Skip to main content
Fig. 1 | BMC Evolutionary Biology

Fig. 1

From: Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae)

Fig. 1

Resulting histograms of FCSS analyses of cypselae from different inter-cytotype crossings. a Heteroploid crossing of 2x × 3x which typically provides 2x embryo and 3x endosperm. There are two alternative explanations – selfing of diploid maternal plant or more likely fusion of reduced gametes of both parents; b Heteroploid crossing of 2x × 4x with typical 3x embryo and 4x endosperm pointing to fusion of two reduced gametes of both cytotypes; c Heteroploid crossing of 3x × 2x with aneuploid seed derived from diploid and euploid seed with 4x embryo and 7x endosperm. Typical behaviour of maternal triploid plant producing either aneuploid gametes or fully unreduced gametes resulting in higher ploidy level of progeny; d Homoploid crossing of 3x × 3x resulting to euploid progeny – 2x embryo and corresponding 3x endosperm from fusion of two fully reduced gametes and 4x embryo and 7x endosperm from fusion of unreduced maternal and fully reduced paternal gametes; e Heteroploid crossing of 3x × 4x resulting in (i) euploid seed with 3x embryo and 4x endosperm pointing to fact that even maternal triploid plant can produce fully reduced gametes and (ii) aneuploid seed derived from pentaploid, documenting meiosis problem in 3x mother plant; f Typical output of seed screening from homoploid crossing of tetraploids resulting in 4x embryo and 6x endosperm

Back to article page