endersby, N. M. AU - McKechnie, S. W. PY - 2006 DA - 2006// TI - Low mtDNA diversity among widespread Australian diamondback moth Plutella xylostella (L.) suggests isolation and a founder effect JO - Insect Sci VL - 13 UR - https://doi.org/10.1111/j.1744-7917.2006.00105.x DO - 10.1111/j.1744-7917.2006.00105.x ID - Saw2006 ER - TY - STD TI - Delgado AM, Cook JM. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest. BMC Evol Biol. 2009;9:49. https://doi.org/10.1186/1471-2148-9-49. ID - ref18 ER - TY - STD TI - Roux O, Gevrey M, Arvanitakis L, Gers C, Bordat D, Legal L. ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol Phylogenet Evol. 2007; 43(1):240–50. https://doi.org/10.1016/j.ympev.2006.09.017. ID - ref19 ER - TY - STD TI - Pichon A, Arvanitakis L, Roux O, Kirk A, Alauzet C, Bordat D, Legal L. Genetic differentiation among various populations of the diamondback moth, Plutella xylostella (Lepidoptera : Yponomeutidae). B Entomol Res. 2006; 96(2):137–44. https://doi.org/10.1079/BER2005409. ID - ref20 ER - TY - STD TI - Endersby NM, Viduka K, Baxter SW, Saw J, Heckel DG, McKechnie SW. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene. B Entomol Res. 2011; 101(4):393–405. https://doi.org/10.1017/S0007485310000684. ID - ref21 ER - TY - CHAP AU - Baker, G. ED - Srinivasan, R. ED - Shelton, A. M. ED - Collins, H. L. PY - 2011 DA - 2011// TI - Crucifer vegetable insecticide resistance management strategies and issues in Australia BT - The Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests PB - AVRDC – The World Vegetable Center CY - Tainan, Taiwan ID - Baker2011 ER - TY - STD TI - Sarfraz M, Dosdall L, Keddie B. Diamondback moth-host plant interactions: Implications for pest management. Crop Prot. 2006; 25(7):625–39. https://doi.org/10.1016/j.cropo.2005.09.011. ID - ref23 ER - TY - JOUR AU - Robinson, G. S. AU - Sattler, K. PY - 2001 DA - 2001// TI - Plutella in the Hawaiian Islands: Relatives and host-races of the diamondback moth (Lepidoptera: Plutellidae) JO - Bishop Museum Occasional Papers VL - 67 ID - Robinson2001 ER - TY - STD TI - Endersby NM, Ridland PM, Hoffmann AA. The effects of local selection versus dispersal on insecticide resistance patterns: Longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera: Plutellidae)) in Australia evolving resistance to pyrethroids. B Entomol Res. 2008; 98(2):145–57. https://doi.org/10.1017/S0007485307005494. ID - ref25 ER - TY - STD TI - Ridland P, Endersby N. The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Fifth International Workshop In: Shelton, Anthony M, Collins, Hilda L, Zhang Y, Wu Q, editors. Beijing, China: China Agricultural Science and Technology Press: 2008. p. 90–101. ID - ref26 ER - TY - STD TI - Clarkson CS, Weetman D, Essandoh J, Yawson AE, Maslen G, Manske M, Field SG, Webster M, Antao T, MacInnis B, Kwiatkowski D, Donnelly MJ. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nat Commun. 2014;5. https://doi.org/10.1038/ncomms5248. ID - ref27 ER - TY - STD TI - Hedrick PW. Adaptive introgression in animals: Examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol. 2013; 22(18):4606–18. https://doi.org/10.1111/mec.12415. ID - ref28 ER - TY - STD TI - Hebert P, Penton E, Burns J, Janzen D, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. P Natl Acad Sci USA. 2004; 101(41):14812–7. https://doi.org/10.1073/pnas.0406166101. ID - ref29 ER - TY - STD TI - Ashfaq M, Hebert PDN. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome. 2016; 59(11, 2):933–45. https://doi.org/10.1139/gen-2016-0024. ID - ref30 ER - TY - STD TI - Smith MA, Bertrand C, Crosby K, Eveleigh ES, Fernandez-Triana J, Fisher BL, Gibbs J, Hajibabaei M, Hallwachs W, Hind K, Hrcek J, Huang DW, Janda M, Janzen DH, Li Y, Miller SE, Packer L, Quicke D, Ratnasingham S, Rodriguez J, Rougerie R, Shaw MR, Sheffield C, Stahlhut JK, Steinke D, Whitfield J, Wood M, Zhou X. Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS ONE. 2012; 7(5):e36514. https://doi.org/10.1371/journal.pone.0036514. ID - ref31 ER - TY - STD TI - Whitworth TL, Dawson RD, Magalon H, Baudry E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). P Roy Soc B-Biol Sci. 2007; 274(1619):1731–9. https://doi.org/10.1098/rspb.2007.0062. ID - ref32 ER - TY - STD TI - Dupont L, Porco D, Symondson WOC, Roy V. Hybridization relics complicate barcode-based identification of species in earthworms. Mol Ecol Resour. 2016; 16(4):883–94. https://doi.org/10.1111/1755-0998.12517. ID - ref33 ER - TY - STD TI - Hurst G, Jiggins F. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. P Roy Soc B-Biol Sci. 2005; 272(1572):1525–34. https://doi.org/10.1098/rspb.2005.3056. ID - ref34 ER - TY - STD TI - Ritter S, Michalski SG, Settele J, Wiemers M, Fric ZF, Sielezniew M, Sasic M, Rozier Y, Durka W. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE. 2013; 8(11). https://doi.org/10.1371/journal.pone.0078107. ID - ref35 ER - TY - STD TI - Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. P Roy Soc B-Biol Sci. 2015; 282(1807):20150249. https://doi.org/10.1098/rspb.2015.0249. ID - ref36 ER - TY - STD TI - Ahmed MZ, Breinholt JW, Kawahara AY. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol Biol. 2016; 16:118. https://doi.org/10.1186/s12862-016-0660-x. ID - ref37 ER - TY - STD TI - Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol. 2008; 6(10):741–51. https://doi.org/10.1038/nrmicro1969. ID - ref38 ER - TY - STD TI - Engelstaedter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst. 2009; 40:127–49. https://doi.org/10.1146/annurev.ecolsys.110308.120206. ID - ref39 ER - TY - STD TI - Jiggins FM. The spread of Wolbachia through mosquito populations. PLoS Biol. 2017; 15(6):e2002780. https://doi.org/10.1371/journal.pbio.2002780. ID - ref40 ER - TY - STD TI - Shoemaker D, Dyer K, Ahrens M, McAbee K, Jaenike J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics. 2004; 168(4):2049–58. https://doi.org/10.1534/genetics.104.030890. ID - ref41 ER - TY - STD TI - Batista PD, Keddie BA, Dosdall LM, Harris HL. Phylogenetic placement and evidence for horizontal transfer of Wolbachia in Plutella xylostella (Lepidoptera: Plutellidae) and its parasitoid, Diadegma insulare (Hymenoptera: Ichneumonidae). Can Entomol. 2010; 142(1):57–64. https://doi.org/10.4039/n09-050. ID - ref42 ER - TY - STD TI - Jeyaprakash A, Hoy M. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 2000; 9(4):393–405. https://doi.org/10.1046/j.1365-2583.2000.00203.x. ID - ref43 ER - TY - STD TI - Telschow A, Hilgenboecker K, Hammerstein P, Werren JH. Dobzhansky-Muller and Wolbachia-induced incompatibilities in a diploid genetic system. PLoS ONE. 2014; 9(4):e95488. https://doi.org/10.1371/journal.pone.0095488. ID - ref44 ER - TY - STD TI - Dumas E, Atyame CM, Milesi P, Fonseca DM, Shaikevich EV, Unal S, Makoundou P, Weill M, Duron O. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol. 2013;13. https://doi.org/10.1186/1471-2148-13-181. ID - ref45 ER - TY - STD TI - Munoz AG, Baxter SW, Linares M, Jiggins CD. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evol Biol. 2011:358. https://doi.org/10.1186/1471-2148-11-358. ID - ref46 ER - TY - STD TI - Sun XJ, Xiao JH, Cook JM, Feng G, Huang DW. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity. BMC Evol Biol. 2011; 11:86. https://doi.org/10.1186/1471-2148-11-86. ID - ref47 ER - TY - STD TI - Zraket C, Barth J, Heckel D, Abbott A. Genetic Linkage Mapping with Restriction Fragment Length Polymorphisms in the Tobacco Budworm, Heliothis virescens: Springer; 1990. pp. 13–20. http://dx.doi.org/10.1007/978-1-4899-3668-4_2. UR - http://dx.doi.org/10.1007/978-1-4899-3668-4_2 ID - ref48 ER - TY - STD TI - Perry KD, Pederson SM, Baxter SW. Genome-wide SNP discovery in field and laboratory colonies of Australian Plutella species. bioRxiv. 2017. https://doi.org/10.1101/141606. http://www.biorxiv.org/content/early/2017/05/24/141606.full.pdf. UR - http://www.biorxiv.org/content/early/2017/05/24/141606.full.pdf ID - ref49 ER - TY - STD TI - Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199. UR - https://doi.org/10.1093/bioinformatics/bts199 ID - ref50 ER - TY - STD TI - Paradis E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics. 2010; 26(3):419–20. https://doi.org/10.1093/bioinformatics/btp696. ID - ref51 ER - TY - STD TI - Simoes PM, Mialdea G, Reiss D, Sagot MF, Charlat S. Wolbachia detection: An assessment of standard PCR Protocols. Mol Ecol Resour. 