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Abstract

Background: Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of
GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary
along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like
proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates
remain largely unknown.

Results: We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases
of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian
PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally
detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins
with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent
proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent
and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic
organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-
dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in
reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the
selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the
dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied
that the GPx genes have multiple evolutionary intermediate forms.

Conclusion: Comparative analysis of invertebrate GPx genes provides informative evidence to support the
modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon-
intron remodeling. The differentiated enzymatic properties might be acquired by the evolutionary relaxation of
selection pressure and/or biochemical adaptation to the acting environments. Our present study would be
beneficial to get detailed insights into the complex GPx evolution, and to understand the molecular basis of the
specialized physiological implications of this antioxidant system in their respective donor organisms.
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Background

Reactive oxygen species (ROS) are generated through an
incomplete reduction of oxygen molecules during mito-
chondrial respiration and/or cytosolic metabolism. Expo-
sure to exogenous stimuli such as radiation and redox-
cycling drugs might be an alternative pathway of ROS pro-
duction. ROS perform physiological roles relevant to cell
signaling and redox-status control [1,2], while unbal-
anced generation of these species induces detrimental oxi-
dation of macromolecules including DNA, proteins, and
lipids. To minimize ROS-derived damage, aerobic organ-
isms have evolved a series of multi-layered enzymatic and
non-enzymatic defense systems [3]. Distinct enzymatic
activities such as catalase, glutathione peroxidase (GPx),
and peroxiredoxin (PRx; also called thioredoxin peroxi-
dase) have been well characterized from numerous taxa,
as the major antioxidant defense mechanism.

Selenium-containing GPx proteins reduce H,O, and
organic hydroperoxides by employing glutathione (GSH)
as an electron donor. A total of eight GPx families have
been described in mammals on the basis of primary struc-
ture, specific substrate accessibility, and spatial expression
[4,5]. These homotetrameric isoenzymes conserve struc-
tural/biochemical properties, however, a number of
enzymes that have been classified into GPx4 (phospholi-
pid hydroperoxide GPx; PHGPx) may function in mono-
meric forms and exhibit unique substrate availability. The
enzymes can interfere directly with hydroperoxidized
phospholipids in biomembranes. Proteins belonging to
the other GPx families display substrate preference toward
H,0,and protect against lipid peroxidation via a con-
certed operation with phospholipase [6]. PHGPx is the
basis of a principal defense system that intimately partici-
pates in the repair of disrupted biomembranes [7]. The
vertebrate-specific GPx7 and GPx8 also lack the oligomer-
ization loop, although their unique enzymatic properties
are less understood [5].

Multiple isoenzymes showing primary structure similar to
those of the mammalian PHGPxs have been described in
plants, along with their respective subcellular expression
profiles [8,9]. Plant enzymes possess a Cys residue instead
of a selenocysteine (Sec) at the catalytic site, and prefer
thioredoxin (Trx) as the electron source [9-11]. A pair of
PHGPx-like proteins that effectively reduce the peroxides
by adapting the Trx system has also been isolated from
insect, yeast, and protozoa [12-15]. Interestingly, the
green alga Chlamydomonas reinhardtii was likely to express
both GHS-dependent (CrGPx1 and CrGPx2) and Trx-
dependent (CrGPx3-5) GPxs [16]. These observations
have created a controversy regarding the classification of
PHGPx-like proteins [8,9]. Conventional cladistic analy-
ses based on comparison of primary structures generally
annotate these proteins as PHGPxs, prior to empirical
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examination of their catalytic mechanisms (for example,
see [17]). It has been suggested that the Trx-dependent
GPxs comprise the fifth class of the PRx family, on the
basis of their biochemical properties rather than their
phylogenetic affinity [8,9]. Conversely, a novel functional
class of 'Trx GPx-like peroxidase (TGPx)' has been pro-
posed to clarify the unique GPx group sharing a common
evolutionary origin with the GSH-dependent GPxs [5].
The molecular basis for the differential preference has also
been investigated and appeared to involve a 'resolving
Cys' within the a2 helix of the Trx-dependent GPxs
[5,18,19].

With the accumulation of genomic databases, it has been
possible to analyze homologous genes from diverse taxo-
nomical groups. In this context, the evolutionary relation-
ships among the eight GPx families including the complex
PHGPx-like proteins were comprehensively examined
[5,20]. The proteins isolated from all metazoan species
were clearly separated from those of fungi/algae/prokary-
otes and plants, and some of algal proteins were dispersed
in a distinct group together with the Kinetoplastida GPxs
[20]. These analyses demonstrate that PHGPx-like pro-
teins are the most abundant type found in almost all aer-
obic organisms and considered as an ancestral form of the
GPx superfamily [20]. The common ancestor appears to
have diverged into GPx7/8 and GPx1/2/3/5/6 groups after
being duplicated in the vertebrate lineage [5,20]. The
highly polytomic relationships suggest parallel evolution-
ary pathways for the GPx families following duplication
events in the early stage of GPx evolution. Lateral gene
transfer has also been introduced as a relevant mechanism
for the presence of GPx3-like genes in parasitic nematodes
[5]. However, the evolutionary aspects of GPx genes iso-
lated from invertebrates have not yet been fully investi-
gated. The evolutionary relationship between GSH- and
Trx-dependent GPxs also remains largely unclear.

Recent molecular phylogeny has positioned the Platy-
helminthes into Lophotrochozoa, which forms a mono-
phyletic clade Protostomia with the Ecdysozoa [21,22].
The phylum is composed of markedly diverse species,
most of which have established a parasitic life mode
within specific host organisms. The tissue-invasive para-
sites are continuously exposed to oxidative stresses gener-
ated by both endogenous and exogenous ROS, which are
generated by host immune cells [23,24]. Therefore, para-
sitic nematodes and platyhelminths might provide good
models for the investigation of biochemical and physio-
logical diversification of antioxidant enzymes. Together
with the Trx system, GSH-dependent proteins perform
central roles in the thiol-disulfide redox homeostasis in
these parasites by providing electrons to essential
enzymes and by protecting against oxidative stress
[25,26]. GPxs homologous to the mammalian plasma
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GPx (GPx3) and PHGPx have been characterized only
from a few filarial nematodes and trematodes, respec-
tively [25,27,28].

