O

BiolVled Central

BNMIC Evolutionary Biology

Research article

Evolution of the sugar receptors in insects
Lauren B Kent and Hugh M Robertson*

Address: Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Email: Lauren B Kent - lkent@life.uiuc.edu; Hugh M Robertson* - hughrobe@life.uiuc.edu
* Corresponding author

Published: 18 February 2009
BMC Evolutionary Biology 2009, 9:41

Received: 21 July 2008

doi:10.1186/1471-2148-9-41 Accepted: 18 February 2009

This article is available from: http://www.biomedcentral.com/1471-2148/9/41

© 2009 Kent and Robertson; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Perception of sugars is an invaluable ability for insects which often derive quickly
accessible energy from these molecules. A distinctive subfamily of eight proteins within the
gustatory receptor (Gr) family has been identified as sugar receptors (SRs) in Drosophila
melanogaster (Gr5a, Gréla, and Gré4a-f). We examined the evolution of these SRs within the 12
available Drosophila genome sequences, as well as three mosquito, two moth, and beetle, bee, and
wasp genome sequences.

Results: While most Drosophila species retain all eight genes, we find that the three Drosophila
subgenus species have lost Gré4d, while D. grimshawi and the D. pseudoobscural/persimilis sibling
species have also lost Gr5a function. The entire Gré4 gene complex was also duplicated in the D.
grimshawi lineage, but only one potentially functional copy of each gene has been retained. The
numbers of SRs range from two in the hymenopterans Apis mellifera and Nasonia vitripennis to 16 in
the beetle Tribolium castaneum. An unusual aspect is the evolution of a novel exon from intronic
sequence in an expanded set of four SRs in Bombyx mori (BmGr5-8), which appears to be the first
example of such exonization in insects. Twelve intron gains and 63 losses are inferred within the
SR family.

Conclusion: Examination of the SRs in these fly, mosquito, moth, beetle, and hymenopteran
genome sequences reveals that they appear to have originated independently from single ancestral
genes within the dipteran and coleopteran lineages, and two genes in the lepidopteran and
hymenopteran lineages. The origin of the insect SRs will eventually be illuminated by additional basal
insect and arthropod genome sequences.

Background

Sugars serve as some of the simplest, most easily metabo-
lized forms of energy available to life. For example,
despite an anautogenous female mosquito's need for a
bloodmeal to nourish her developing eggs, it is the simple
nectar of plants that fuels her flight muscles and daily
energy needs. As sugar is a valuable resource, it seems fit-
ting that most animals have the ability to taste sugars, and
in many it forms a primary stimulatory signal for feeding.

The molecular basis for sugar detection in insects has been
revealed in Drosophila melanogaster where it involves a
series of at least eight genes in the gustatory receptor (Gr)
family [1-3]. The first of these is Gr5a on the X chromo-
some, although identification of this gene as encoding a
trehalose receptor was initially confused with the neigh-
boring Tre locus [4]. In phylogenetic analyses, Gr5a clus-
ters with seven other genes on the third chromosome,
including the singleton Gr61a and Gr64a-f: six genes in a
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tandem array [5], making all of these candidate sugar
receptors (SRs). Recent work with these SRs has started to
unravel their involvement in sugar detection, although
much work remains to understand how these flies per-
ceive sugars. Thorne et al. [6] and Wang et al. [7] showed
that Gr5a is expressed widely in sensory neurons that
detect sugars. Subsequently, Jiao et al. [8] showed that
Gr5a-expressing cells also express undefined combina-
tions of the other seven genes, and showed that Gr64a is
required for sensing several sugars other than trehalose.
Dahanukar et al. [9] showed that Gr61a and Gr64f are co-
expressed with Gr5a in some but not all sugar-sensitive
neurons, indicating that there is a complicated pattern of
co-expression of these eight genes. Furthermore, they gen-
erated double-mutant flies for both Gr5a and Gr64a that
cannot taste any sugars, suggesting that these two recep-
tors co-function with the other six to achieve detection of
sugars. Meanwhile, Slone et al. [10] generated a deletion
mutant removing Gr64a-f and found that these flies could
not detect most sugars, including trehalose, which is sup-
posed to be detected by Gr5a. Together the evidence from
these studies affirms that these eight proteins constitute
the SRs in flies, and strongly suggests that they function as
heterodimers, perhaps with Gr5a and Gr64a pairing with
each other and/or the other less widely-expressed Gr61la
and Gr64b-f. Many issues remain unresolved, including
the exact ligand specificities of each heterodimeric pair of
these eight SRs. Here we contribute to our understanding
of these fly SRs by examining their evolution in the 11
newly available Drosophila species genomes [11], as well
as more distant comparisons with the three available mos-
quito genomes, and the available moth, beetle, bee, and
wasp genomes. This analysis reveals an unexpected his-
tory of expansion of these gene subfamilies from only one
or two genes in each insect order, as well as such unusual
features as evolution of a novel exon in a lineage of moth
SRs.

