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Abstract

Background: Aloe vera supports a substantial global trade yet its wild origins, and explanations for its popularity
over 500 related Aloe species in one of the world’s largest succulent groups, have remained uncertain. We
developed an explicit phylogenetic framework to explore links between the rich traditions of medicinal use and leaf
succulence in aloes.

Results: The phylogenetic hypothesis clarifies the origins of Aloe vera to the Arabian Peninsula at the northernmost
limits of the range for aloes. The genus Aloe originated in southern Africa ~16 million years ago and underwent
two major radiations driven by different speciation processes, giving rise to the extraordinary diversity known today.
Large, succulent leaves typical of medicinal aloes arose during the most recent diversification ~10 million years ago
and are strongly correlated to the phylogeny and to the likelihood of a species being used for medicine. A
significant, albeit weak, phylogenetic signal is evident in the medicinal uses of aloes, suggesting that the properties
for which they are valued do not occur randomly across the branches of the phylogenetic tree.

Conclusions: Phylogenetic investigation of plant use and leaf succulence among aloes has yielded new explanations
for the extraordinary market dominance of Aloe vera. The industry preference for Aloe vera appears to be due to its
proximity to important historic trade routes, and early introduction to trade and cultivation. Well-developed succulent
leaf mesophyll tissue, an adaptive feature that likely contributed to the ecological success of the genus Aloe, is the main
predictor for medicinal use among Aloe species, whereas evolutionary loss of succulence tends to be associated with
losses of medicinal use. Phylogenetic analyses of plant use offer potential to understand patterns in the value of global
plant diversity.
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Background
The succulent leaf tissue of Aloe vera is a globally import-
ant commodity, with an estimated annual market of $13
billion [1]. The ‘gel’ tissue—polysaccharide-rich inner leaf
mesophyll—provides a reservoir of water to sustain photo-
synthesis during droughts, and has been ascribed multiple
bioactive properties associated with its use for skincare
and digestive health [2]. Aloe vera has supported a thriving
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trade for thousands of years [3] and is arguably one of the
most popular plants known in cultivation today, yet its
origins in the wild have long been speculated. We have
established that at least 25% of aloes (~120 species) are
used for medicine yet fewer than 10 Aloe species are
traded commercially, and these are used primarily for the
purgative leaf exudate and on much lesser scales than Aloe
vera (e.g. Aloe ferox in South Africa and Aloe arborescens
in Asia) [4]. The immense market dominance of Aloe vera
over other species of Aloe is not fully explained by available
phytochemical evidence [5,6]. The extent to which the
value of Aloe vera may be a consequence of evolutionary
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processes of selection and speciation, resulting in appar-
ently unique properties and phylogenetic isolation, has
not previously been considered.
Aloe (>500 species) is by far the most speciose of the

six genera known collectively as aloes, which include
Aloiampelos (7 species), Aloidendron (6 species), Aristaloe
(1 species), Gonialoe (3 species) and Kumara (2 species).
They are iconic in the African flora, and occur predomin-
antly in eastern sub-Saharan Africa, and on the Arabian
Peninsula, Madagascar and western Indian Ocean islands.
Succulent plants are usually associated with arid environ-
ments; although numerous aloes occur in the drylands of
Africa, they are also abundantly represented in tropical
and subtropical vegetation infrequently impacted by
drought. All aloes possess some degree of leaf succu-
lence, as well as crassulacean acid metabolism (CAM)
and a thick, waxy cuticle common in plants exhibiting a
succulent syndrome [7]. Most are habitat specialists
with narrow ranges and extraordinary rates of endem-
ism, from an estimated 70% in southern Africa, 90% in
Ethiopia, to 100% on Madagascar [8]. These centres of
diversity coincide alarmingly with Africa’s biodiversity
Hotspots, where a highly endemic biota is under sub-
stantial threat of extinction [9]. Risks posed by extensive
habitat destruction and other threats to their survival
are reflected by the inclusion of all aloes, except Aloe
vera, in the Convention on International Trade in En-
dangered Species of Wild Fauna and Flora (CITES). The
species-level diversity, ecological importance and threats
to aloes place them among the world’s most important
succulent plant lineages, other examples of which are
ice plants (Aizoaceae), cacti (Cactaceae) and Agave
(Agavaceae) [10]. Phylogenetic studies of related groups
have focussed on the South African endemic Haworthia
(e.g. [11,12]), whereas aloes have received little attention
(but see [13]), and the origins and diversification of Aloe
have remained unclear. It has therefore not been pos-
sible to determine whether Aloe vera is phylogenetically
distinct from its many relatives, nor whether such
phylogenetic distance may account for any potentially
unique properties underpinning the value of the succu-
lent leaf tissue.
Phylogenetic prediction is emerging as a promising