The trematode GPxs seem to play specialized roles in their
unique biotic environments, in association with sexual
reproduction [28,29]. In the present study, we isolated
GPx genes in lower animals, especially in platyhelminths
and nematodes, and investigated their evolutionary
aspects. Almost all of the platyhelminth genes examined
displayed a strikingly close relationship to the mamma-
lian PHGPx genes. In addition to the previously described
GPx3-like genes, vertebrate-type PHGPx genes were also
identified in nematodes. Comparative analyses further
indicated that the GPx7 family, which has been known to
be specific to vertebrates, already diverged in the Lopho-
trochozoa, although the gene lineage seems to have been
deleted in most of the lower animal genomes. At struc-
tural and functional levels, the GSH-dependent platy-
helminth and nematode PHGPx-like genes appear to
share an evolutionary progenitor with the deuterostomian
homologs. The Trx-dependent GPx genes found in the
other ecdysozoans may have modularly evolved from
another paralogous gene duplicated in a common meta-
zoan/plant ancestor.

Results

Isolation of platyhelminth genes encoding GPx

The GPx genes were isolated from various platyhelminths
via in silico screening of their respective genomic/
expressed sequence tag (EST) databases (Figure 1). Our
preliminary analysis of ESTs obtained from Paragonimus

Nematodes  Caenorhabditis elegans (G

e d protein databases [NCBI])
Brugia malayi (EST [TIGR] a

n databases [NCBI]

Ecdysozoa Insects Drosophila melanogaster (G nd protein databases [NCBI or UCSC])
Anopheles gambiae (Genomic and protein databases [NCBI or ])
Apis meflifera (Genomic and protein databases [NCBI or UCSC])
B Tribolium castaneum (Genomic and protein databases [NCBI)
Protostomia Aedes aegypti (Genomic and protein databases [NCEI])
Ticks Boophilus microplus (Genomic and protein database [NCBI])
Lophotrochozoa 3 ) 3

Annelids Platynereis dumerilii {Genomic and protein database [NCBI])

Flatworms Schmidiea mediterranea (EST [NCBI] and genomic databases [Washington Univ.]
Schistosoma mansoni (EST and genomic databases [Sanger Institute])

Bilateria Schistosoma japonicum (EST [NCBI] and genomic databases [Shanghai Center])
Schistosoma haematobium (EST database [Sanger])
Fasciola hepatica (EST database [Sanger])
(Our EST
Echinococcus granulosus (EST database [Sanger])
Deuterostomia Ascidians  Ciona iniestinalis (Genomic database [NCBI or UCSC])

Fishes Danio rerio (Genomic database [NCBI or UCSC)
Fugu rubripes (Genomic database [NCBI or UCSC])
Tetraodon nigroviridis {Genomic database [NCBI or UCSC])

FungilMetazoa Mammals  Homo sapiens (Reference genomic and protein databases [NCBI])

Mus musculus (Reference genomic and protein databases [NCBI])

Cnidarians  Hydra vulgaris (Genomic database [NCBI])

Fungi Saccharomyces cerevisiae (Genomic and protein databases [NCBI])
Nourospora crassa (Genomic and protein databases [NCBI])
Ustilago maydis (Genomic and protein databases [NCBIT)

1 Leishmania major ¢ and protein databases [NCBI])
Trypanosema cruzi (Genomic and protein databases [NCBI])
Trypanosoma brucei (Genomic and protein databases [NCBI])
-~ Alga Chlamydomonas reinhardtii (Genomic and protein database [NCBI or JGI])
= Plants Arabidopsis thaliana (Reference genomic and protein databases [NCBI])
Oryza sativa (Reference genomic and protein databases [NCBI])
Figure |

Organisms used in this study and their phylogenetic
relationships. The rectangular cladogram was constructed
based on a recent animal phylogeny [21]. The databases tar-
geted for the screening of GPx homologs are presented in
parentheses together with their respective sources, following
the scientific names of donor organisms.
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westermani adults detected two genes encoding GPx-like
proteins (PwGPx1 [GenBank: ABE68811] and PwGPx2
[GenBank: ABEG68812]). The Paragonimus proteins
revealed significant identities to GPx proteins including
those of Schistosoma mansoni [GenBank: AAU34080,
AAC14468]. BLAST searches with these GPx sequences
retrieved two homologs from the S. japonicum EST data-
base (97,525 ESTs in the GenBank [CV689936,
AY223160]), and one from each of the S. haematobium
(15,000 ESTs; Shaem32f07.q1k, ShGPx1) and Fasciola
hepatica databases (15,000 ESTs; Fhep45ell.qlk,
FhGPx1) at the Sanger Institute. Screening of the genomic
databases for S. mansoni (assembly ver. 3.0) and S. japoni-
cum (ver. 2.0) revealed that schistosomes possess only two
GPx genes corresponded to each of the mRNA sequences
(see also [27]). The EST (73,587 entries) and genomic
databases (ver. 3.1) of Schmidtea mediterranea (Class Tur-
bellaria) contained three paralogous GPx genes
(DN292195/DN303738 for SmedGPx1, DN310389 for
SmedGPx2, and DN312778 for SmedGPx3). A GPx gene
(EGPSgr-5h09.q1k, EgGPx1) was also found in the EST
database of a parasitic cestode Echinococcus granulosus
(15,000 ESTs). Searches using human [GenBank:
CAA68491, AAP50261] and nematode [GenBank:
CAA48882] GPx1/3 lineages showed similar results,
although the E-values were moderately increased from <3
x 1023 to <6 x 10-16. The BLAST results were supported by
the subsequent analyses for the detection of functional
domain(s) conserved in these proteins, based on Hidden
Markov Models (InterPro IPR000889 family).

