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Abstract

Background: Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and
navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species
prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological,
physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia
tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-
binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and
beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish.

Results: The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb)
genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions.
This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has
helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key
site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of
Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing
African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high
expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the
main effect of selection on these globin genes is on their sequence rather than their basal expression patterns.

Conclusion: Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant

gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of
globin genes in hypoxia tolerance evolution of Gymnotiform electric fishes.
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Background

Teleosts of the nocturnally-active neotropical clade
Gymnotiformes produce and detect weak electric signals
for the purposes of electrolocation and communication
[1]. Variation in the patterning or frequency of the elec-
tric organ discharge (EOD) plays a vital role in electrical
communication during behaviors such as aggression,
courtship, and mating [2]. EODs are classified as wave-
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or pulse-type. Wave-type EODs are formed by regularly-
emitted pulses where the pulse duration is approxi-
mately equal to the inter-pulse interval thereby approxi-
mating a sine wave. Pulse-type EODs are emitted
irregularly and the EOD pulse duration is short [3]. The
order Gymnotiformes comprises six families: Hypopomi-
dae, Rhamphichthyidae and Gymnotidae, which are all
pulse-type, and Sternopygidae, Eigenmannidae and Apter-
onotidae, which are wave-type [4].

In most species EOs are composed of cells, called elec-
trocytes, derived from muscle tissue. The EO is directly
controlled by the nervous system, which commands the
electrocytes to fire [3]. Electrocytes are large cells cap-
able of generating large ionic currents, especially sodium
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(Na") currents. In order to restore the ionic gradient for
Na" following action potentials, electrocytes have large
amounts of the “sodium pump” Na"/K" ATPase; this
pump uses one molecule of ATP for every three Na*
ions pumped back out of the cell. Thus, the generation
of electricity requires energy. Physiological studies show
that performance-related costs of EOD generation may
be surprisingly high, from 10 up to 30% of routine oxy-
gen consumption [5]. Yet, surprisingly, the O, consump-
tion of gymnotiforms does not differ from that of other
similarly sized teleosts [6] suggesting that gymnotiforms
have adaptations for energy efficiency.

Gymnotiforms have their highest diversity throughout
the ecologically varied lowland aquatic habitats of the
vast Amazonian floodplains [7]. Although most gymno-
tiforms inhabit well-oxygenated streams and rivers (in-
cluding all wave-type and a few pulse-type species),
several lineages (only pulse-type species) have addition-
ally radiated within oxygen-poor, stagnant habitats. Fur-
thermore, all species are in danger of being trapped in
shrinking, hypoxic pools during the dry season. Thus,
hypoxia poses additional physiological challenges, most
importantly, a deficiency in oxygen to fuel oxidative
metabolism. As a consequence, coping with hypoxia is
a potentially daunting task for gymnotiforms.

Different gymnotiform species possess a variety of ana-
tomical and physiological adaptations to cope with these
energetic demands including some common to other
fish living in hypoxic environments such as large gill sur-
face area [8], the use of aquatic surface respiration (ASR,
in which fish swim to the surface and take in water from
the topmost heavily oxygenated layer of water over their
gills), and various forms of air-breathing [9]. In addition,
some species have gymnotiform-specific means of con-
serving energy such as decreasing EOD amplitude
(which lowers Na* influx and, therefore, the amount of
ATP needed to power Na'/K" ATPase) during the day
when they are inactive, upon encountering hypoxic con-
ditions, or when food is scarce [10-12].

Little is known, however, about molecular adapta-
tions for oxygen delivery or usage. Therefore, in this
study, we focused on the well-known oxygen carriers,
the globins. Globins are the most widespread respira-
tory proteins, existing in fungi, plants, and animals
[13, 14]. Globins are conserved metalloproteins that
typically have seven alpha helices that form a pocket
containing an oxygen-binding heme [15]. They have
been investigated for over a century, and eight globin
types have been identified in vertebrates including
hemoglobin (Hb), myoglobin (Mb), and neuroglobin
(Ngb). Hb and Mb are best known for their respira-
tory functions, which play critical roles in the main-
tenance of cellular oxygen supply in support of
aerobic metabolism [16, 17].
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Hb is a heterotetramer protein composed by two «-
and two p-chains, which are encoded by the corre-
sponding alpha (Hba) and beta (Hbb) globin gene fam-
ily [18]. Moreover, it is responsible for facilitating O,
from the respiratory system to the inner organs via the
circulatory system [18]. Mb is a compact and highly
soluble monomer protein containing one proto-heme,
which is involved in the oxygen storage and transporta-
tion within heart and skeletal muscle cells [19], and has
a higher oxygen affinity than Hb. Ngb is a monomer
and an oxygen-carrying protein essentially restricted to
neurons [20], which plays a key role in facilitated diffu-
sion and local storage of O,. Although its function is
still uncertain, there is general agreement that Ngb is
associated with mitochondria and thus oxidative me-
tabolism, and serves a neuroprotective role during hyp-
oxic stress [13]. Interestingly, Hb, Mb and Ngb have
also been proposed to have roles in nitric oxide (NO)
metabolism and the detoxification of reactive oxygen
species during hypoxia [21].

We gathered coding sequences of Hba, Hbb, Mb, and
Ngb genes from 12 gymnotiform species to: 1) test
whether these globin genes have evolved adaptively
(i.e.,—show signs of positive selection) during gymnoti-
form origins and evolution; 2) evaluate whether gymno-
tiforms that inhabit hypoxic/anoxic vs. well-oxygenated
water display different patterns of molecular evolution
and; 3) provide a more comprehensive picture of the
hypoxia tolerance in gymnotiforms.