tool for exploring correlations between the phylogenetic
diversity and useful attributes of medicinal plants [14-17].
Rich biocultural traditions surround the use of aloe leaves
for medicine, cosmetics, digestive health and general well-
being [4]. Two natural products are derived from the
leaves: carbohydrate-rich succulent leaf mesophyll tissue,
applied topically to the skin or taken internally for diges-
tion; and exudate, a liquid matrix high in phenolic com-
pounds and most often used as a potent purgative, or in
veterinary medicine (see [18]). The literature describing
these uses is an untapped resource for understanding
plant use in an evolutionary context, and in particular the
extraordinary case of Aloe vera, which is used almost ex-
clusively for its succulent leaf tissue. One point of interest
is whether leaf succulence in aloes, which ranges from
barely succulent in some species to very fleshy in others,
could influence their use.
We aimed to explore the Aloe vera ‘phenomenon’ [5]

by combining the largest ever phylogenetic hypothesis
for the aloes with predictive methods. We used this to
infer a scenario for their evolution, addressing a persist-
ent gap in the understanding of global succulent plant
diversity and biogeography. Links between the medicinal
usefulness of aloes, their phylogenetic history, and extent
of leaf succulence were evaluated by identifying evolu-
tionary correlations and phylogenetic signal in uses and
habit. Our comprehensive sampling represents the full
morphological and geographical diversity of the aloes,
and enabled the origins, geographical range evolution
and divergence times of Aloe and relatives to be inferred.
We synthesized our findings to determine whether the
global value of Aloe vera can be better explained by evo-
lutionary distinctiveness or by historical anthropogenic
factors.

Methods
Phylogenetic hypothesis
A dataset was assembled representing seven plastid and
nuclear DNA regions in 239 taxa in Xanthorrhoeaceae,
including 197 species in the genera Aloe, Aloidendron,
Aloiampelos, Aristaloe, Gonialoe and Kumara. We gen-
erated 480 new sequences from leaf or floral specimens
collected from natural populations or from curated living
collections and DNA banks held primarily at the Royal
Botanic Gardens, Kew. A further 279 sequences were
obtained from GenBank (ncbi.nlm.nih.gov/genbank/),
including 93 rbcL and 64 psbA sequences. Agapanthus
africanus (Amaryllidaceae) was used as the outgroup
taxon in all analyses.
Total genomic DNA was isolated from fresh plant

material (ca. 1 g) or specimens dried in silica gel (ca. 0.3 g)
using a modified CTAB protocol [19] or the Qiagen
DNeasy kit (Qiagen, Copenhagen). Sequences of ITS,
matK and trnL-F were amplified using methodology
previously described by [6]. The trnQ-rps16 region was
amplified with the primers trnQ(UUG)Aloe (5′-ATCTT
RATACAATGTGATCCAC-3′; this study) and rps16x1
[20]. Sequences from the complementary strands were
obtained for all taxa whenever possible, using the BigDye
Terminator v3.1 on a 3730 DNA Analyzer (Applied Biosys-
tems/Hitachi). Sequences were assembled in Sequencher
4.8 (Gene Codes, Ann Arbor) and submitted to GenBank
(Additional file 1). Sequences were aligned automatically
using MUSCLE [21] implemented with default settings in
SeaView v4.2.12 [22], and adjusted manually in BioEdit
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v7.1.11 [23]. The DNA regions were aligned separately be-
fore the data were concatenated using an R [24] script to
produce a final dataset comprising 240 taxa and 6732 nu-
cleotides in seven DNA regions.
We used Bayesian inference, maximum likelihood and