Nucleotide and amino acid sequences of platyhelminth
GPx genes

The majority of the platyhelminth genes isolated in this
study encoded a Sec-dependent GPx, as predicted by the
detection of a second in-frame TGA codon and a concur-
rent Sec insertion sequence (SECIS) motif within their 3'-
untranslated region (UTR) [27,30]. The motifs conserved
the unique secondary structure comprising two helices
separated by an internal loop, a SECIS core structure, a
quartet located at the base of the second helix, and an api-
cal loop; these were equivalent to those of the mamma-
lian homologs (Figure 2) [31]. The quartets of non-
Watson-Crick base pairs were class I (ATGA_AA_GA) in
these platyhelminth genes, as were the cases in the mam-
malian selenoprotein genes. Exceptionally, SjGPx1 con-
tained a quartet pattern of class II (GTGA_AA_GA). In
contrast, PwGPx1 contained a standard codon for Cys
(TGC) rather than the Sec codon and the SECIS was not
detected within its nucleotide sequence.

The polypeptides encoded by the platyhelminth GPx
genes showed a broad range of sequence identity either to
one another or to the other eukaryotic PHGPx-like pro-
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Selenocysteine insertion sequence (SECIS) motifs
found in the platyhelminth GPx genes. The structures
are predicted from the nucleotide sequences corresponding
to the 3'-untranslated regions of the respective mRNAs. The
typical secondary structure of the mammalian SECIS is also
presented for comparison [31].

teins (21-87%). The N-terminal amino acid (aa) exten-
sion was hydrophobic in a major fraction of the
trematode and planarian proteins (underlined sequences
in Additional file 1), while such sequences were not
detected in SmGPx1, SjGPx1, and ShGPx1. The presence/
absence of the leader sequences would be responsible for
the expression of differentially targeted proteins, as was
evidenced in the mitochondrial/non-mitochondrial vari-
ants of mammalian PHGPxs [32]. The active Cys, Gln, and
Trp residues, which participate in the formation of the cat-
alytic-site geometry, were well conserved at their corre-
sponding positions, although the thiol-containing Cys
was exclusively replaced by Sec in the platyhelminth and
mammalian GPxs (T-1, -2, and -3 in Additional file 1)
[19,33]. The Gln and Trp residues were replaced by Met/
Leu and Tyr in the Paragonimus proteins. The other func-
tional aa involved in the stabilization of the active site,
were also detected in their primary structures (C-1 [Asn], -
2 [Cys], and -3 [Asn]). The Cys residue, which is pivotal in
the interaction of Trx-dependent GPx with Trx, could not
be defined in the platyhelminth proteins, as well as in the
nematode and mammalian PHGPxs [5,18]. These lower
animal GPxs lacked the subunit-interacting domain and
PGGG motif found in the tetramer-forming GPxs.

Expression profiles and preferential electron donor

In trematode parasites, the expression of various GPx
genes increased in proportion to the development of
donor organisms and showed a specific locality within
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reproduction-related cells such as vitellocytes [27-29].
Exogenous oxidative chemicals including paraquat,
juglone, and H,0,also induced the trematode genes in a
dose-dependent manner [27,28]. PwGPx genes exhibited
expression patterns identical to those of the Schistosoma
and Clonorchis orthologs, as was evident in RT-PCR and
immunohistochemical analyses (unpublished data). The
enzymatic activity was not detected in the metacestode
stage of E. granulosus [34], even though an mRNA
sequence (EgGPx1) was isolated from the larval stage. We
could not currently trace any empirical data demonstrat-
ing expression profiles of the antioxidant enzymes in Tur-
bellaria. Given the sexual reproduction mechanism
conserved in these platyhelminths [35-37], the planarian
genes might have an expression pattern similar to that of
the trematode genes.

The substrate specificity of schistosome GPxs was likely to
be similar to those of mammalian PHGPxs [38], and the
Cys motif found in the Trx-dependent GPxs was not
detected in the primary structures of platyhelminth pro-
teins analyzed in this study (Additional file 1). The prefer-
ential affinity toward electron donors has not been
determined empirically with any of the platyhelminth
GPx proteins including the well characterized Schistosoma
and Clonorchis enzymes. We examined the catalytic effi-
ciency with the native GPxs partially purified from adult
P. westermani (Figure 3). The enzymes effectively reduced
H,0, and cumene hydroperoxide using GSH as an elec-
tron donor. The proteins also showed considerable reac-
tivity with Trx, while these activities were lower than those
with GSH (15.4-39.4%). The specific activity of GPx pro-
teins decreases dramatically in the range of several tens to
several hundred, when provided by an alternative reduct-
ant, rather than their preferential electron donor (see [18]
and references therein). Therefore, it is possible that the
purified Paragonimus proteins might have been contami-
nated with PRxs, although we examined the samples with
the Clonorchis sinensis PRx-specific antibodies, which were
highly cross-reactive against P. westermani PRxs (Figure
3A). Regardless of this possibility, however, these observa-
tions collectively suggest that the trematode GPxs exhibit
a catalytic pattern identical to that of the mammalian
PHGPx proteins.

Phylogenetic analysis of GPx gene families

In addition to the platyhelminth proteins, we retrieved
several hundred GPx-like proteins either from the non-
redundant GenBank or organism-specific databases
(sequence identity: 35-53%, E-values < 10-1¢). Proteins
with primary structures similar to those of mammalian
PHGPxs were found in all major taxa including plants,
bacteria, protozoans, fungi, algae, invertebrates, and ver-
tebrates. GPx3-like proteins, which had been likely to be
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Biochemical properties of the native PwGPxI and
PwGPx2 proteins. (A) The partially purified PwGPxs were
resolved by 2-dimensional SDS-PAGE (15%, pH 3-10) and
transferred onto nylon membranes. The membranes were
reacted with the PwGPx-specific mouse antisera (1:2,000
dilutions). One-dimensional blots with PwGPxs (10 pg) and
whole protein extracts (40 pg) of Paragonimus westermani
(Pw-CE) and Clonorchis sinensis (Cs-CE) were also examined
with a pooled mouse antiserum against C. sinensis PRx| and
PRx2 (1: 1,000 dilutions; our unpublished data). (B) The spe-
cificity and catalytic efficiency of the proteins purified by a
series of gel chromatographies were examined toward cata-
lytic substrates (H,O, and cumene hydroperoxide [CHP])
and electron donors (glutathione [GSH] and thioredoxin
[Trx]), respectively. The concentrations of GSH and Trx
added in the reactions were empirically determined to
ensure that the reductants are saturated. The absorbance
values of experimental groups were substracted with those
of reactions without PwGPxs. The reactions were performed
in triplicate and the specific activities in umol/min/mg were
indicated as mean * standard deviation.

vertebrate-specific, were further found in nematode and
tunicate species. The nematode GPx3-like proteins are
proposed to have originated from vertebrate hosts by lat-
eral gene transfer [20]. However, the presence of GPx3-
like proteins in a tunicate, which has not been described
previously, implies that the hypothesis of horizontal gene
transfer from vertebrate(s) to nematode(s) needs to be re-
examined.