Methods

Taxon sampling, and primary treatments of data

A total of 12 individuals representing six families across
Gymnotiformes were analyzed in our study (see Table 1).
Some species live in habitats with persistent hypoxia or
anoxia while the others are unable to tolerate severely
hypoxic water (see Table 1). In order to attain a broad and
balanced taxonomic coverage, we also obtained sequences
from Siluriformes, Characiformes, Cypriniformes, Gonor-
ynchiformes, and Clupeiformes (see Additional file 1:
Table S1). The tree topology used for the analysis is
depicted in Fig. 1 [4]. Nucleotide and protein sequences of
species were downloaded from National Center for
Biotechnology Information (NCBI: http://www.ncbi.nlm.-
nih.gov/), from NextGen-derived sequences available on a
website hosted by the Electric Fish Genome Consortium
(http://efishgenomics.zoology.msu.edu/blast), and/or amp-
lified by Polymerase Chain Reaction (PCR). A complete
list of non-gymnotiform specimens and accession num-
bers are in Additional file 1: Table S1.

Genomic DNA and tissue RNA isolation and sequencing
Genomic DNA was extracted using QIAGEN DNeasy
Tissue Kit (QIAGEN, Inc.). The total RNA was isolated
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Table 1 Characteristics of species used in this study
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Family Species Hypoxia-tolerant Air breather EOD type Positive selected genes
Gymnotidae Electrophorus electricus yes obligate Pulse Mb, Hba
Gymnotidae Gymnotus cylindricus yes facultative Pulse
Gymnotidae Gymnotus omarorum yes facultative Pulse
Hypopomidae Brachyhypopomus gauderio yes facultative Pulse Mb, Hbb
Hypopomidae Microsternarchus bilineatus no no Pulse
Hypopomidae Steatogenys elegans no no Pulse Mb
Rhamphichthyidae Gymnorhamphichthys sp. no no Pulse
Rhamphichthyidae Rhamphicthys marmoratus no no Pulse
Apteronotidae Apteronotus albifrons no no Wave
Apteronotidae Parapteronotus hasemani no no Wave
Sternopygidae Eigenmannia virescens mildly no Wave Hbb
Sternopygidae Sternopygus macrurus no no Wave Mb, Ngb
Note: Designation of hypoxia tolerance based on habitat choice and physiological tests of hypoxia tolerance [10, 11, 72]
<
Gene Datamonkey Branch-site Gymnorhamphichthys sp.
Hba @ | )
Hbb @ | Rhamphicthyes marmoratus
Mb Steatogenys elegans
Ngb @ NA. NA.
Brachyhypopomus gauderio ®
: Microsternarchus bilineatus
|
b
Apteronotus albifrons
Gymnotiformes
Parapteronotus hasemani
Eigenmannia virescens @
a Sternopygus macrurus @
Gymnotus cylindricus
1 Gymnotus omarorum
: =
Electrophorus electricus ®
Ictalurus punctatus
Malapterurus electricus
Siluriformes
Bunocephalus coracoideus
Clarias batrachus
Astyanax mexicanus ICharaciformes
-: Carassius auratus
Cyprinus carpio Cypriniformes
Danio rerio
Chanos chanos IGonorynchiformes
Clupea harengus IClupeiformes
Fig. 1 Radical amino acid changes of positively selected sites are shown above the branches across gymnotiformes species tree from a-w. Circles
indicate positively selected genes across branches. Bars represent radical amino acid changes of sites detected by Datamonkey. Stars indicate
amino acid substitution identified by branch-site model. Species underlined are facultative (or obligate in the case of E. electricus) air breathers.
Dotted species (E. virescens) is mildly hypoxia tolerant. Hba, Hbb, Mb and Ngb are colored with green, orange, blue and pink, separately
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from skeletal muscle, electric organ and brain using the
QIAGEN RNeasy Mini Kit (QIAGEN, Inc.), and used as
a template for single-stranded (ss) cDNA synthesis using
the SuperScript III reverse transcriptase protocol (Invi-
trogen). Degenerate and specific primers were designed
using the homologous sequences from the genome of
electric fishes by using Oligo [22]. The primers are listed
in Additional file 1: Table S3. This ss ¢cDNA (1:10 dilu-
tion) and genomic DNA were used as the template with
degenerate primer pairs in the first nested PCR, and
their products were templates in second nested PCR re-
actions with primer pairs. PCR amplifications were car-
ried out using the following program: 95 °C 4 min,
35 cycles of 94 °C denaturation 1 min, 55-50 °C anneal-
ing 30 s, 72 °C extension 1 min, and 72 °C elongation
for 15 min. PCR products were sequenced in both direc-
tions. The newly determined sequences were deposited
in GenBank under the accessions KX827275-KX827283,
KX833066-KX833070 and KX982253- KX982258.

Phylogenetic reconstruction

Sequences were assembled and primer sequences were
trimmed using MacVector [23]. Nucleotide sequences
were translated into amino acid sequences and aligned
using MEGA 6.0 [24]. The alignments were manually
inspected and edited by eye (see Additional file 2:
Figure S1). The best fit model of nucleotide evolution
was determined by jModeltest [25], and Maximum Likeli-
hood (ML) trees was reconstructed by PhyML 3.0 [26].

Molecular evolutionary analysis
To determine whether adaptive evolution might have oc-
curred on the globin genes of electric fishes, we used the
PAML package [27], which uses a maximum-likelihood
(ML) approach to calculate nonsynonymous to synonym-
ous rate ratios (w = dN/dS). The ratios >1, =1 and <1 indi-
cate positive selection, neutrality and negative selection,
respectively. For all genes, both the species tree (Fig. 1)
and putative ML tree (Additional file 2: Figure S2) were
separately used as the working topology in all the analyses.
We used a site model for positive selection at individ-
ual codons in electric fish samples for each gene, i.e., M8
and M8a [28]. Model M8a only allows codons to evolve
neutrally or under purifying selection (w <1), whereas
M8 model includes a class of sites with ®>1. Amino
acids under selection for model M8 were identified using
a Bayes empirical Bayes approach (BEB), and we consid-
ered as candidates sites with a posterior probability
>80% [29]. Then, we further employed a series of ML
methods implemented in the Datamonkey web server
(http://www.datamonkey.org), which has the advantage
of improving the estimation of the dN/dS ratio by in-
corporating variation in the rate of synonymous substi-
tution [30]. The single likelihood ancestor counting
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(SLAC) model is a conservative test, which counts the
synonymous and nonsynonymous changes at each codon
position in a phylogeny. The Fixed-Effect Likelihood
(FEL) calculates site-by-site dN/dS without assuming a
prior distribution. The Random-Effect Likelihood (REL)
assumes a prior distribution across sites. In addition, the
Fast Unconstrained Bayesian AppRoximation (FUBAR)
ensures robustness against model misspecification. Each
module was run using the default cutoffs with p = 0.2 for
SLAC and FEL, Bayes Factor = 50 for REL and posterior
probability = 0.8 for FUBAR.