parsimony to produce a phylogenetic hypothesis for Aloe
and allied genera, using single-partition (ITS, matK, rps16,
psbA, rbcL, trnL-F intron and spacer) and combined data-
sets. We ran all analyses on the Cyber Infrastructure for
Phylogenetic Research (CIPRES) portal [25]. Separate par-
simony analyses of the ITS (175 taxa, 799 nucleotides)
and plastid (231 taxa, 5933 nucleotides) datasets were
undertaken with the parsimony ratchet implemented in
PAUPRat [26], to check for strongly supported phylogen-
etic conflicts (bootstrap percentages >75), before proceed-
ing with analyses based on a total evidence approach
using all characters. A maximum likelihood analysis, com-
prising 1000 bootstrap replicates followed by a heuristic
tree search, was executed in RAxML [27] with each parti-
tion assigned specific parameters under the recommended
GTRCAT model. An additional 530 gaps and indels in the
combined dataset of all DNA regions were coded using
the algorithm described by [28] in the FastGap v1.2 inter-
face [29]. Finally, we ran a Bayesian analysis of the com-
bined dataset with gaps coded in MrBayes v3.1.2 [30].
Best-fitting models for each data partition for Bayesian
inference were identified using the Akaike Information
Criterion calculated in Modeltest v3.8 [31]. The Hasegawa,
Kishino and Yano (HKY) model with gamma-shaped dis-
tribution of rate heterogeneity among sites (HKY +G) was
selected for the ITS, matK, trnQ-rps16 and trnL-F data
partitions, while the General Time Reversible (GTR)
model with gamma distribution of rate heterogeneity
among sites was selected for psbA (GTR +G), and with a
proportion of invariable sites (GTR + I + G) for rbcL. For
the Bayesian analysis, the parameters were unlinked be-
tween loci and four Metropolis Coupled Markov Chains
with heating increments of 0.2 were run for 50 million
generations and sampled every 1000th generation. The
resulting parameters were summarised in Tracer 1.5.0
[32]. A quarter of the least likely trees were discarded,
and a majority rule consensus tree with branch supports
expressed as posterior probabilities (PP) was produced
from the remaining trees.

Divergence time estimates and biogeographic scenario
Divergence times were estimated using a penalised likeli-
hood (PL) approach previously applied in Hyacinthaceae,
a related family in Asparagales, as described by [33]. In
the absence of fossil data for aloes and related genera, ana-
lyses were constrained to the mean age of 34.2 Ma in-
ferred for the crown node of Asphodeloideae in a recent
study of all Asparagales families [34]. Due to the computa-
tional demands of analyses on the full Xanthorrhoeaceae
dataset and our focus on the aloes (Aloe, Aloiampelos,
Aloidendron, Aristaloe, Gonialoe and Kumara), we ex-
cluded subfamilies Xanthorrhoeoideae and Hemerocal-
lidoideae from subsequent analyses and pruned the
Bayesian consensus tree to 228 species in Asphodeloideae.
The penalised likelihood method [35] was run on 1000
randomly selected trees from the Bayesian stationary dis-
tribution and summarised on the consensus tree [33]. The
optimal rate smoothing value for this dataset was deter-
mined by cross validation on the pruned Bayesian consen-
sus tree, using the Truncated Newton algorithm (S = 5)
implemented in r8s v 1.8 [36]. The outgroup taxon was
pruned prior to the estimation of divergence times, as
required by r8s. Mean age values and 95% confidence in-
tervals for the nodes on the Bayesian consensus tree were
computed in TreeAnnotator [37].
A biogeographic scenario for the aloes was inferred