The sequences of 105 proteins were selected for cladistic
analyses (Additional file 2). Intra-group divergences
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inferred from the Jones-Taylor-Thornton (JIT) model
were not significantly different between the PHGPx- and
GPx1/3-like groups (P = 0.053; Mann-Whitney-Wilcoxon
test), although the values were highly variable: 0.33-2.37
in the PHGPx-like groups versus 0.31-0.55 in the GPx1/3
groups (bold-face values in Table 1). At the inter-group
level, the rates of divergence between a pair of PHGPx and
GPx1/3 group were considerably higher than those
between a pair of the same GPx family (Table 1). These
results suggest that each of the GPx families has diverged
during similar evolutionary times and that the GPx3-like
proteins are endogenous in nematodes, rather than hav-
ing originated by lateral gene transfer. To verify these
views, we performed in-depth phylogenetic analyses.

The PHGPx-like proteins exhibited a highly polytomic
clustering pattern in a maximum likelihood tree con-
structed by the quart puzzling method of TREE_PUZZLE
(Figure 4, the NEWICK-format tree is attached as Addi-
tional file 3). The phyletic GPx3-lineage members com-
prised another polytomic clade. A portion of the
orthologous PHGPxs were clustered into well-separated
focal clades, in accordance with the taxonomical positions
of their donor organisms. The GPx7 and GPx8 proteins,
which have been recently detected in vertebrate species,
positioned into each of the distinct clades. In protostomi-
ans examined, only nematode species harbored the GPx3-
like proteins. The neighbor-joining and maximum parsi-
mony trees showed topologies similar to that of the max-
imum likelihood tree (Additional file 4). The group-
specific clustering of PHGPxs was much more substantial
in the neighbor-joining tree, albeit the statistical signifi-
cance of some branching nodes could not be supported by
bootstrap analyses. The neighbor-joining tree demon-
strated that the GPx7 and GPx8 proteins have diverged
from each other after being duplicated in vertebrates.
More interestingly, two proteins in S. mediterranea
(SmedGPx1) and C. intestinalis [GenBank:
XP_002128643] showed a closer relationship with the
vertebrate GPx7/8 lineages. Since the planarian is believed
to have maintained its free-living life mode, the lineage
members might also have endogenously evolved in the
protostomian stage. The members seem to have been
deleted in the other protostomian species selected in this
study.

The Trx-dependent GPxs with the resolving Cys were
largely scattered in plants, algae, protozoans, and insects
(marked with  in Figure 4 and Additional file 4), while
the Cys residue was substituted by another aa in some of
the alga and insect proteins. Conversely, the Sec codon
and the associated SECIS motif were recognized as being
largely confined to the mRNA sequences of the GSH-
dependent lophotrochozoan, ascidian, and vertebrate
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Table I: Pairwise matrix of divergence rates among GPx groups based on the JTT model2

Groupb | 2 3 4 5 6 7 8 9 10 11
I. Trematode 0.80 1.73+0.17 161 +£0.18 1.41+0.17 129+0.16 130+0.15 1.81+025 1.75+022 2.11+035 222+035 2.800.50
GPx 0.10
2. Turbellaria 237% 206 £024 208+024 1.78+0.19 1.74+0.17 220+029 207+022 252+037 283+0.38 3.60+0.54
GPx 0.32
3. Vertebrate 1.50 £ 1.78+0.21 1.74+023 163+0.18 208+027 1.88+022 255+04] 253+0.37 332x0.53
GPx4 0.20
4. Insect GPx 1.19 £ 137+0.17 129+0.15 193+028 1.75+0.21 221+030 244+037 268037
0.13
5. Nematode 0.59 1.00+£0.12 1.65+024 156+020 221+036 223+039 2581044
GPx4 0.09
6. Plant GPx 0.56 128+0.18 136+0.16 206+0.32 232+0.37 263043
0.06
7. Protozoa 0.33 1.82+0.23 268+049 264+043 298055
GPx 0.05
8. Fungus GPx 1.00 £ 226+036 234+037 297 %050
0.14
9. Vertebrate 0.47 % 1.37+£0.18 2.15+0.33
GPx| 0.07
10. Vertebrate 031 * 2.04 £ 0.29
GPx 3 0.04
I'1. Nematode 055
GPx3 0.08

aDistance values are presented as mean * standard error computed by bootstrapping of 1,000 replicates. Bold-face and regular letters indicate intra-group and inter-group

rates, respectively.

bThe proteins were categorized into groups by considering primary structures and taxonomical positions of donor organisms.

members (indicated by # in Figure 4). Among the ecdyso-
zoans examined, only an arachnidal tick, Boophilus
microplus, was found to express the Sec-dependent
PHGPx protein [GenBank: ABA25916]. The C. reinhardtii
[GenBank: AAL14348] and Hydra vulgaris [GenBank:
ABC25026] proteins also contained Sec in their primary
structures. The GPx7/8-like proteins found in S. mediter-
ranea and C. intestinalis were selenium-independent,
consistent with vertebrate proteins [5]. However, the evo-
lutionary events resulting in these biased distributions of
proteins with different biochemical properties could not
be clearly addressed in the phylogenetic analysis.

Exon-intron structures of PHGPx homologs

The polytomic phylogeny of PHGPxs suggested that these
proteins have evolved in a modular fashion from multiple
genes, while informative diagnostic substitutions could
not be detected between the dichotomized GSH- and Trx-
dependent proteins, except for the resolving Cys in the
major Trx-dependent GPxs (Additional file 2). We exam-
ined the presence of orthologous introns in the PHGPx
homologs to trace their evolutionary pathways in details.
The genomic organizations were predicted by comparing
each of the mRNA sequences with its corresponding chro-
mosomal sequence isolated either from DNA databases
(Figure 1) or by PCR amplification (PwGPxs [GenBank:
DQ454159, DQ454160]). The numbers of intron were
highly variable in the diverse PHGPx genes, with a gross
tendency to increase along with the taxonomical positions
of donor organisms (Figures 5 and 6). The genes from
free-living nematodes, vertebrates, and plants were split
into three, seven, and six exons, respectively. Meanwhile,

insect genes displayed highly complicated exon-intron
structures with different intron numbers from one to
three. Interestingly, the platyhelminth genes displayed an
organization pattern comparable to that of mammalian
orthologs. A gene isolated from a parasitic nematode Bru-
gia malayi was more complex than those of free-living
nematodes.