To test for possible heterogeneity of w ratios along inde-
pendent branches, we used the free-ratio model, which al-
lows each branch to have a separate dN/dS. The null
model is a very strict model called the one-ratio model
(MO) that allows only a single o ratio for all branches. We
further executed branch-site tests to explore positive se-
lection affected by a few sites along a specific branch [31].
We compared modified model A, which assumes four
classes of sites, especially, allowing codons under positive
selection along foreground lineage with w, > 1, to the null
hypothesis, in which fixed w,=1 is allowed based on
branch-site model A. For all the analyses, the nested
models were compared using a likelihood ratio test (LRT)
with various degrees of freedom, and all analyses were run
twice to ensure convergence. Branch-site REL analysis was
also performed to determine whether specific-lineage is
evolving under positive selection using a web-based imple-
mentation of HyPhy package (http://www.datamonkey.org),
which is based on likelihood ratio tests that identify
all lineages with a proportion of sites that are evolving
with dN/dS > 1, and do not require partitioning lineages
into foreground and background branches [32].

Each gene sequence alignment was also analyzed using
the program TreeSAAP [33], which further supports
PAML and Datamonkey at the protein physicochemical
level. TreeSAAP compares the magnitude of physico-
chemical changes of non-synonymous residues across a
phylogeny and identifies specific amino acid properties
that have likely been affected by positive destabilizing se-
lection during evolution. In this study, amino acid proper-
ties were considered to be under positive-destabilizing
selection if positive selection was detected in radical mag-
nitude ranges (6—8). The number of radical changes in the
amino acid properties was used as a proxy for determining
the strength of positive selection. More radical changes in
amino acid properties might suggest adaptive evolution.
The residues that had fewer than six amino acid property
changes were categorized as type I sites, whereas those
that had more than six were categorized as type II sites.

Structural analyses
To provide further insights into the underlying effects of
these positively selected sites, we mapped them onto the
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three-dimensional (3D) structure. The crystal structures
of P11748 for Hba, P11749 for Hbb, and 2NRL for Mb
were taken from the Protein Data Bank (http://
www.rcsb.org/pdb). Postulated functional regions or resi-
dues were searched from Uniprot (http://www.unipro-
t.org/uniprot). Pymol [34] was used to produce the images
of the three-dimensional models of corresponding gene.

Transcriptome assembly

Tissues were removed from a single Brachyhypopomus
gauderio that was previously housed under normoxic
conditions in the laboratory and total RNA was ex-
tracted from brain, skeletal muscle, heart and electric
organ. RNA was treated with RiboZero (Illumina,
MRZH-11124) kit to remove ribosomal RNA, and cDNA
libraries (200 bp, paired ends) were made. Libraries were
sequenced on an Illumina HiSeq machine. We processed
the raw reads with Trimmomatic v0.32 [35] for adapter
removal (IlluminaClip: TruSeq3-PE.fa:2:30:10), quality
trimming (SlidingWindow:4:5, Leading:5, Trailing:5) and
size filtering (MinLen:25). These are Trinity’s default set-
tings, which are based on the work of MacManes [36].
We performed quality control of both raw and processed
reads with FastQC v0.11.3 (http://www.bioinformatics.-
babraham.ac.uk/) (Table S6).

We combined the processed PE reads across organs,
in silico normalized, and de novo assembled them with
Trinity v2.2.0 [37, 38]. Then we used BUSCO vl1.1bl
[39], along with BLAST+ v2.2.31 [40], HMMER v3.1bl
[41], and EMBOSS v6.5.7 [42] to measure transcriptome
completeness, against the Vertebrates, Metazoans and
Eukaryotes datasets. In all cases, the assembly displayed
a large percentage of complete orthologs (Table S7).

We estimated levels of expression for each transcript
and gene, per organ, using the Trinity-provided scripts
align_and_estimate_abundance.pl and abundance_estima-
tes_to_matrix.pl. We used both RSEM v1.2.19 [43] and
kallisto v0.42.5 [44] quantification methods, which pro-
duced qualitatively very similar results. Reported abun-
dances are TMM-normalized values calculated with the
RSEM method. Only one Trinity gene blasted against the
myoglobin gene sequence with an E-value of 0.00. This
gene’s per organ abundances are the ones reported.

The abundance estimation results suggested that very
few genes accounted for a large fraction of gene expres-
sion. Upon inspection of said genes, many were related
with rRNA, and therefore were expected to be depleted
during the library preparation process. Although our B.
gauderio transcriptome assembly meets our quality stan-
dards, we don’t recommend future use of the RiboZero
kit (which is designed for human, mouse and rat) when
working with RNAseq from this taxon. Sequences for B.
gauderio genes are available at: http://efishgenomics.in-
tegrativebiology.msu.edu/blast_search/.
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Results

Phylogenetic analyses

We successfully amplified cDNAs for the Mb, Hba, Hbb
and Ngb gene from eight Gymnotiforms species (see
Additional file 1: Table S2). There are no insertion/dele-
tion mutations or changes that result in stop codons in
gene sequences, suggesting the presence of functional
proteins in electric fishes. These were added to mRNA
sequences previously obtained by NextGen sequencing
from four other species for a total of 12 species.