using the dispersal-extinction-cladogenesis (DEC) like-
lihood model implemented in Lagrange v2.0.1 [38].
Species distribution data were compiled from authorita-
tive checklists for Asphodeloideae [39,40] and standar-
dised according to the Taxonomic Data Working Group
(TDWG) guidelines [41]. We defined eight areas based on
the statistically-delimited biogeographical regions of
Africa, incorporating the faunal and floral diversity of
the continent, described recently by [42]. For subfamily
Asphodeloideae, Arabia, Madagascar and Eurasia were
added to the Southern African, Zambezian and Congolian
regions, together with expanded Ethiopian-Somalian and
Saharan-Sudanian regions. Assigning species to areas was
straightforward due to the typically narrow distribution of
most Aloe species, and because neighbouring areas are
separated by physical barriers or marked differences in
climatic conditions. Ancestral area reconstructions in
Lagrange [38] were performed on the dated consensus
(allcompat) tree obtained from the penalised likelihood
analysis. In brief, ancestral areas were computed at each
node of the tree under the DEC likelihood model, fol-
lowing a method described in detail by [33]. Ancestral
areas with a relative probability >1 were combined with
the node age and lengths of the descendent branches on
the tree to infer the frequency and nature of transition
events between ancestral and descendant nodes [33].
The resulting biogeographic scenario was visualised on
the dated Bayesian consensus tree using pie charts
showing the likelihoods of all possible ancestral areas
per node for subfamily Asphodeloideae.

Phylogenetic signal in utility and habit
We interrogated a dataset of over 1400 use records from
the literature [18] to investigate phylogenetic signal in
the uses of aloes. Data were coded according to the
Economic Botany Data Standard [43] from which two
categories of use were considered. In the first category,
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we combined all TDWG Level 1 data to yield a discrete
binary character describing any documented use, while
the second comprised data in the TDWG Level 2 Med-
icines category. General use (e.g. for food, materials, social
purposes, etc.) and medicinal use specifically were scored
as present (=1) or absent (=0) in each of the terminal taxa.
Records describing a plant as not used are unusual in the
ethnobotanical literature, and hence in all cases 0 indi-
cated a lack of reported use, rather than definitive know-
ledge of no use. The consensus (allcompat) tree inferred
by Bayesian analysis with gaps coded was pruned to 197
species representing Aloe, Aloiampelos, Aloidendron, Aris-
taloe, Gonialoe and Kumara.
We calculated phylogenetic signal using the D metric

[44], a measure specifically developed for quantifying
phylogenetic signal in binary characters, implemented in
the R package caper [45]. D compares the number of
observed changes in a trait over a phylogeny with the
number that would be expected under two alternative
simulated scenarios: one where there is strong phylogen-
etic dependence and the trait has evolved via a gradual
Brownian motion model of evolution, and the second
where there is no phylogenetic dependence and the trait
is randomly scattered across the species, regardless of
phylogeny. The D metric generates a value that usually
lies between 0 and 1, where a value of 1 indicates that
the trait has evolved in essentially a random manner (i.e.
no phylogenetic signal), and 0 indicates that the trait is
highly correlated with phylogeny, in a manner predicted
by Brownian motion. Tests for significant differences
from D = 1 (no phylogenetic signal) are derived by
simulating the random distribution of the trait among
species 1000 times to generate a null distribution for
the D statistic. We conducted the analysis in two ways,
one using just the consensus phylogeny, and the second
using 1000 trees selected at random from the Bayesian
posterior distribution calculating median values for D and
associated P values.
The putative contribution of leaf succulence to the

‘usefulness’ of aloes was explored using a phylogenetic
comparative approach. A character set describing the
extent of water-storing mesophyll tissue in the leaves
was assembled from species descriptions [46-48] and
observations of leaf morphology in aloes. Species were
broadly scored as ‘succulent’ or ‘barely succulent’ and
additionally classified as barely succulent shrubs (the
grass aloes, Aloe section Leptaloe), succulent shrubs
(Aristaloe, Gonialoe and most of Aloe), branching trees
(Aloidendron, Kumara) and scrambling shrubs with
variably succulent leaves (Aloiampelos). These were visua-
lised on the Bayesian consensus tree by reconstructing
the ancestral states of three characters (succulence,
habit and medicinal use), scored as binary traits, under
the parsimony optimisation in Mesquite [49].
For calculation of phylogenetic signal using the D
metric in these traits, they were coded as four separate
dummy binary variables (e.g. succulence: 0 = no, 1 = yes).
Pairwise comparison tests [50] were used to assess pos-
sible evolutionary correlations between habit and docu-
mented uses generally and medicinal uses specifically
(dependent variables). This method takes phylogenetic-
ally independent pairs of species and observes any corre-
lated differences in the states of two binary characters.
For every gain or loss in one character (in this case, the
measure of leaf succulence), it assesses whether there is
an associated loss, gain or no change in the other (medi-
cinal or general use), and compares any patterns with
those expected if the second character were randomly
distributed on the phylogeny. Pairwise comparison cal-
culations were carried out using Mesquite [49]. As with
our D metric calculations, to account for uncertainty in
the phylogenetic topology and weak branch supports, we
ran all the analyses on the Bayesian consensus (allcompat)
topology (using 100 randomly selected sets of pairwise
comparisons) and on a random sample of 1000 trees from
the Bayesian posterior distribution, calculating median
probability values associated with the correlation.