The preservative organization patterns were analyzed by
comparing the position of each intron in relation to the aa
alignment and their phases. The phases and positions of
the respective introns were also conserved in the taxon-
specific gene groups. Among the groups, however, orthol-
ogous introns shared in the evolutionary terms could be
detected on the basis of the biochemical properties of
their encoded proteins. The introns were tightly conserved
between the Sec- and GSH-dependent platyhelminth and
vertebrate genes, except for one intron that was specifi-
cally integrated into the vertebrate orthologs. The first
intron of Caenorhabditis genes was matched to the second
one identified in these common decedents. Two introns
of the Brugia gene were found to be orthologous to the
platyhelminth and vertebrate introns (Figure 5A). The
GPx7/8-like genes of S. mediterranea and C. intestinalis, as
proposed in the phylogenetic analysis, displayed a differ-
ent intron conservation pattern (Figure 5B). The exon-
intron architecture of the tunicate gene was identical to
those of vertebrate GPx7 and GPx8 genes, and the turbel-
laria gene shared the last intron with them. The complex
insect genes, which encode proteins exhibiting strong
affinity to Trx, shared an intron with plant GPxs in a
dichotomized pattern (Insect I and Il in Figure 6). In addi-
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Figure 4

Maximum likelihood tree of the GPx homologs. The
analysis was conducted on the alignment of amino acid
sequences with TREE_PUZZLE. Gaps in the alignment were
removed in a pair-wise manner as missing information. The
plant PHGPxs [GenBank: CAC17628, NP 191867,
NP_566128], which showed the long branches, were taken
as the outgroup. The identity of each sequence was provided
by a protein identification number followed by the name of
donor specie. The platyhelminth genes are presented in the
boldface letters and those retrieved from EST databases are
marked with the italicized accession numbers of mRNA
sequences. The entries with a codon for selenocysteine (Sec)
and concurrent Sec insertion sequence within the corre-
sponding mRNA sequences are indicated by }. The symbol §
marks the proteins with the Cys motif. Quartet support val-
ues are presented at each of the major branching points.

tion to these clonal genes, GPx genes with unique exon-
intron structures were also retrieved from the insect
genomes (grouped into Insect III in Figure 6). The C. rein-
hardtii genome possessed genes with each of the unique
number and position of intervening intron, including the
gene encoding a Sec-dependent protein [GenBank:
AA114348]. The architectural conservation patterns
showed weak relations to the presence of resolving Cys in
the insect and alga genes (genes containing the motif were
marked with § in Figure 6). The phyletic GPx1 and GPx3
members had their respective intron-sharing patterns in
the genomic structures, while those were clearly distin-
guished from the chromosomal organizations of PHGPx
members (Additional file 5).
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Figure 5

Exon-intron structures of PHGPx genes putatively
encoding glutathione-dependent proteins. (A) The
chromosomal structures of PHGPx genes were constructed
by comparing mRNA sequences with their respective chro-
mosomal sequences. ORF regions are presented with solid
squares in proportion to their relative sizes and the untrans-
lated regions are shown by open squares with a voluntary
length. Intervening introns are indicated by solid lines, with a
fixed length. The lengths (bp) of each exon and intron are
presented at the corresponding positions. The phase of each
intron is shown in parenthesis. Orthologous introns having
positions and phases shared among PHGPx genes are indi-
cated by vertical solid lines, while those with a certain degree
of ambiguity due to highly divergent aa sequences are marked
with dotted lines. The exons of platyhelminth genes, which
have been further split into the vertebrate orthologs are indi-
cated by gray-toned squares. (B) The structural conservation
patterns of GPx7-and GPx8-like genes are similarly analyzed.

Discussion

In this study, we described a comparative analysis of GPx
genes including platyhelminth orthologs such as the
human lung fluke and freshwater planarian genes, for the
purpose of predicting their evolutionary pathways. The
GPx homologs displayed diversity in the copy number
among the eukaryotic species, which suggests that inde-
pendent multiplication events have occurred in each of
the taxa. In nematodes and deuterostomians, a couple of
duplicated genes have diverged further into GPx1 and
GPx3 lineages, respectively, while all GPx paralogs have
preserved the structural properties similar to that of the
mammalian PHGPx genes in the other invertebrate
clades. A GPx7/8-like gene previously shown to be verte-
brate-specific was isolated from the genomes of a tunicate
and turbellaria. The spatiotemporal expressions of GPx
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Figure 6

Genomic organizations of thioredoxin (Trx)-depend-
ent PHGPx genes. The chromosomal structures of insect
and plant genes that encode the Trx-dependent proteins
were compared to each other to detect orthologous introns.
The insect genes are categorized into three groups according
to their conservation patterns. The symbol § marks the gene
with the Cys motif in its encoded protein. More detail is pre-
sented in the legend to Figure 5.

genes were found to be specific to each of the duplicated
copies in plants and vertebrates, which demonstrate func-
tional diversification among them [4,9]. However, the
trematode gene inductions were concentrated in the
reproduction-related vitellocytes contained within vitell-
ine follicles and eggs. This fact might suggest that the
duplication events have been forced to increase genetic
redundancy and/or protein levels, rather than to increase
the size of isoenzyme pools with distinct tissue expression
profiles, at least in the trematode species.