We constructed phylogenetic trees using maximum
likelihood (ML) performed by PhyML from nucleotide
alignments of the four genes dataset. The Akaike Infor-
mation Criteria (AIC) in jModeltest selected the GTR +
G substitution model for all genes. Relationships of the
gene trees largely reflected species relationships previ-
ously estimated with morphological data by Tagliacollo
et al. [4] (see Additional file 2: Figure S2). For example,
the phylogenetic tree placed Gymnotiformes and Siluri-
formes together, and they had a closer relationship with
Characiformes than Cypriniformes in the Mb gene tree.
However, the topology based on the genes still failed to
resolve the relationships within Gymnotiformes, which
is not surprising since this has been difficult to resolve
even with large datasets. The bootstrap support values
for these relationships were not high, which is most
likely due to the short length of globin genes and small
number of species that were used to reconstruct the
topologies.

Adaptive molecular evolution

Considering that selection analyses using the species tree
was basically the same as that using the gene trees, only
the former analyses are shown here. First, we used a pair
of site models (M8 vs. M8a) to address whether recurrent
positive selection has acted on specific codons in globin
genes. Likelihood ratio tests (LRTs) showed that a model
that includes sites with dN/dS >1 (M8) fits the data signifi-
cantly better than a neutral model (M8a) for the Hbb
gene, and one positively selected site was identified with
high posterior probability (pp) (Hbb: 133, pp =0.996)
(see Additional file 1: Table S4). Because CodeML
does not incorporate rate variation in synonymous
sites (ds), we therefore further analyzed the data using
the SLAC, FEL, REL, and FUBAR model implemented
in the Datamonkey website, which have the advantage
of improving the estimation of the w ratio incorpo-
rated variation in the rate of synonymous substitution
(Pond and Frost 2005a). Similarly, four ML methods
also detected sites under selection for Mb, Hba and
Hbb genes, some of which coincide with the codons
previously identified by M8 (see Table 2). Seven posi-
tively selective sites were identified using the SLAC
method at significance level of 0.2 (Mb: 2, Hba: 3,


http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
http://www.uniprot.org/uniprot
http://www.uniprot.org/uniprot
http://www.bioinformatics.babraham.ac.uk/
http://www.bioinformatics.babraham.ac.uk/
http://efishgenomics.integrativebiology.msu.edu/blast_search/
http://efishgenomics.integrativebiology.msu.edu/blast_search/

Tian et al. BMC Evolutionary Biology (2017) 17:51

Page 6 of 14

Table 2 Evidence of positive selection identified by different methods in Hyphy

Gene

REL (PP > 50)

Fubar (PP > 0.8) Branch-site REL

SLAC (P >0.8) FEL (P>0.8)
3(0.077), 79 (0.111),

Hba  35(0134),73 (0199),  35(0058), 73 79
109 (0.133) 8_ (0.132), 709 (0.073)

Hbb 123 (0.197), 133 (0.154) 5 (0.093), 45 (0.146), 81 (0.127),

106 (0.164), 112 (0.162), 123 (0.072),
133 (0.067), 144 (0.100)

Mb  27(0097),98 (0096) 27 (0.021), 92 (0.110), 98 (0.029),
108 (0.131)

35 (60.944), 73 (60.689),
83 (50.668), T09 (84.333)

123 (60.003),

27 (337.517), 98 (94.269)

35 (0.909), 73 (0.840),
79 (0.940), 109 (0.824)

133 (1832.56) 1_ (0.818), 81 (0.874),
111 (0.899), 1. 123 (0.854),
133 (0979), 144 (0.921)

27 (0.973), 44 (0.849),
92 (0.849), 98 (0.925)

E.electricus: p=0.007

B.gauderio: p = 0.003;
E.virescens: p=0.037

E.electricus: p=0.005
B.gauderio: p=0.017

Note: Codons identified by more than one ML method are underlined. Sites also detected by M8 model are shown in bold. Site positions were relative to
Zebrafish (Danio rerio) protein sequences, i.e., Mb (Q6VN46), Hba (Q90487), Hbb (Q90486), and Ngb (Q90YJ2) in UniProtkB

Hbb: 2). The FEL methods found 17 positively se-
lected codons (Mb: 4, Hba: 5, Hbb: 8). Using the REL
method, 8 codons were identified under positive se-
lection at significant level of Bayes factor >50 (Mb: 2,
Hba: 4, Hbb: 2). Furthermore, FUBAR also identified
14 sites under diversifying selection with a posterior
probability > 0.8 (Mb: 4, Hba: 4, Hbb: 6) (see Table 2).
It is generally accepted that a positively selected site
is more reliable if it can be supported by two or
more different methods. Of these putative positively
selected sites, 13 codons (Mb: 27, 92, 98; Hba: 35, 73,
79, 83, 109; Hbb: 15, 81, 123, 133, 144) were detected
by more than one ML methods, which are robust
candidates for sites under selection; especially, site
133 in Hbb was determined to have undergone posi-
tive selection by all methods (see Table 2).

To test for positive selection along particular branches,
we used the one-ratio model (MO) that allows only a sin-
gle o ratio for all branches. The o ratio estimated by MO0
is significantly less than 1 (from 0.075 to 0.296) (see

Additional file 1: Table S5), suggesting that strong purify-
ing selection plays a central role in the evolution of globin
genes in electric fishes. The codeml-free ratio branch
model of PAML estimated independent w along all
branches of the phylogeny, which was significantly better
than the one-ratio model (p < 0.001, see Additional file 1:
Table S5) for Mb, Hba and Hbb, suggesting heterogeneous
selective pressures on different lineages. To investigate
whether the evidence for positive selection was restricted
to individual codons along some specific lineages, branch-
site models were then performed. Foreground branches
for tests of positive selection were selected on clades of
Gymnotiforms. The LRT tests showed that four Mb
branches, one Hba branch, one Hbb branches and one
Ngb branch exhibited significant (P <0.05) evidence of
positive selection over background branches, separately
(see Table 3). Further evidence of positive selection was
also detected by Branch-site REL. The results show that
lineages leading to Brachyhypopomus gauderio (branch o,
p=0.017) and Electrophorus electricus (branch w, p =