Results
Phylogenetic hypothesis
Our phylogenetic analyses of >7 kb plastid and nuclear
characters (6732 nucleotides and 550 gaps) in ca. 40%
of Aloe species substantiate current understanding of
taxonomic relationships in Xanthorrhoeaceae subfamily
Asphodeloideae [11,12,51] and divergence times within
Asparagales [33] (Figure 1, Additional files 2 and 3). We
sampled 26 genera and 240 species in Xanthorrhoeaceae,
using a total evidence approach despite sequence data for
some taxa being incomplete (Additional files 1 and 4). The
effects of missing data on phylogenetic analyses have been
widely debated, but there is convincing evidence for the
accurate phylogenetic placement of taxa with considerable
missing data (summarised by [52]). Model-based methods
of phylogenetic inference perform better than parsimony
in estimating trees from datasets with missing data
[53,54], and we therefore based subsequent analyses on
the Bayesian phylogenetic inference (Additional file
3). Low levels of genetic polymorphisms, taxonomic
complexities, and the number of inaccessible, narrowly
distributed species challenge the study of aloes; this is the
first phylogeny to include >10% of Aloe species. Parsimony
and maximum likelihood topologies (trees not shown)
compared well to the Bayesian tree used in downstream
analyses. Branching tree aloes (Aloidendron) are basal to
the remainder of the alooids. A clade comprising the Cape
endemic genus Kumara and Haworthia s.s. is sister to
Aloiampelos, which is in turn sister to Aloe. Within the
large Aloe clade (184 species), well-supported terminal
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branches highlight species-level relationships but the
clades, which will ultimately underpin a taxonomic re-
vision, are incompletely resolved. The placement of
Aloiampelos juddii at the base of the alooid topology,
on a branch sister to Kumara-Haworthia, warrants fur-
ther investigation of reciprocal monophyly in Aloiam-
pelos. We included four members of Astroloba, two
Tulista, three Haworthiopsis and four Haworthia in
our study and recovered these as paraphyletic with
varying support. The haworthioid taxa were, until re-
cently [12], phylogenetically problematic (e.g. [11]).

Divergence time estimates and biogeographic scenario
Divergence times estimated using a penalised likelihood
approach and ancestral area reconstructions revealed
that aloes originated in southern Africa in the early
Miocene, ~19 million years ago (Ma) (Additional file 3).
Aloe vera was recovered in a strongly supported clade
with eight other Arabian species, allowing us to infer its
origins on the Arabian Peninsula within the last five
million years. Two southern African species supporting
commercial natural products industries, Aloe arbores-
cens and A. ferox, were recovered together in a southern
African clade. We estimate that the diversification of the
genus Aloe began ~16 Ma in South Africa with a period of
range expansion of ancestral taxa north-eastwards into
the Zambezian and Ethiopian-Somalian regions ~10 Ma.
Peripheral isolation and, to a lesser extent, vicariance were
inferred to be the major speciation processes for the early
diversification of aloes until around ~5 Ma, when a sharp
increase in dispersal events occurred in several near-
simultaneous radiations of the aloes at the extremities
of their range, particularly in Madagascar. During this
period, aloes reached West Africa, the Saharan-Sudanian
region and the Arabian Peninsula via the Ethiopian-
Somalian region, and arrived on Madagascar from the
Zambezian region (Figure 2). This scenario identifies
the Ethiopian-Somalian region as a cross-road for spe-
ciation processes in Aloe, as the majority of dispersal
events (16 events) in our dataset were from here into
each of the four adjacent regions. We identified mul-
tiple introductions to Madagascar (three dispersals).
Similarly, diversification of aloes on the Arabian Peninsula
resulted from one or more dispersals, as well as vicariance
and peripheral isolation, with no evidence of dispersal
back to continental Africa. A single southerly dispersal
event was detected from the Zambezian to the Southern
African regions.