The substrate specificity of GPx-like proteins has been
debatable not only because the parasitic nematode pro-
teins are not enzymatically active toward H,O, but also
because PHGPxs show a variation against diverse catalytic
substrates. The trematode PHGPxs reduced H,0, much
more effectively than cumene hydroperoxide, as was
determined with the Paragonimus (Figure 3) and Schisto-
soma proteins [38], whereas plant homologs preferred the
organic peroxide [9]. Interestingly, the GSH-dependent
incapability of plant PHGPxs in reduction of H,0, was
reversed when Trx was provided as an alternative electron
donor [10]. These results suggest that the GPx family
genes have functionally diverged according to the bio-
chemistry of their action environments. The active site
geometry is modified in response to the binding of GSH
or Trx [33]. The vitellocyte-specific platyhelminth genes

http://www.biomedcentral.com/1471-2148/9/72

were inducible by exogenous stimuli with the soluble
hydroperoxide and redox-cycling drugs, which can cross
cell boundaries and trigger the conversion of oxygen into
O, [39]. The increased GPx activity against these chemi-
cals seems to result indirectly from the accumulation of
H,0, and/or lipid peroxidation within the target cells/
organs, due to O, overproduction. Alternatively, their
responsiveness upon these stimuli could be a simple con-
sequence of the coordinated regulation of phase I oxida-
tive enzymes via the Nrf2-mediated signaling pathway
[40], given the fact that the specific role of trematode GPx
proteins is highly associated with sexual reproduction
[28,29].

The majority of the mammalian GPxs contain Sec at their
catalytic site, which is co-translationally inserted in
response to a UGA codon, the stop signal in the standard
genetic code. The alternative decoding of the opal codon
depends on a cis-factor (SECIS) located in the 3'-UTR of
selenoprotein genes [30]. In our analysis, the distribution
of selenium-dependent GPxs (sGPxs) was biased toward
platyhelminth and deuterostomian species, with a few
exceptions: proteins isolated from an annelid [GenBank:
ABA25916], alga [GenBank: AAL14348], and cnidarian
[GenBank: ABC25026]. Of the platyhelminth enzymes
obtainable, PwGPx1 and SmedGPx1 (GPx7-like protein)
were determined to be selenium-independent GPx
(siGPx). The Sec codon was replaced by a typical Cys
codon in the nematode homologs, although nematode
species also contained selenoproteins such as Trx reduct-
ase and/or SelK [41]. It has been suggested that siGPx pro-
teins have emerged independently from sGPx
counterparts during evolution, in response to the
increased atmospheric oxygen concentration [16,42].
Conversely, a recent comparative analysis predicted the
progressive acquisition of Sec by Cys-based proteins in a
series of donor organisms [5]. The siGPx in protozoans,
fungi, and plants, and the biased distribution of sGPx
within a narrow range of taxonomical clades seems to
support the Cys-based evolutionary route of GPx proteins.
The highly conserved genomic architecture among Sec-
dependent genes can be taken as evidence for the sugges-
tion (Figure 5). siGPx has been postulated either to com-
prise a second-line defense or to cooperate with sGPx in as
yet-unknown and novel manner, to cope with cellular oxi-
dative stresses [43]. In plants and lower animals, PRx con-
stitutes a major antioxidant system against ROS-derived
damage and the platyhelminth GPx seems to be involved
in a specialized physiological function(s) [9,10,27,28].
Therefore, it is possible that siGPx carries out its role in a
specific microenvironment with an optimal pH for the
thiol group, along with the diversification of its donor
organism. The siGPxs of filarial nematodes, of which
functions are mainly confined to the cuticular matrix, may
provide another example of this suggestion [44]. The
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induction level of PwGPx1 was higher than that of
PwGPx2 during the development of P. westermani and
against exogenous oxidative stresses, while their histolog-
ical distributions were almost identical (data not shown).
Currently, it is not clear whether this phenomenon is
related to their differential reactivity or it is an indication
of functional and/or histological diversification within
each of their respective subcellular micro-niches.

Together with the selenium dependency, the categories of
GPx isoenzymes also revealed taxonomical biases along
with their donor organisms; the GPx3-like proteins were
detected exclusively in the deuterostomian and nematode
species, whereas those with a phylogenetic linkage to
PHGPx were ubiquitously isolated across taxa from plants
to vertebrates. Since the complete or draft whole genome
sequences with a considerable coverage (>7) have been
comprehensively screened via a series of BLAST searches
(Figure 1; see also [9,15,27]), the absence of genes encod-
ing GPx3-like proteins appears apparent in the plant and
invertebrate genomes selected in this study. The free-liv-
ing and pytoparasitic nematodes [45], of which whole
genome or comprehensive EST databases are available,
contained both of the GPx lineages. The GPx3-like filarial
proteins were identified empirically by analyzing the
major cuticular glycoproteins [46]. Recently, we detected
a PHGPx-like gene from the B. malayi DNA database
[GenBank: XP_001897517]. Genes highly homologous to
the vertebrate GPx7/8 genes were also detected exclusively
in the free-living turbellaria and tunicate (Figures 4 and
5B). Therefore, it is evident that there have been a series of
selection pressures to drive the mosaic distributions of the
GPx3- and GPx7-lineage genes across taxa, which was sim-
ilarly observed in the DNA methyltranferase gene
homologs [47], although the mechanism(s) in the selec-
tion of genes for deletion/maintenance waits for further
investigation.

The tetrameric GPx1/3-lineage proteins were phylogenet-
ically related to one another in the cladistic analysis and
their chromosomal genes showed clonal conservation
patterns (Figure 4 and Additional file 4). On the contrary,
the phylogeny and genomic structures of PHGPx genes
were found to be multifaceted. The aa sequences of PHG-
Pxs were well aligned throughout the whole polypeptides,
except for the extreme N-terminal segments, and gaps
resulted from indels of codon were not prominent (Addi-
tional file 2). The polymorphic N-terminal regions were
intimately related to the evolutionary acquisition/loss of
regulatory signal within certain members (Additional file
1). Despite the tight sequence conservation, the hypervar-
iable genomic structures of these genes exhibited a discon-
tinuous conservation patterns according to the
taxonomical distributions and/or biochemical properties
of protein products (Figures 5 and 6). Whether we accept
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the "intron-early" or the "intron-late" hypothesis concern-
ing the origin of spliceosomal introns, it is clear that an
orthologous intron can be taken as a footprint revealing a
common ancestor during evolution of the corresponding
genes [48]. Therefore, each of the genes encoding GSH-
and Trx-dependent proteins might have evolved along
separate pathways from a certain evolutionary time,
although the enzymatic properties of the nematode PHG-
Pxs have not yet been examined empirically. Compared to
the tightly conserved introns among the platyhelminth
and vertebrate orthologs, intron preservation was much
more complicated in the Trx-dependent insect and plant
genes. The third intron of plant genes was orthologous to
the second intron of some insect genes (Group I) and the
forth intron was shared with the other insect genes
(Group II), while a series of insect genes (Group III) with
uniquely integrated introns were further recognized. The
aa sequences of plant exons 3, 4, and 5 displayed identity
values of 47.8, 59.8, and 53.3%, respectively, to the corre-
sponding regions of Group I insect genes, and 49.8, 41.2,
and 64.0%, respectively, to those of Group II insect genes.
These collective results suggest a probable recombination
event at a region matched to the end of current exon 4,
which had occurred between two paralogs in a primordial
genome that evolved into plants. After gaining additional
introns, the gene might have undergone genic/chromo-
somal multiplications. Alternatively, each of the diverse
insect genes might have unique exon-intron remodeling
process mediated by a gene's recombination with a cDNA
generated by reverse transcription of the respective mRNA
[49]. Further information on the intermediate metazoan
genes would be informative to address this intriguing
issue.