Methods

Homologs of the eight SR genes in D. melanogaster were
identified in the 11 newly available Drosophila species
genome sequences using the assemblies available in Fly-
Base as of October 2007, which are those employed in the
genome paper [11], except that the D. simulans assembly
is the "merged" assembly of six different strains. TBLASTN
searches were employed to identify these genes, and gene
models were constructed using the DmGrs as templates in
the text editor of PAUP* v4 [12]. The D. simulans assembly
available at FlyBase has numerous problems, including
unexplained single base indels relative to the raw traces
available in the Trace Archive at the National Center for
Biotechnology Information (NCBI). Such errors were
present in most of the genes and were corrected.

The mosquito Anopheles gambiae and Aedes aegypti gene
models are from Hill et al. [13] and Kent et al. [14], but
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updated in light of gene models constructed for Culex pip-
iens using the CpipJ1 assembly available at VectorBase, the
NCBI, the Broad Institute, and the J. Craig Venter Institute
(JCVI). The Bombyx mori moth gene models are from Wan-
ner and Robertson [15], while those for the red flour bee-
tle Tribolium castaneum were constructed by HMR for the
main genome publication [16]. The two honey bee Apis
mellifera SRs are from Robertson and Wanner [17] and
their homologs in the parasitoid wasp Nasonia vitripennis
were built from the v1.0 assembly available from the
Human Genome Sequencing Center at the Baylor College
of Medicine and NCBI. The complete set of SRs is pro-
vided in a supplementary online FASTA file (Additional
file 1).

All proteins were aligned using the multiple alignment
program CLUSTALX with default settings [18]. The align-
ments were used to detect potential problems with the
gene models, which were then refined. Phylogenetic anal-
ysis was performed using corrected distances, as well as
supporting maximum parsimony and maximum likeli-
hood analysis, as described in Robertson et al. [5], Robert-
son and Wanner [17] and Kent et al. [14]. Intron locations
and phases were mapped to the protein alignment manu-
ally in the PAUP text editor and then mapped to branches
in the phylogenetic tree using Dollo parsimony assuming
that intron gains are unique but losses are independent
events.

Results

The Drosophila SRs

For the most part the 12 available Drosophila genome
sequences contain single intact orthologs for each of the
eight Drosophila SR lineages (Figure 1). The only previ-
ously known exception is that Gr5a is missing from D.
pseudoobscura [9,19] and, not surprisingly, its sibling spe-
cies D. persimilis. There are, however, several other
instances of gene subfamily evolution within this fly
genus. Gr64e appears to be a pseudogene in both of these
species because the intron donor splice site on the penul-
timate intron starts with GA instead of the canonical GT.
Gr5a is a severely damaged pseudogene in the Hawaiian
D. grimshawi, and is not included in the tree analysis. In
addition, there was a duplication of the entire 34 chromo-
some gene complex in D. grimshawi, roughly 2.6 Mbp
apart, followed by the loss or pseudogenization of each
gene in one or the other version of the complex, leaving a
single intact copy of each gene (Figure 2). Thus the centro-
meric complex retains a functional copy of Gr61a, a pseu-
dogenic copy of Gr64a, and functional copies of Gr64b,
Gr64c, and Gré64e, followed by a fragment of Gr64f, while
the telomeric complex has an intact copy of Gr64a and
Gr64f, and fragments of Gr61a, Gr64b, Gr64c, and Gr64e.
We designate genes in the centromeric complex by the
number "1" after their name and the telomeric complex
by the number "2". In addition, Gr64d is missing from the
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Phylogenetic relationships of eight SRs in 12 Drosophila species. This is a corrected distance tree based on aligned
amino acids and rooted at the midpoint. The variable length and sequence N-termini upstream of the conserved "pre-peak"
region (Figures 7,8, 9, 10, |1, 12 and 13) were removed from the alignment. Species names are abbreviated to the genus plus
the first three letters of the species name, and are color-coded. The eight proteins are indicated on the right. Bootstrap sup-
port from 1000 replications of uncorrected distance analysis is shown for the major branches. Most orthologous relationships
are in accordance with the known species relationships, or near enough, and bootstrap support is not shown for them. Intron
losses are shown in lower case light blue letters above the branches to which they map, but only if not shown in Figure 3.
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Schematic diagram of the two SR gene complexes in D. grimshawi. The two complexes and their genes are labeled |
and 2 for the centromeric and telomeric complexes, with intact genes shown as solid boxes, pseudogenes as grey boxes, and
pseudogenic gene fragments as short grey boxes. Direction of transcription is shown by arrow heads. Paralogy is indicated by