Phylogenetic signal in utility and habit
Leaf succulence increased steadily with the emergence of
aloes in southern Africa, from the barely succulent tree
aloes (Aloidendron and Kumara) and rambling aloes
(Aloiampelos), to Aloe and neighbouring genera (Figures 1,
3 and 4). Though difficult to quantify, pronounced succu-
lence is restricted to Aloe, and has been almost completely
lost in several members of this genus, notably in the
clade comprising southern African grass aloes, Aloe section
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Leptaloe, during the last ~10 Ma (Figure 3; Additional file 5
a-c). The habit of relatively large, succulent leaves borne in
basal rosettes on an unbranched stem, typical of Aloe vera
and other commercially valuable species, exhibits a strong
phylogenetic signal. Using Fritz & Purvis’s D-metric [44] as
our measure of phylogenetic signal, where D = 1 indicates
no phylogenetic structure to the trait data and D= 0 indi-
cates strong correlation between trait distribution and phyl-
ogeny (see methods for full description), we found the
degree of phylogenetic signal in succulence per se was
highly significant (D = 0.132, p < 0.001).
Uses are documented for 48% of the aloes sampled in

this study. Of the 81 Aloe species in our analysis that
have documented medicinal use, 98% have succulent
leaves. By contrast, in 87% of the 15 species in which
succulent leaf mesophyll has been almost entirely lost,
there is negligible documented tradition of medicinal use,
even in regions with thoroughly documented ethnoflora,
such as South Africa. Whilst many succulent-leaved aloes
do not have known medicinal uses, the likelihood of use is
significantly higher in the succulent aloes (Fisher’s exact
test comparing proportions of succulent vs. non-succulent
species with medicinal utility, prior to considering phylo-
genetic effects: p = 0.014). Our pairwise comparison ana-
lyses indicated that there most likely have been six
evolutionary losses of leaf succulence in aloes, as predicted
from the Bayesian consensus phylogeny and 884 of the
1000 Bayesian posterior distribution trees. With the con-
sensus tree, we tested the hypothesis that the use of an
aloe for medicine diminishes or is lost entirely with a
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reduction in leaf succulence. Four of the six evolutionary
transitions in aloes where succulence is severely reduced
are associated with loss of medicinal use, providing weakly
significant support for the hypothesis (pairwise compari-
son test: p = 0.065). The same analysis using 1000 trees
sampled randomly from the Bayesian posterior distribu-
tion, was unable to resolve clearly whether four or three
transitions in aloe leaf succulence were associated with
loss of medicinal use (p = 0.125). We detected a weak
phylogenetic signal in the general use of these genera
(D = 0.828, p = 0.063). Focussing on the use of aloes for
medicine, we also identified a weak, but significant,
phylogenetic signal (D = 0.794, p = 0.029).
Species with documented medicinal use are not

randomly distributed across the phylogeny. In a large
clade comprising 29 species of maculate aloes, char-
acterised by large, succulent leaves and a short stem,
55% are used for medicine. A clade of 18 closely related
species native to East Africa, Ethiopia and the Horn of
Africa (the Zambezian and Ethiopian-Somalian biogeo-
graphic regions) included 27% species with known me-
dicinal uses. Aloe vera was among three medicinal
species in a clade of eight species native to the Arabian
Peninsula.