Table 3 Selective pressure analyses of Gymnitifores by the Branch-Site Model

Gene Branch Model Ln 20ln p Parameter Positive selected sites
Hba  Eelectricus Ma 3039610 w0=0.129, wl=1, w2=6.251 18-0.995**, 46-0.990*
Ma0 3042305 5390 0020 w0=0.129 wl=1w2=1
Hbb  B.gauderio Ma 3177724 w0=0.145 w1 =1, w2=34694  20-0.955% 29-0.973* 113-0.989*,
114-0912, 132-0.981%, 133-0.888
Ma0 3187339 19230 <0001 w0=0.139 wl=1w2=1
Mb B.gauderio Ma 5191675 w0=0.137, w1 =1, w2=15025  9-0.987% 18-0.964%, 98-0.940, 109-0.990**,
122-0.994**, 134-0.992**, 138-0911
Ma0 5199405 1546 <0001 w0=0.136, wl=1,w2=1
E.electricus Ma 5191521 w0=0.136, w1 =1, wW2=381.189  37-0.998**, 106-0.982%, 108-0.960%,
109-0.993**, 117-0.944
Ma0 5195.127 7212 0007 w0=0.132, wl=1,w2=1
S.elegans Ma 5201.909 w0=0.142, w1 =1, wW2=999 38-0.933
Ma0 5204687 5556 0018 w0=0.141, wl=1w2=1
Last common ancestor Ma 5199.339 w0=0.143, w1 =1, W2 =60.065 12-0.986*
of gymnotiform
Ma0 5204040 9402 0002 w0=0.141,wl=1w2=1
Ngb S.macrurus Ma 2223.853 w0=0.063, wl =1, w2=189.298 150-0.989*
Ma0 2226360 5014 0025 w0=0063 wl=1w2=1

Note: *: posterior probability (pp) >95%; **: pp >99%
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0.005) were under positive selection for the Mb gene.
Additionally, this model also confirms episodic selection
along the same lineages (Mb: branch o, p=0.017 and
branch w, p=0.005; Hba: branch w, p=0.007; Hbb:
branch o, p = 0.003) reported by the branch-site model in
PAML, but also identifies an additional lineage—the
Eigenmannia virescens (branch s, p=0.037) lineage for
Hbb gene (see Table 2). To summarize the above results
from the analyses using different methods, all four globin
genes were identified as having undergone positive selec-
tion in Gymnotiforms.

Although Codeml and Datamonkey estimate the influ-
ence of natural selection at the codon level, selection for
change in amino acid physicochemical properties was also
analyzed by TreeSAAP, which further support the ML
methods results at a complementary protein-level. Overall,
33 residues in four globin genes were subjected to positive
selection supported by two or more ML methods (Data-
monkey, site model and Branch-site model), and 78.8%
(26/33) (Hba: 6, Hbb: 9, Mb: 11) were also detected by
TreeSAAP as under positive selection at the physicochemi-
cal level (see Table 4). Nine of these sites were Type II class
(more than or equal to six radical changes in amino acid
properties). Furthermore, the radical amino acid changes
in the 26 positively selected codons were scattered
throughout most of the Gymnotiform phylogeny (see
Fig. 1). It is interesting to note that high levels of positive
selection were found in “hypoxic water” species compared
with “well-oxygenated water” species; that is, 15 radical
amino acid sites (Hba: 2, Hbb: 7, Mb: 6) were detected in
branch o; 13 radical amino acid sites (Hba: 4, Hbb: 2, Mb:
7) were identified in branch w; and 3 radical amino acid
sites (Hba: 2, Hbb: 1) were found in branch s (see Fig. 1).

Structural links to protein function

To gain insight into the functional significance of the
putatively selected sites, we mapped all the radical
amino acid sites onto 3D structures. We found that sev-
eral sites fall in or immediately adjacent to the functional
regions or residues (see Fig. 2). For example, site 83 in
Hba gene was close to the heme proximal ligand residue
(site 89 in Zebrafish). Again, site 144 in Hbb was adja-
cent to the $-147 histidine. For the Mb gene, sites 9, 12,
27, 37 and 38 were located in the globin region. 42.3%
(11/26) positively selected sites with radical changes
were localized in residues postulated to affect function.

Expression profile of Mb and Ngb in E. Electricus

We wished to compare expression patterns under nor-
moxic conditions of E. electricus and B. gauderio Mb
and Ngb with other teleosts. We did not measure levels
of hemoglobins in these tissues because hemoglobins are
only expressed in erythrocytes; any signal from hemoglo-
bins would be from residual red cells left in the tissues
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rather than expression in the tissues themselves. As a re-
sult of earlier work [45, 46], we had access to tissue tran-
scriptomes of E. electricus and examined levels of Mb and
Ngb expression (see Fig. 3). Mb is highly expressed in the
heart and less so in muscle. Mb is also expressed in some
non-muscle-derived tissues such as brain, spinal cord, and
kidney. Surprisingly, it is only negligibly expressed in the
EOs (E. electricus has two weak EOs for communication
and navigation and one strong EO for shocking prey).
Ngb is expressed in the brain, spinal cord, and kidney, and
at negligible levels elsewhere (see Fig. 4).

Transcriptomes were made from some of the same tis-
sues (brain, heart, skeletal muscle, EO) of B. gauderio
(see Additional file 1: Table S6 and S7; Additional file 3).
The overall pattern of Mb expression is similar to E.
electricus. That is, expression is highest in the heart, also
observed in brain, and low in muscle and EO. Ngb levels
were too low to measure accurately.

Discussion

Pervasive adaptive evolution of gymnotiform globin
genes

Recent studies have shown strong evidence for positive
selection in hypoxia tolerant species, like yak [47], hum-
mingbirds [48], and cetaceans [49], when compared with
their hypoxia intolerant relatives, as well as hypoxia-
tolerant populations of humans such as Tibetans [50].