dashed lines. Not to scale.

three Drosophila subgenus species, D. virilis, D. mojaven-
sis, and D. grimshawi, so this loss predates the duplication
of the complex in the D. grimshawi lineage. Judging from
the branch lengths of the DgriGr64a1P/2 copies, this gene
complex duplication is relatively old and may be present
in all Hawaiian Drosophila. We have not determined how
extensive the duplication is, but it presumably involves
multiple flanking genes as well. Another slightly unusual
problem is the phylogenetic placement of what we are
calling Gr64d in D. willistoni. This gene is in the expected
location for Gr64d, that is between Gr64c and Gr64e,
however phylogenetically it is clearly closer to the Gr64c
genes than the Gr64d genes. There is no simple explana-
tion for this situation. A duplication of Gr64c in D. willis-
toni followed by loss of the original Gr64d gene should
lead to our Gr64d clustering with the D. willistoni Gr64c,
and there is no evidence of a partial gene conversion
event. We are also able to date roughly the movement of
Gr5a and Gr61a from the tandem complex of Gr64a-f. All
Drosophila species appear to have Gr5a on their X chro-
mosomes, so this gene relocation predates the genus.
However, Gr61a is located in inverse orientation at the 5'
end of the complex, in all species up to D. ananassae, so it
must have relocated thereafter. Finally, Gr61a is relocated
to the X chromosome in D. yakuba. The result is that the
number of apparently intact SRs in these 12 Drosophila
species is six in D. pseudoobscura/persimilis and D. grim-
shawi, seven in D. virilis and D. mojavensis, and eight in the
remainder of the species.

Our analysis of the Drosophila Grs differs somewhat from
that recently reported in Gardiner et al. [20], primarily in
that they ignore the Gr5a pseudogene in D. grimshawi, and
list multiple copies of Gr6la (5 genes and 3 pseudo-

genes), Gr64a (4/3), and Gr64b (2/1) in this species
beyond what we include (Figure 2). This may be because
they used early assemblies from January 2006, which for
this species might have had multiple haplotypes alterna-
tively assembled. Remnants of these remain in the Octo-
ber 2007 assemblies as short contigs and were not
included in our analysis.

The mosquito SRs

We find that An. gambiae and Ae. aegypti have eight and
seven functional SRs, respectively. In addition, Ae. aegypti
also has three pseudogenes. [13,14]. We examined the
newly available Culex pipiens genome sequence and find
that this mosquito, which is ~50 Myr diverged from Ae.
aegypti [21,22], has 14 sugar receptor genes, of which one
is a pseudogene (Figure 3). Five of these extra receptor
genes are the result of relatively recent duplications within
the C. pipiens lineage. Phylogenetic analysis reveals, how-
ever, that what we had earlier considered to be an orthol-
ogous, albeit rather divergent, relationship of AgGr19 and
AaGr13P [14], is in fact a paralogous comparison, because
C. pipiens has clear orthologs of each of these receptors.
Thus An. gambiage has lost the ortholog of AaGr13P/
CpGr16/17, while Ae. aegypti has lost the ortholog of
AgGr19/CpGr6/7. We therefore infer that most mosquito
lineages have nine SR gene lineages, although not all are
present and intact in all species, and some have been
duplicated in some species.