Discussion
The phylogenetic hypothesis for the aloes reveals a dis-
tinctive geographical pattern of major clades of Aloe
with four biogeographical centres of diversity: Southern
Africa (~170 species), Madagascar (~120 species), East
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Africa/Zambezian region (~100 species), and the Horn
of Africa/Ethiopian-Somalian region (~90 species). Based
on strongly supported close relationships with morpho-
logically similar Arabian species, we clarify that Aloe vera
is native to the Arabian Peninsula. Previous suggestions
have included Sudan or the Arabian Peninsula, based on
morphological affinities with Arabian species [55] and
even further afield in the Canary Islands, Cape Verde
Islands, Madeira or Spain [3], which could be explained by
naturalised populations, introduced via ancient trade
routes, being mistaken for indigenous elements of the
flora. Our explicitly phylogenetic context places Aloe vera
for the first time among related Arabian species at the
northernmost natural range limit of aloes, in habitats at
the extremes for aloes in terms of aridity and diurnal
temperature fluctuations. Here, at the hot and dry edge
of their natural range, aloes are characterised by lea-
thery, glaucous leaves that likely protect the water-
storing leaf mesophyll from diurnal temperature and
radiation extremes. The evolutionary distinctiveness of
aloes on the Arabian Peninsula which could account for
atypical properties in Aloe vera, is thrown into question
by their affinities with species in the Ethiopian-Somalian
region [13,56]. We found evidence for at least one
dispersal from the Ethiopian-Somalian region to the
Arabian Peninsula within the last 5 Ma. The biogeo-
graphic scenario inferred here (Figure 2) elucidates the
diversification of Aloe prior to its arrival in north-east
Africa and the Arabian Peninsula, and reveals a southern
African cradle for the genus ~16 Ma, in the early Miocene.
Consequently, the longstanding hypothesis that aloes first
appeared in southeast Africa considerably earlier, in the
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late Mesozoic-early Cenozoic [56] is contradicted by the
molecular evidence in the present study.
The establishment of the Mediterranean climate in

south-western Africa and the expansion of southern
African deserts in the Miocene caused large-scale ex-
tinctions in the prevailing subtropical flora [57] and
appear to have had a profound impact on the evolution
of aloes. Habitat expansion has been proposed as the
main driver for the simultaneous global diversification
of plants with a succulent habit [10]. But on a local
scale, loss of suitable habitat forced southern African
aloes to migrate north-eastwards as these species strug-
gled to adapt to bioclimatic changes at the southernmost
tip of Africa. The establishment of the winter-rainfall re-
gion, in particular, appears to have largely excluded aloes
from the semi-arid Succulent Karoo region, a celebrated
global centre of succulent plant diversity with ~5,000 spe-
cies and 40% endemism. The Succulent Karoo flora is
characterised by short-lived, drought-sensitive dwarf and
leaf-succulent shrubs [58] such as the ~1500 members of
Aizoaceae subfamily Ruschioideae [59] and ~1000 species
of Crassulaceae [60]. Aloes, in contrast, tend to be long-
lived and drought tolerant, and are relatively poorly repre-
sented in the Succulent Karoo and winter-rainfall regions
of southern Africa. Water-use efficiencies may have placed
even the earliest, barely-succulent aloes at an ecological
advantage over non-succulent lineages in the relictual sub-
tropical vegetation.
The timing of two periods of diversification detected

in aloes, in the late Miocene and more recently in the
Pliocene, coincide remarkably with the simultaneous
‘burst’ of evolution in major succulent plant lineages
globally, attributed to a rapid decline in atmospheric
CO2 and increased aridity during the mid- to late Miocene
[10]. Consistently low rates of extinction in our data agree
with previous findings [56], suggesting continuous but
irregular diversification of aloes. We identified a distinct
shift from node-based speciation processes (namely, vic-
ariance and peripheral isolations) to branch-based events
(dispersals and extinctions) coincident with each of the ra-
diations of the aloes. We interpret this as a period of range
expansion and diversification of relatively widespread spe-
cies until the Miocene-Pliocene boundary. The second
rapid diversification was likely the result of species frag-
mentation and increased niche availability, when isolated
taxa dispersed short distances into the rich habitat mo-
saics formed by geological processes during the Pliocene,
giving rise to the present-day distribution of Aloe. This is
evident in a five-fold increase in dispersal events in our
dataset, while node-based processes and extinctions are
low to negligible during the same period. The tempo of
these pulsed radiations in Aloe is strikingly similar to that
of Agave (Agavaceae), a New World group of ~200 species
of leaf succulent rosette plants [61], adding new depth to
this celebrated example of convergent evolution among
succulents.
The evolution of leaf succulence followed the pattern