In this study, we surveyed all four primary oxygen-
carrier globin genes in gymnotiforms for signs of posi-
tive selection and to assess whether hypoxia tolerance
has influenced the evolution of these genes. Our analyses
provide strong evidence that globin genes have been
subjected to positive selection during gymnotiform evo-
lution. First, neutral models of evolution were rejected
for Hbb genes, and more than two ML methods identi-
fied specific codons with a high probability of being
under selection for Hba, Hbb and Mb genes. Second,
adaptive evolution was further supported by evidence of
radical changes in positively selected amino acids in
gymnotiform globins. Again, 34.6% (9/26) belong to the
Type 1II class, suggesting robust positive selection. Fi-
nally, several of the putatively selected sites fall in, or
close to, regions important for function based on struc-
tural information.

Positively selected sites are scattered pervasively along
lineages of gymnotiform phylogeny (see Table 2 and
Fig. 1), suggesting the contribution of the respiratory
proteins for oxygen storage and transportation during
adaptation to expensive oxygen consumption in gymno-
tiforms. Moreover, a signal of positive selection was also
detected in the lineage leading to the common ancestor
of gymnotiforms. This lineage represents the early evolu-
tionary history of the gymnotiform’s evolved EOs, during
which the gymnotiforms were faced with the challenges
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detected by Datamonkey, Branch-site model and TreeSAAP
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Table 4 Radical amino acid sites under positive selection
detected by Datamonkey, Branch-site model and TreeSAAP
Simultaneously (Continued)

Gene Position® Clade® AA Changes Radical Changes in Total
AA Properties®
Hba 18 w -A PK, R 2
35 k T-A P, 1
s TV Ny R, 2
n TP K°, H, 2
0 g Ny, By, pK', Ry Hp He 6
46 w H-S = 2
73 h s S-A Po, P, P 3
w A-G Pq, P, P 3
79 0, W A-T Py 1
p,qg  AC Pa, N, ¢, K°, pK’, a, 6
83 kg  AS Pa Pe, P 3
Hbb 15 P M- pK' 1
20 [¢) S-H F 1
29 o Ll pK’ 1
81 s N-A Pu P, P 3
113 o V-T N, Ry 2
114 o CT Ny, B, ¢ 3
123 mw V-G Pg, By, Pe, F, Ry, P 6
0,q V-A Pg 1

132 o W- pK’ 1

133 a Q-C N, B, ¢, h, p, E; 6
h C-S N, B, u 3
w S-A Pq, P, P 3
q cQ N, B, ¢, h, p, E; 6
m CT N, B, ¢ 3
o) CE Py Ng, B, ¢, h, E, P, p, 11

A, Hp, E;

Mb 9 o K-A E, B, K°, h, Esmy 5
12 a G-P B, a., H, 3
27 w TG B, 1

[ TV N R, 2
o S-W B, Re, P, Coy E, F, M, 12
My, V°, u, Ra, H,
37 w Q N, B, pK’,h, F,p,E, 11
E;, Ra, Hp, H:
92 w, f K-Q Ph; 1
g K-| N, Pg, B,, R, pK', h, E, 14
F, Hne Pry Py Ray Hp, Et
t RY; pK' 1
d K-T Ph, E, 2
98 a N-A Pa P P 3
w Al pK, R, 2
d A-G P P P 3

m GV Pg, By P, F, Ry, P 6

o A-N Po, P P 3
106 W V-C pK, C, Ry P 4
108 w V-C pK, C Ry, P 4
109 w K-V N,, B, h, E, F, p, Ra, 10

Hps Her E:

o K-S E 1
122 o QA K, E, 2
134 o N-A Pa, Pei P 3

“Relative to Zebrafish (Danio rerio) protein sequences, i.e., Mb (Q6VN46), Hba
(Q90487), and Hbb (Q90486) in UniProtkB. Codons identified as under positive
selection more than one ML methods. Positively selected sites detected by
Datamonkey are represented in underlined letters

®Amino acid substitution occurred along clades, with detailed information
marked in Fig. 1

“Radical changes in amino acid properties under category 6-8 were detected
in TreeSAAP. Amino acid sites that belong to the Type Il class (greater than 6
property changes) are represented in bold. Physicochemical amino acid
properties available in TreeSAAP are as following: a.: Power to be - C-term.,
a-helix; a,: Power to be in the N-terminal of an a-helix; B,: Buriedness; c:
Composition; C,: Helical contact energy; E: Long-range non-bonded energy;
Esm: Short and medium range non-bonded energy; E;: Total non-bonding
Energy; F: Mean r.m.s. fluctuation displacement; h: Hydropathy; H,.:: Normal
consensus hydrophobicity; H,: Surrounding hydrophobicity; H: Thermodynamic
transfer hydrophobicity; K°: Compressibility; u: Refractive index; M,: Molecular
volume; M,,: Molecular weight; Ni: Average number of surrounding residues;
Pg: a- helical tendencies; Pg: B-structure tendencies; P: Coil tendencies; P: Turn
tendencies; p: Polarity; pH; Isoelectric point; pK* Equilibrium Constant of ionization
for COOH; P,: Polar requirement; R,: Solvent accessible reduction ratio;

Rr: Chromatographic index; V°: Partial specific volume

of high energetic cost for electric organ discharge gener-
ation. Although this branch was only detected in the Mb
gene with three positively selected codons (Mb: N98A,
G12P; Hbb: Q133C), three or more radical property
changes occurred at each amino acid (see Table 4). That
is to say, globin genes may have adaptively enhanced
oxygen binding and transportation in accordance with
the changes of high energetic cost during the early evo-
lutionary phase of EOs in gymnotiformes.