The fully diverged mammalian genes were present as a
single genomic copy, whereas the PHGPx- or GPx3-like
genes had multiple copies in the respective genomes of
the other metazoans and plants. Together with the poly-
tomic relationships and differentiated genomic organiza-
tions, this fact is likely to provide additional evidence for
the modular evolutionary pathways of GPx gene family
from multiple intermediates. The presence of GPx3 in the
soil-borne and pytoparasitic nematodes, and GPx7 in the
free-living planarian and tunicate, respectively, would
reduce the possibility of lateral gene transfer between taxa.
Each of the primordial paralogs duplicated from a com-
mon ancestor seems to have been subject to independent
exon-intron remodeling processes such as homologous
recombination and integration of intronic sequences,
along with their taxonomical lineages. A series of the
intermediate genes might have diverged either to GPx3-
like genes by gaining exonic nucleotides corresponding to
the subunit interaction domain or to GPx7 homologs,
while they underwent lineage-specific expansion or dele-
tion in the metazoan animals. The GPx1/2 genes are likely
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to have evolved from the retrointegration of GPx3-like
intermediate aided by retrotransposon-encoded proteins,
which was followed by acquisition of introns, during an
early evolutionary period of the Vertebrata. The evolution-
ary pathways for the GSH- and Trx-dependent GPxs
appear be separated from the common eukaryotic ances-
tor. The Trx-dependent GPxs without the resolving Cys in
insects and algae would be acquired by the relaxation of
selective constraints and/or by the adaptation to the
micro-environments in their specific action sites. Further
studies on biochemical properties with the individual
insect GPxs and detection of a second Cys motif, if any,
would be helpful to gain more insight into the complex
evolution of PHGPx-like proteins.

Conclusion

Our study on the comparative analysis of GPx gene fami-
lies suggests that these genes have modularly evolved
from multiple intermediates, which accompanied the
structural diversification and sporadic expansion/dele-
tion. In addition, the ubiquitous PHGPx genes with differ-
ent biochemical properties are likely to have been
separated in an early evolutionary time. The dichot-
omized evolutionary pathways were traceable by consid-
ering structural conservation patterns in the chromosomal
genes. Multiple GPx genes have tissue-specific implica-
tions in mammals and plants. However, the duplication
events appear to be intimately related to an increase in the
genetic repertoire of the antioxidant enzyme, at least in
the platyhelminth species. The modular evolution of GPx
genes in association with their biochemical properties
may provide a molecular basis for understanding the
detailed physiological implications of this antioxidant
enzyme system. The complexity in genomic structures of
platyhelminth genes, which is comparable to that of
mammalian genes, further suggests that these organisms
comprise an informative model system in elucidating the
driving-forces and courses of genomic complexity during
eukaryotic evolution.

Methods

In silico isolation of GPx genes from platyhelminth species
Two novel genes encoding GPx proteins (PwGPx1 and
PwGPx2) were isolated from an EST dataset of P. westerm-
ani [50]. The Paragonimus genes, together with those of S.
mansoni [GenBank: L37762, AY729668] were used as que-
ries in the homology searches to retrieve their orthologous
genes. Genomic and/or EST databases specific to platy-
helminths were screened via stand-alone BLAST searches,
including S. mansoni, S. haematobium, F. hepatica, E. gran-
ulosus  (Sanger Institute;  http://www.sanger.ac.uk

Projects/Helminths), S. japonicum (Shanghai Center for
Life Science and Biotechnology Information; http://life

center.sgst.cn/ schistosomaz cn/schistosomaCnln

http://www.biomedcentral.com/1471-2148/9/72

dexge.do), and S. mediterranea (Genome Sequencing
Center of Washington University; http://

genome.wustl.edu/) (Figure 1). The GenBank DNA/pro-
tein databases at the National Center for Biotechnology

Information (NCBI; http://www.ncbi.nlm.nih.gov/) were
also selected for the screening. GPx proteins isolated from
human (GPx1 and GPx3 [GenBank: CAA68491,
AAP50261]) and filarial nematode (Brugia pahangi |Gen-
Bank: CAA48882]) were employed as the other queries
during the analyses.