of divergence in aloe and relatives, in tandem with the
expansion of semi-arid habitats in Africa between ~ 10
and 5 Ma. Like the earliest cacti [62], ancestral aloes
were barely succulent and tree-like. Large and markedly
succulent leaves are restricted to the genus Aloe and,
unlike other lineages in which succulence has arisen
multiple times (e.g. Portulacineae [63] and Aizoaceae
[59]), variation in the extent of leaf succulence among
species of Aloe is due to loss of water-storing tissues (e.g.
in the barely succulent grass aloes) (Figure 3). The idea
that rich traditions of use in the aloes may be linked to the
extent of leaf succulence has not been previously investi-
gated, and our analyses suggest that a decrease in the pro-
portion of water-storing leaf mesophyll reduces the
possibility that a species is used for medicine, irrespective
of whether the leaf mesophyll tissue and/or liquid exudate
are used. Documented medicinal uses for barely succulent
members of Aloidendron, Kumara and Aloiampelos focus
on the roots or leaf exudate, and never the leaf mesophyll.
Additionally, our phylogenetic reconstruction suggests
that medicinal utility appears less likely in lineages where
reduced succulence has evolved. For instance, we found
very few documented medicinal uses for the barely-
succulent grass aloes despite their relative abundance in
regions with thoroughly documented ethnoflora, such as
the fire-adapted grasslands of KwaZulu-Natal in South
Africa. We detected weak, but significant, phylogenetic
signals in the use of aloes generally, and for medicinal pur-
poses specifically. A comparable study of the Amaryllida-
ceae, a family with well-characterised bioactive alkaloids,
recovered a similar overall phylogenetic signal for medi-
cinal use [15].
A link between leaf succulence and medicinal use sug-

gests a traditionally pragmatic approach to the selection
of aloes with large, succulent leaves for use in medicine
[4]. Features such as firm leaf mesophyll, a short stem,
small teeth on the leaf margins, and ease of propagation,
are shared by Aloe vera and numerous other Aloe spe-
cies used medicinally, including closely related species
from the Arabian Peninsula and the Ethiopian-Somalian
region. Our evolutionary hypothesis for Aloe locates Aloe
vera in close phylogenetic proximity to seven other
species native to the Arabian Peninsula, discounting a
distinctive evolutionary history for Aloe vera which
could imply unique leaf properties. Mounting anecdotal
evidence for the beneficial properties of Aloe vera con-
tinues to stimulate research into the bioactivity of the
succulent leaf mesophyll [2]. Recent studies of Aloe vera
and a phylogenetically-representative sampling of nearly
30 Aloe species have shown very low levels of variation
in the monosaccharide composition of leaf mesophyll
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carbohydrates [6,64], although differences in carbohy-
drate structure may yet be discovered pending system-
atic evaluation of these highly complex carbohydrates
which are assumed to be responsible for the medicinal
value of the leaf mesophyll [5]. On the other hand,
documented traditions of use indicate that few of the
closest relatives of Aloe vera are used medicinally. Re-
cords of the therapeutic uses of Aloe vera leaf mesophyll
and exudate date to classical times [3,5,65]. Trade
routes for Aloe vera were well established in the Red Sea
and Mediterranean by the 4th century BCE [3] and, as-
suming the species occupied a narrow range typical of
Arabian aloes, it may have been rapidly harvested to
near-extinction to meet market demands. The remark-
able contemporary market dominance of Aloe vera over
other aloes therefore appears to be the consequence of
its origins near important early trade routes, ancient se-
lection for medicine and cultural history, which intro-
duced the species into trade and cultivation thousands
of years ago.

Conclusion
Phylogenetic investigation of plant use and leaf succulence
among aloes has yielded new explanations for the extraor-
dinary market dominance of Aloe vera. The evolutionary
history inferred from our analyses of Aloe and related
genera shows for the first time that Aloe vera is native
to the Arabian Peninsula, and discounts phylogenetic
distance as an explanation for its popularity over many
other species of Aloe. The industry preference for Aloe
vera appears to be due to its proximity to important
historic trade routes, and early introduction to trade
and cultivation. Well-developed succulent leaf meso-
phyll tissue, an adaptive feature that likely contributed
to the ecological success of the genus Aloe, is the main
predictor for medicinal use among Aloe species, whereas
evolutionary losses of succulence tend to be associated
with losses of medicinal use. Phylogenetic analyses of
plant use offer potential to understand patterns in the
value of global plant diversity.
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