Evolution of the fly SRs

As noted in Kent et al. [14], the relationships of the eight
Drosophila SR lineages and the then-eight and now-nine
mosquito SRs is not one of simple orthology, but rather a
complex pattern of gene duplications and losses, presum-
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Figure 3

Phylogenetic relationships of SRs in insects. This corrected distance tree was rooted with the AmGr2/NvGr2 and
HvCr5/BmGr4 lineage as the outgroup, based on their apparent basal clustering in larger analyses of the entire Gr family. Boot-
strap support above 50% from 1000 replications of full heuristic uncorrected distance analysis, 1000 bootstrap replications of
full heuristic maximum parsimony analysis, and 25000 maximum likelihood quartet puzzling steps are shown above relevant
branches. Intron gains and losses are indicated by light blue upper case and lower case letters, respectively, above branches to
which they are mapped by simple presence-absence Dollo parsimony. Drosophila SRs are shown in shades of red, mosquito
green, beetle brown, moth blue, and hymenopteran purple. Only the D. pseudoobscura SRs are included along with those from
D. melanogaster to help balance the dipteran SR analysis. Inferred orthologous relationships within the three mosquito species
are indicated by bars on the right. The large orange | and purple 2's indicate the two major tandem duplications hypothesized
at the base of the dipteran SR evolution (see Figure 4). The blue 3 indicates the origin of the novel exon and hence also intron

q" in the expanded moth SR lineage.
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ably reflecting even older gene subfamily events like the
more recent ones seen within Drosophila and mosqui-
toes. Although our phylogenetic analysis does not provide
bootstrap support for the single basal root of this fly SR
lineage in Figure 3, it is supported by the apparent acqui-
sition of intron F which is unique to the flies (see details
below), so we hypothesize that the lineage arose from a
single ancestral SR gene in an early fly. This does not mean
that an early fly had only one SR gene, because it could
well have had several, with all others being lost subse-
quently. We hypothesize that this single gene underwent
a simple tandem gene duplication (large orange "1" in
Figures 3 and 4), leading to two lineages. Then before the
split of the major dipteran suborders (Brachycera and
Nematocera, represented by Drosophila and mosquitoes,
respectively), ~260 Mya [23], each of these lineages
underwent simple tandem duplications (large purple 2's
in Figures 3 and 4). Subsequent to this major organismal
lineage split, the four existing SR genes underwent inde-
pendent duplications, losses, and transpositions, leading
to the current SR phylogeny of Drosophila and mosqui-
toes. In particular, the drosophilid flies have lost the line-
age related to AgGr16/AaGr5/CpGr5. As a consequence of
this convoluted history, ligand specificity determined for
the Drosophila SRs cannot be directly transferred to the
mosquito SRs, although it might be suggestive.

The Tribolium castaneum beetle SRs

The T. castaneum Gr family was described by HMR in the
main genome paper [16], however in the phylogenetic
analysis performed therein, the 16 SRs did not cluster as a
single lineage, perhaps because the analysis included the
entire Gr family. With the current phylogenetic analysis
restricted to the SR subfamily, we believe we obtain
refined clustering of the Tribolium SRs into a single line-
age, however again there is no bootstrap support for this
monophyly. Furthermore, we again are not proposing
that beetles once had a single SR, simply that the existing
Tribolium SR complement of 16 genes is monophyletic.
The relatively high divergence of the Tribolium SRs from
the other SRs precludes any suggestion of ligand specifi-
city and we propose that all ligand specificity of the Tribo-
lium SRs evolved independently within the beetle lineage.