Functional consequences of amino acid replacement
Although gymnotiform globin genes contain putatively
positively selected sites, it is important to assess their
functional relevance. We thus analyzed selected residues
for their structural properties to predict potential func-
tional implications. We found that all 26 radical amino
acid changes residues were concordant between three
methods and thus constitute robust candidates for posi-
tive selection (see Table 4). Radical substitutions of
amino acids at key positions may change the properties
of the molecule. For example, residue 83 in Hba is lo-
cated very close to the promixal histidine, which is im-
plicated in the iron-proximal histidine linkage [51].
Consequently, substitution at this site seems to be essen-
tial in the maintenance of heme oxygen binding.
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Fig. 2 Radical changes of sites under selection are shown in crystal structure of a: Hba, b: Hbb, and c: Mb with red. The site in Mb identified
along lineages leading to Brachyhypopomus gauderio and Electrophorus electricus is marked with pink (residue 109). Cys substitutions of
Flectrophorus electricus at Mb gene are marked with green (residue 106 and 108)

Furthermore, position 144 in Hbb is close to 147
His. It has been reported that His-HC3(147)B carp
(Cyprinus carpio) hemoglobin plays a key role in the
Root effect, which is a phenomenon associated with
non-cooperative oxygen binding and decreased oxygen
affinity [52]. Hence, we suggest that positive selection
acting on this site is likely to be involved in modulat-
ing hemoglobin oxygen combination and cooperation.

For Mb, site 134 is mainly responsible for formation
of hydrogen bonds with water in a hydrophobic envir-
onment [53]; therefore, amino acid changes at this
site are likely to be involved in the regulation of
water bonds. In spite of the evidence for selection
documented here, functional studies of these candi-
date positively selected sites are necessary in gymnoti-
forms in the future.
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Fig. 3 Tissue distribution of myoglobin of the electric eel (Electrophorus electricus) and the pintail knifefish (Brachyhypopomus gauderio)
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Myoglobin and NO production
Mb plays a pivotal role in the response to hypoxia. On the
one hand, Mb facilitates O, diffusion from the blood into
skeletal and heart muscle of vertebrates; on the other hand,
deoxy-Mb may act as a nitrite reductase producing NO
from NO, in response to cellular hypoxia [13]. Recent
studies reported that cysteine (Cys) S-nitrosation of trout
and salmon Mb increases heme O, affinity, and this allo-
steric effect may promote hypoxia-induced NO delivery in
the heart and improve myocardial efficiency [54, 55]. Inter-
estingly, Electrophorus electricus also contains four reactive
cysteine (Cys) residues (see Fig. 5). Cys 10 and 108 are
identical to trout and salmon, and Cys 106 and 131 are
radical amino acid changes from ancestral Val to Cys
(V106C, V131C). Moreover, Cys 106 is also a species-
specific site in E. electricus, and Cys 108 is identified as a
positively selected site. It is worth noting that S-nitrosation
at reactive cysteines is functionally indispensible for gener-
ating S-nitroso Mb (Mb-SNO) and contributing further to
NO homeostasis. Hence, it is reasonable to deduce that re-
active Cys sites in E. electricus may enhance Mb function
in oxygen storage and NO delivery during hypoxia.
Interestingly, the Mb of Gymmnarchus niloticus a mem-
ber of the other independently evolved group of electric
fishes, the mormyroidea, shares Cys 106 (see Fig. 5, blue)
with E. electricus at a site that is conserved among other
teleosts. Whereas all other (200+ species) of mormyroid
fishes utilize gills and cannot breathe air under hypoxic
conditions [56-58], G. niloticus is an air-breathing fish
with a highly vascularized gas bladder. These fish also
grow to be large (>1.5 meters) similar to E. electricus.
Therefore, it appears that the shared Cys 106 is a func-
tional convergence in two large, air-breathing electric fish.

Relationship of globin evolution to gymnotiform life
histories

The two species with strongest signature of positive se-
lection of globins—E. electricus and B. gauderio—live
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comfortably in hypoxic and even anoxic environments.
E. electricus, which is the largest gymnotiform capable of
reaching ~2 m in length, is unusual among gymnoti-
forms as it is an obligate air-breather. It surfaces every
few minutes to gulp air, which it stores in its mouth and,
if prevented from breathing air, it will drown [59]. E.
electricus is unique even among air breathing fishes as it
obtains oxygen from elaborated papillae in the mouth
not related to the gills; indeed, its gills are small and
underdeveloped. Furthermore, its circulatory system is
unlike that of other teleosts in that the oxygenated blood
from the oral papillae mixes with the venous circulation
before being pumped out of the heart resulting in poorly
oxygenated blood. The hematocrit, Hb content, and oxy-
gen capacity of the blood, as well as heart rate and vol-
ume of blood moved per unit time are all higher than in
most teleosts and may be adaptations to overcome the
poor oxygenation of mixed arterial-venous blood [59].

Fish of the genus Brachyhypopomus inhabit hypoxic/
anoxic waters [10] and in the laboratory, tolerate >6 h of
anoxia. They have large well-developed gills, but are also
facultative air-breathers either gulping bubbles of air at
the surface then descending, or “skulking” at the surface
with open mouths taking in air [8]. These two behaviors
differ from ASR in that they involve taking in air,
whereas ASR is merely taking in well-oxygenated water
from the surface layer. Fish that hold air in their mouths
must have gills that do not collapse or they would pro-
vide too little useful surface area for oxygen absorption.

Gymmnotus species are also capable of tolerating >6 h of
anoxia by gulping air and storing it in a highly vascular-
ized, extended, lung-like posterior swim bladder unique
among gymnotiforms [60]. They use this swim bladder
“lung” to extend their aerobic range [61]. The swim blad-
der is contacted by branches of the celiac artery and hep-
atic portal systems as well as segmental arteries and veins
that then penetrate the body musculature. Although we
tried multiple primers to amplify Gymnotus omarorum
Mb from muscle, heart and EO tissue, we failed to amplify
this gene from RNA samples even though we obtained the
Hba and Hbb genes from the same samples. Recently,
Macqueen et al. [62] revealed that a cardiac Mb deficit has
evolved repeatedly in teleosts under diverse ecological set-
tings; in sticklebacks (Gasterosteus aculeuatus) Mb is even
a pseudogene. Although we have not examined Gymnotus
DNA for a possible psuedogene, we suspect that the Mb
gene was lost in G. omarorum. In keeping with this, we
did not note strong selection on Hbs in this genus. We
suggest that their blood is adequately oxygenated in their
unique vascularized swim bladder with no further selec-
tion pressure to alter Hb affinity for oxygen.