2011; 11(3):567–72. https://doi.org/10.1111/j.1755-0998.2010.02955.x. ID - ref52 ER - TY - STD TI - Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. P Roy Soc B-Biol Sci. 1998; 265(1395):509–15. https://doi.org/10.1098/rspb.1998.0324. ID - ref53 ER - TY - STD TI - Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033. ID - ref54 ER - TY - JOUR AU - Tavaré, S. PY - 1986 DA - 1986// TI - Some probabilistic and statistical problems in the analysis of DNA sequences JO - Lect Math Life Sci VL - 17 ID - Tavaré1986 ER - TY - STD TI - Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008; 3(10):e3376. https://doi.org/10.1371/journal.pone.0003376. ID - ref56 ER - TY - STD TI - Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE. 2011; 6(4):e19315. https://doi.org/10.1371/journal.pone.0019315. ID - ref57 ER - TY - STD TI - Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170. ID - ref58 ER - TY - STD TI - Lunter G, Goodson M. Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 2011; 21(6):936–9. https://doi.org/10.1101/gr.111120.110. ID - ref59 ER - TY - STD TI - Broad Institute. http://broadinstitute.github.io/picard/. Accessed 10 December 2017. UR - http://broadinstitute.github.io/picard/ ID - ref60 ER - TY - STD TI - McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297–303. https://doi.org/10.1101/gr.107524.110. ID - ref61 ER - TY - STD TI - DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–8. https://doi.org/10.1038/ng.806. ID - ref62 ER - TY - STD TI - Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.The variant call format and VCFtools. Bioinformatics. 2011; 27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330. ID - ref63 ER - TY - STD TI - Goudet J, Jombart T. hierfstat: Estimation and Tests of Hierarchical F-statistics. 2015. R package version 0.04-22. https://CRAN.R-project.org/package=hierfstat. UR - https://CRAN.R-project.org/package=hierfstat ID - ref64 ER - TY - STD TI - Nei M. Molecular Evolutionary Genetics: Columbia University Press; 1987. ID - ref65 ER - TY - STD TI - Martin S. https://github.com/simonhmartin. Accessed 30 March 2018. UR - https://github.com/simonhmartin ID - ref66 ER - TY - STD TI - R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/. UR - https://www.R-project.org/ ID - ref67 ER - TY - STD TI - Weir B, Cockerham C. Estimating F-statistics for the analysis of population-structure. Evolution. 1984; 38(6):1358–70. https://doi.org/10.2307/2408641. ID - ref68 ER - TY - STD TI - Keenan K, McGinnity P, Cross TF, Crozier WW, Prodoehl PA. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013; 4(8):782–8. https://doi.org/10.1111/2041-210X.12067. ID - ref69 ER - TY - STD TI - Rousset F. GENEPOP ‘007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008; 8(1):103–6. https://doi.org/10.1111/j.1471-8286.2007.01931.x. ID - ref70 ER - TY - JOUR AU - Pritchard, J. AU - Stephens, M. AU - Donnelly, P. PY - 2000 DA - 2000// TI - Inference of population structure using multilocus genotype data JO - Genetics VL - 155 ID - Pritchard2000 ER - TY - STD TI - Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol. 2005; 14(8):2611–20. https://doi.org/10.1111/j.1365-294X.2005.02553.x. ID - ref72 ER - TY - STD TI - Earl DA, vonHoldt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012; 4(2):359–61. https://doi.org/10.1007/s12686-011-9548-7. ID - ref73 ER - TY - STD TI - Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23(14):1801–6. https://doi.org/10.1093/bioinformatics/btm233. ID - ref74 ER - TY - STD TI - Rosenberg N. DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes. 2004; 4(1):137–8. https://doi.org/10.1046/j.1471-8286.2003.00566.x. ID - ref75 ER - TY - STD TI - Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015; 10(12):e0146021. https://doi.org/10.1371/journal.pone.0146021. ID - ref76 ER - TY - STD TI - Juric I, Salzburger W, Balmer O. Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA. B Entomol Res. 2017; 107(2):155–64. https://doi.org/10.1017/S0007485316000766. ID - ref77 ER - TY - STD TI - Kalinowski ST. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: Simulations and implications for human population structure. Heredity. 2011; 106(4):625–32. https://doi.org/10.1038/hdy.2010.95. ID - ref78 ER - TY - STD TI - Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007; 22(3):148–55. https://doi.org/10.1016/j.tree.2006.11.004. ID - ref79 ER - TY - STD TI - Australasian Virtual Herbarium. https://avh.chah.org.au/. Accessed 20 July 2017. UR - https://avh.chah.org.au/ ID - ref80 ER - TY - STD TI - Talekar N, Shelton A. Biology, ecology, and management of the diamondback moth. Annu Rev Entomol. 1993; 38:275–301. https://doi.org/10.1146/annurev.en.38.010193.001423. ID - ref81 ER - TY - STD TI - Pivnick K, Jarvis B, Gillott C, Slater G, Underhill E. Daily patterns of reproductive activity and the influence of adult density and exposure to host plants on reproduction in the diamondback moth (Lepidoptera, Plutellidae). Environ Entomol. 1990; 19(3):587–93. https://doi.org/10.1093/ee/19.3.587. ID - ref82 ER - TY - STD TI - Sun JY, Sonderby IE, Halkier BA, Jander G, de Vos M. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J Chem Ecol. 2009; 35(12):1427–36. https://doi.org/10.1007/s10886-009-9723-4. ID - ref83 ER - TY - STD TI - Renwick J, Haribal M, Gouinguene S, Stadler E. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol. 2006; 32(4):755–66. https://doi.org/10.1007/s10886-006-9036-9. ID - ref84 ER - TY - STD TI - Justus K, Mitchell B. Oviposition site selection by the diamondback moth, Plutella xylostella (L) (Lepidoptera: Plutellidae). J Insect Behav. 1996; 9(6):887–98. https://doi.org/10.1007/BF02208976. ID - ref85 ER - TY - STD TI - Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005; 20(5):229–37. https://doi.org/10.1016/j.tree.2005.02.010. ID - ref86 ER - TY - STD TI - Turelli M, Moyle LC. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics. 2007; 176(2):1059–88. https://doi.org/10.1534/genetics.106.065979. ID - ref87 ER - TY - STD TI - Haldane J. Sex ratio and unisexual sterility in hybrid animals. J Genet. 1922; 12(2):101–9. https://doi.org/10.1007/BF02983075. ID - ref88 ER - TY - STD TI - Jiggins C, Linares M, Naisbit R, Salazar C, Yang Z, Mallet J. Sex-linked hybrid sterility in a butterfly. Evolution. 2001; 55(8):1631–8. https://doi.org/10.1111/j.0014-3820.2001.tb00682.x. ID - ref89 ER - TY - JOUR AU - Turelli, M. AU - Orr, H. PY - 2000 DA - 2000// TI - Dominance, epistasis and the genetics of postzygotic isolation JO - Genetics VL - 154 ID - Turelli2000 ER - TY - STD TI - Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren J. H. How many species are infected with Wolbachia? - a statistical analysis of current data. Fems Microbiol Lett. 2008; 281(2):215–20. https://doi.org/10.1111/j.1574-6968.2008.01110.x. ID - ref91 ER - TY - STD TI - Harrison RG, Larson EL. Hybridization, introgression, and the nature of species boundaries. J Hered. 2014; 105(1):795–809. https://doi.org/10.1093/jhered/esu033. ID - ref92 ER - TY - STD TI - Harrison RG, Larson EL. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol Ecol. 2016; 25(11, SI):2454–66. https://doi.org/10.1111/mec.13582. ID - ref93 ER - TY - STD TI - Jaenike J, Dyer KA, Cornish C, Minhas MS. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 2006; 4(10):1852–62. https://doi.org/10.1371/journal.pbio.0040325. ID - ref94 ER - TY - STD TI - Gebiola M, Kelly SE, Hammerstein P, Giorgini M, Hunter MS. “Darwin’s corollary" and cytoplasmic incompatibility induced by Cardinium may contribute to speciation in Encarsia wasps (Hymenoptera: Aphelinidae). Evolution. 2016; 70(11):2447–58. https://doi.org/10.1111/evo.13037. ID - ref95 ER - TY - STD TI - Shropshire JD, Bordenstein SR. Speciation by symbiosis: The microbiome and behavior. MBIO. 2016; 7(2):e01785-15. https://doi.org/10.1128/mBio.01785-15. ID - ref96 ER -