The moth SRs

Krieger et al. [24] included cDNA sequences for two SRs in
their initial description of a set of candidate chemorecep-
tors from the noctuid moth Heliothis virescens based on
private partial genome sequences generated by Bayer and
Exelixis Corporations. They subsequently obtained
cDNAs, called Crl and Cr5 in their publication, which
turn out to represent two divergent SR lineages within
moths, as revealed by examination of the Gr family in the
genome of the silkmoth Bombyx mori [25,26]. Details of
our analysis of the Gr family in B. mori are published else-
where [15], but we include the five SRs here for complete-
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ness. B. mori has a single ortholog of HvCr5, which we
have named BmGr4 (BmGrl-3 are the carbon dioxide
receptors [27]). B. mori also has a simple ortholog of
HvCr1, named BmGr6, as well as an expansion of three
other genes, BmGr5, BmGr7, and BmGr8, in a mono-
phyletic lineage with HvCr1/BmGr6. The monophyly of
this lineage is supported not only by bootstrapping, but
by each member's (BmGr5-8 and we predict HvCr1 as
well) remarkable possession of a newly evolved short
exon from within the ancestral phase 2 intron p (see
intron details below). This novel exon is supported by a
partial cDNA sequence for BmGr6, which was submitted
to GenBank as "candidate olfactory receptor BmOR20"
[GenBank:BAF31192.1 by T. Sakusai, Y. Hashimoto, and
T. Nishioka in 2006], but which has a deletion of an
upstream exon preventing complete translation. It has
also been confirmed by sequencing of an RT/PCR product
between the flanking exons for BmGr8 [15]; [Gen-
Bank:EU769119], and is inferred bioinformatically for
BmGr5 and BmGr7. It encodes 15-20 amino acids in
BmGr5-8 (Figure 5), and at least that number of amino
acids in HvCr1 (where the genome sequence is not avail-
able, but the cDNA encodes these extra amino acids).
These amino acids show no sequence conservation and
are part of the extracellular loop 3 (ECL3; see below). This
loop is usually very short in all insect Grs, so this evolu-
tion of a novel exon encoding a short stretch of variable
amino acids that lengthen ECL3 is unusual.

The hymenopteran SRs

We examined the newly available parasitoid jewel wasp
Nasonia vitripennis genome sequence for SRs, and find
only simple orthologs of the Apis mellifera Grl and Gr2
genes [17], sharing 64 and 55 percent sequence identity,
respectively (Figure 3). Bees and wasps form a sister group
within the order Hymenoptera, so it appears likely that
they all have only these two SRs. These two genes are next
to and facing each other in a contig of the N. vitripennis
genome assembly, but 2 Mbp apart on chromosome 5 in
A. mellifera, suggesting that they have remained neighbors
in the wasp lineage since their duplication in a common
ancestor, but became separated in the bee lineage. These
hymenopteran SRs form two sister lineages with the two
SR lineages in moths, suggesting that these are rather old
gene lineages. Although bootstrap support for this notion
is not robust, much like the fly SR lineage sharing the
unique intron f, each of these SR lineages in moths and
hymenopterans has a unique intron position (g and 1,
respectively, see below).

Intron evolution

Robertson et al. [5] inferred considerable intron evolution
within the insect chemoreceptor superfamily, and specifi-
cally the Gr family, from comparisons of the genes within
Drosophila melanogaster alone, something that was also
evident from the initial gene descriptions (e.g. [1,28]).
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Figure 4

Model for the evolution of the SR genes in flies. Schematic diagram showing conservation of microsynteny of sugar Grs
in Drosophila melanogaster (blue), Anopheles gambiae (red), Aedes aegypti (green) and Culex pipiens (yellow). Most of the genes
share both phylogenetic relatedness and similar placement in chromosomes (Ae. gambiae and D. melanogaster) and supercontigs
(Ae. aegypti and C. pipiens) across the four species, even after duplication events (shown with line | and lines 2, as in Fig. 3).
Although it appears that some genes have moved within their respective genomes in D. melanogaster and An. gambiae (shown
with grey arrows), their phylogenetic relationships (Fig. 3) reveal where they most likely had previously resided on the chro-
mosomes. Likewise, it appears that there has been some level of gene shuffling in Ae. aegypti and C. pipiens (shown with pink
arrows) with respect to the arrangements seen in D. melanogaster and An. gambiae. Although the genes have not yet been
mapped to Aedes and Culex chromosomes, the ordered supercontigs of the genome sequences are likely accurate representa-
tions of microsynteny in each species.
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Novel exon
HvCrl LGGIVILSCSCNFYFICLQMFLGIT (?)-------------
BEmGr4 LGALVLLSNVNMLYFICLQLFLGIN(2)-------------
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——————————————— QGLSSDLLSLIYYVISLAWLCTRVISVVLA
——————————————— SKDRGSFINRLYYFISLGWLMFRACGVVLA