Crampton [10] included E. virescens among the species
that are capable of inhabiting hypoxic environments.
However, this species is just barely able to survive in
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numbers are provided in Additional file 1: Table S1

Fig. 5 Multiple sequences alignment of 40 teleost Mb gene, showing Cys residues (i.e, 10, 106, 108, and 131) of Electrophorus electricus (pink).

The common substitutions identified are located at the amino acid position of the zebrafish (Danio rerio) ortholog. The consensus numbering of
zebrafish is given in the right. The Cys 10 and 108 residues of Salmo salar and Thunnus albacares are shadowed by purple. The corresponding Cys
sites in Gymnarchus niloticus (Mormyroidea) are shown in blue, in Gymnotiformes in green, in the remaining species in orange. The alignments of
each Cys sites are in the red boxes. Clade h (Fig. 1) is the common ancestor of the genus Gymnotus and Electrophorus electricus. NCBI accession

hypoxia. They tend to avoid hypoxic water although they
are capable of surviving an hour or so of anoxic condi-
tions using ASR [10], but they do not gulp air. They are
sensitive to hypoxia under which the amplitude of their
EODs decreases rapidly [11]. In accordance with this, we
observe only minimal evidence of positive selection on
Hbb in this species.

The other species in this study, which show little or
only weak evidence of positive selection on globin genes,
do poorly in hypoxic conditions and cannot survive an-
oxia [10]. Under anoxic conditions in the laboratory they
respond with ASR as long as they are able and eventu-
ally fall immobile to the bottom. These include all the
wave species and some of the pulse-type fish.

Finally, the genera Brachyhypopomus and Gymnotus are
speciose [4] with member species distributed throughout
the gymnotiform’s whole range. For example, fish from
these two genera are the primary species in the most
Southern extent of the gymnotiform’s distribution in
Uruguay [63, 64]. The evolution of different modes of air-
breathing may have given them an advantage over those
species unable to derive oxygen from the air.

Expression of Mb and Ngb in E. electricus and B. gauderio
As in some other teleosts, Mb is most highly expressed
in heart (although this varies considerably across species
[62]) and less so in muscle. However, as Mb is expressed
in “slow” oxidative but not “fast” non-oxidative muscle
fibers, and slow fibers are small and few in number in
teleost muscle, its mRNA will not be abundant in a sam-
ple of epaxial muscle even if it is highly expressed in
slow muscle [65, 66]. Thus, the difference in muscle Mb
expression between E. electricus and B. gauderio may de-
pend on composition of the muscle sub-types and the
exact location from which samples were obtained.

Our expectation was that Mb levels would be high
in the EO consistent with the ongoing EOD activity.
But Mb levels are modest in the EO of both species.
We did not note a difference in expression between
the Sach’s organ and Hunter’s/Main EO of E. electri-
cus. Sach’s EO constantly fires a low voltage-pulse at
a low frequency (~1-10 Hz), whereas all three EOs
discharge in high frequency bursts of >400 Hz when
fish are capturing prey or defending themselves [67].
B. gauderio discharges at rest at ~15 Hz and during
social interactions or foraging at 30-40 Hz, with

occasional high-frequency bursts (100—200 Hz) called
“chirps” that are aggressive signals [68].

There are a few possible and not mutually exclusive
explanations for the low levels of Mb in the EO. First,
EO originates from fast muscle fibers, and fast muscle fi-
bers do not express Mb; there might be a developmental
constraint minimizing Mb expression in the EO. Second,
some gymnotiforms possess mechanisms to decrease
EOD amplitude (and therefore oxygen consumption)
during anoxia [11]. This has only been studied in a few
species and it would be intriguing to compare the distri-
bution of EO Mb expression, EOD “usage” (discharge
rate), and occurrence of mechanisms for reducing EOD
amplitude in the face of anoxia in the EO across gymno-
tiforms. Perhaps different species trade off EO Mb con-
centration with extent of anoxia-dependent reduction of
the EOD amplitude. Third, EOs are well vascularized
and it may not be necessary to have a local reserve
source of O,. Fourth, it is possible that EOs switch to
anaerobic metabolism during and after periods of high
activity. At this point there is no evidence for or against
this. It is also worth noting that Mb expression is high
in heart and low in muscle in the elephant shark sug-
gesting that this is the ancestral vertebrate pattern [69].

Recently, it has been recognized that Mb is expressed
in the brain and kidney as well as in a few other non-
muscle tissues in teleosts. Mainly, Mb is expressed in
the endothelial cells of blood vessels in the brain and
gills, and the epithelial cells of the tubules in the kidney
[65]. The expression of Mb in the brain in E. electricus
and B. gauderio and the kidney of E. electricus is in ac-
cord with these observations.

Ngb is primarily expressed in neural tissues in mam-
mals and teleosts. It is reported to be in the gills in zeb-
rafish [70]. As there are no gill transcriptomes available
of E. electricus we do not know if it is expressed in the
gills of this species. Ngb was expressed in E. electricus
kidney but zebrafish kidney has not yet been examined.
Finally, it is not expressed in zebrafish muscle nor did
we observe it in E. electricus muscle. Qualitatively, the
expression pattern of Mb and Ngb does not differ from
non-gymnotiforms. Thus, it appears that the main effect
of selection on E. electricus and B. gauderio Mb is on its
sequence rather than its expression pattern in individ-
uals housed under normoxic conditions. Further experi-
ments would be necessary to determine whether there
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are additional adaptations on the regulation of globin
genes under different environmental conditions.

Conclusion

The gymnotiforms arose in Gondwana [71] and diverged
rapidly into lineages with differences in EO morphology
and signaling. Some amino acid substitutions occurred
in myoglobin genes as the EO was initially evolving, per-
haps as a result of the new energy demands imposed by
electrogenesis. While many gymnotiforms rely on gills
for oxygen uptake, a few lineages evolved distinct modes
of air-breathing. Along with this, we note variation in
the strength of selection on different globin genes de-
pending on the mode of air breathing. We anticipate
that future studies will elucidate the physiology and bio-
chemistry of these globin genes and seek other mole-
cules under selection in the oxygen transport or
metabolic pathways underlying energy usage.
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