Sequence analysis

The coding profiles and patterns of sequence similarity of
the retrieved mRNA sequences were analyzed using the
OREF Finder and BLAST programs equipped at the NCBI.
The similarity pattern of each sequence was verified by a
subsequent analysis based on the Hidden Markov Models
using InterProScan (http://www.ebi.ac.uk/Tools/Inter
ProScan/). The SECIS motif was predicted using the SECI-
Search program (ver. 2.19; http://genome.unl.edu/SECI-
Search.html). The putative hydrophobic signal peptide
was analyzed by the SignalP program (http://
www.cbs.dtu.dk/services/SignalP/). Chromosomal seg-
ments homologous to the PwGPx cDNAs were amplified
from the P. westermani genome by long-range PCR using
the gene-specific primer pairs, which had been designed
from the nucleotide sequences within both ends of the
cDNAs (5'-GGTACCAACAGTGACGGTTTGATTITC TAA
CACC-3' and 5'-GACAGGCCTGGAGGTGAATTGA TGA-
GAGTGAACC-3' for PwGPx1; 5'-GG AACA TCGA AGGT-
GGTTTGAAAAAGGTCAACITC-3' and 5'-CT TTA CTC AC
AAACTACTGTTGCAATAATAGTAACGTC-3' for PwGPx2).
PCR was conducted with the LA Taq system (Takara,
Shiga, Japan) and the resulting PCR products were cloned
into the pGEM-T Easy vector (Promega, Madison, WI,
USA) for sequencing. The nucleotide sequences were
determined from both strands using a BigDye Terminator
Cycle Sequencing Core Kit (Perkin Elmer, Foster City, CA,
USA) and an automated ABI PRISM 377A DNA Sequencer
(Applied Biosystems, Foster City, CA, USA). The mRNA
sequences were aligned with their corresponding genomic
sequences by considering the general rule for nucleotides
tightly conserved in the exon-intron boundary [51], after
which their chromosomal structures were determined
[GenBank: DQ454159, DQ454160].

Enzymatic characterization of native PwGPx proteins

The native proteins were purified from an adult worm
extract using an AKTA fast-performance liquid chromatog-
raphy (Superdex 75), followed by DEAE-anion exchange
chromatography (Amersham Pharmacia Biotech, Upp-
sala, Sweden), by monitoring GPx activity. The proteins
were also examined by 1-dimensional (1-D) and/or 2-D
Western blotting employing mouse antisera specific to the
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recombinant forms of the PwGPx proteins. The purified
GPx proteins were dialyzed against PBS (pH 7.2) over-
night at 4°C. The specific activity of the native proteins
was examined by the reduction of H,0, or cumene
hydroperoxide (Sigma-Aldrich, St. Louis, MO, USA) in the
presence of GSH and Escherichia coli glutathione reductase
(GR), as described previously [38,52]. The 200 pl reaction
mixtures contained 5 mM potassium phosphate, 1 mM
GSH, 0.1 unit of GR, 0.1 mM NADPH, 1 mM EDTA, and
1 uM of PwGPx. The reagents were pre-warmed to room
temperature just prior to use in the reaction. After adding
the substrate, the NADPH oxidation level was monitored
at A, for 5 min with a spectrophotometer. A series of
mixtures containing 10 uM E. coli Trx and 0.1 unit of
thioredoxin reductase (TR) instead of GSH and GR were
also assayed.

Phylogenetic Analysis

A total of 105 members that were assigned separately into
the eight GPx families, were finally selected during the
BLAST searches, by considering both the identity values
and taxonomical distributions of donor organisms. The aa
sequences were aligned using ClustalX and optimized
using GeneDoc. The alignment was used as an input to
obtain a maximum likelihood tree using the quartet puz-
zling algorithm implanted in TREE_PUZZLE (ver. 5.2)
[53]. The options were selected to use the JTT model for
the aa substitution [54], estimation of aa frequencies from
the dataset, gamma distribution model for rate heteroge-
neity (the parameter alpha was estimated from the input
data), eight gamma rate categories, and 50,000 puzzling
steps. Indels between pairs of sequences were regarded as
missing data. Distances between pairs of protein
sequences were calculated according to the JTT model and
corrected for the gamma distribution of evolutionary
rates. The standard errors were computed by the boot-
strapping of 1,000 replicates. The sequence alignment was
also applied in phylogenetic analyses using the neighbor-
joining (PROTDIST and NEIGHBOR) and maximum par-
simony (PROTPARS) programs of the PHYLIP package
(ver. 3.6b). The statistical significance of each branching
point in the resulting trees was evaluated using 1,000 ran-
dom samplings of the input alignment by the SEQBOOT
program.
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doxin; ROS: reactive oxygen species; Sec: selenocysteine;
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Additional material

Additional file 1

Comparison of primary structures between the platyhelminth GPxs
and their orthologs. The deduced amino acid sequences were aligned
using the ClustalX program, then optimized using GeneDoc. The identical
amino acids in the alignment are highlighted in black, while similar res-
idues are shown in gray. Three well-conserved domains found in the cat-
alytic sites are double underlined. The functional amino acid residues
engaged in the formation of the catalytic-site geometry are marked as T-
1, T-2 and T-3. The highly conserved amino acids of GPx families are
indicated by C-1, C-2, and C-3. The abbreviation 'U" in the functional
domain represents selenocysteine. The putative target signals are under-
lined. The Cys motif found in Trx-dependent GPx is distinguished by a
box.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-72-S1.tiff]

Additional file 2

Amino acid sequences. Multiple alignment of amino acid sequences of
GPx proteins used in the phylogenetic analyses.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-72-S2.zip]

Additional file 3

Tree Puzzle. Tree of GPx proteins in NEWICK format.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-72-S3.zip]

Additional file 4

The phylogeny of GPx proteins by neighbor-joining algorithm. The tree
was rooted with the plant GPxs [GenBank: CAC17628, NP 191867,
NP 566128]. The identity of each analyzed sequence was distinguished
by a protein identification number followed by donor species name. The
platyhelminth genes are presented in the boldface letters and those
retrieved from EST databases are marked with the italicized accession
numbers for the mRNA sequences. The entries with a codon for seleno-
cysteine (Sec) and concurrent Sec insertion sequence within the corre-
sponding mRNA sequence are indicated by . The symbol § marks the
proteins with the Cys motif. The bootstrapping values with 1,000 repli-
cates are presented at each of the major branching points. To evaluate the
statistical significance of each node, bootstrap support values obtained
with maximum parsimony algorithm are also presented.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-72-84 tiff]
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Additional file 5

Exon-intron structures of the GPx1/3-like genes. The genomic organi-
zation patterns were compared with one another to examine the degree of
structural conservation. The open reading frame (ORF) regions are pre-
sented with black or gray-toned squares in proportion to their relative sizes
and the untranslated regions are shown by open squares with a voluntary
length. White boxes in the ORF marke the three well-conserved catalytic
sites. The lengths of each exon (in bp) are presented at the top. The inter-
vening introns are removed for simplicity of illustration, while their phases
are marked in parentheses at the corresponding positions. The orthology
among introns is indicated by vertical dotted lines.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-72-S5.tiff]
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