HvCr5 ISGVVFISFANNLFFICLQLFNTLE (?)DGLKGTGECTQLNSQSKLKK (?) IVVSKSGPLGGHEAAAYFLFSLVYLLSRSVAVSLI

BmGré INGILFISFANNLFFVCVQLFNTFD (2)DSVDMVGL----- CYNYSER(2)----- RTKPVGREPVIYLLFSLGFLISRSITVSLI
BmGr5 ISSVIFLSFASNLFFICLQLYNILS (2)NGVTSKYNLLKEMCPNYPSG(2)------- PLGGYEQIMYLLFSLSFLLGRSLVVSLV
BmGr7 LDYFVLISYFTNLFFICFQLYNSLN (2) RIYDANDV----CNENMDII (2)------- ATASVIYLTYYVFSFLFLVTRALLLSIM
BmGr8 LNPFVFISFTANLSYICAQLFYILN (2) KLTSSRT--VKITSFLEDKR (2)--------- CDWETVLYISISFALVVLKVLLVSII
Intron P q

Figure 5

A novel exon in BmGr5-8. The amino acids of the TM5 and TM6 regions encoded by the ends of the exons flanking the
novel exon are shown aligned with each other for the seven moth SRs. Amino acids shared by at least six of the sequences are
highlighted in bold font. Like other SRs, BmGr4 does not have the novel exon, and the same is predicted for HvCr|. The loca-
tion of the phase 2 intron in BmGr4 (intron p in Figure 6) is shown. BmGr5-8 have a short novel exon encoding 15-20 uncon-
served amino acids, and an additional flanking phase 2 intron (intron q in Figure 6). HvCr5 is predicted to have an intron q,

however the precise location cannot be predicted.

Examination of this issue within the three-gene carbon
dioxide lineage revealed considerable intron gain and loss
even just within this gene lineage [27]. Intron evolution
within these SR genes is again evident. We rename the
introns from those in Robertson et al. [5], because other-
wise the alphabetical naming system becomes cumber-
some. The intron locations and phases are shown in
Figure 6, and their gains and losses are mapped on the tree
in Figure 3. Inclusion of the other insect SRs leads to some
revision of when some introns were gained, compared
with Figure 3 in Robertson et al. [5]. For example, intron f
(d in [5]) can now be inferred to have been gained in the
single ancestor of the fly SR genes, rather than being diag-
nostic of the SRs in general, because it is absent in the
non-Dipteran genes. Indeed, it now provides useful sup-
port for our proposal that the fly SRs are monophyletic, all
originating from a single SR gene in a basal fly lineage.
Intron f was then lost independently six times within the

dipteran gene expansion. Conversely, intron r (m in [5]),
which was initially inferred to have been gained within
the Drosophila SRs in Robertson et al. [5], is clearly much
older because it is shared by the Bombyx and Tribolium
SRs. Indeed, we now infer that it is ancestral for the entire
SR subfamily.

We infer 12 intron gains within the SRs (excluding hjmo-
prs), including the two N-terminal introns (a and b) in the
Drosophila Gr5a/Gr64e/Gr64f lineage and mosquito rel-
atives, the splitting of the ancestral phase 2 intron p in the
expanded moth SR lineage yielding novel intron q, and
eight other novel introns in the non-dipteran genes. Most
of these intron locations are not only unique within this
SR lineage, but also within the entire Gr family, which rep-
resents most of the diversity of the insect chemoreceptor
superfamily [5]. Indeed, only the two C-terminal introns r
and s (2 and 3 in [5]) are shared across the Gr family.

b
C
ad e f g h i mn o pq r s
21 O 1 2 1 2 1 01 0 0 0 22 0 0
I ' | ' | ' | ' | '
1 100 200 300 400

Amino acids

Figure 6

Intron locations and phases in the insect SR genes. Introns are named in an alphabetical series from 5' to 3' ends of the
genes, positioned above a line representing a 450aa SR, with the longer N-terminus typical of the DmGr5a and 64e/f lineage.
Hence the coordinates of the introns are ~20 aa later than those shown in Figure 4 of Robertson et al. [5]. Correspondence
between intron names in Robertson et al. [5] and those herein is: a/a, b/b, d/f, j/h, ofj, r/m, ylo, a'lp, 2/r, 3/s. Intron phase is
shown below the line (0 is between codons, | is after the first codon position, and 2 after the second codon position).
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Intron losses are rather more frequent, totaling 58 in Fig-
ure 3, plus seven in the Drosophila species in Figure 1 that
do not overlap with Figure 3, for a total of 65. The two C-
terminal and ancient introns, r and s, reveal the extremes
of intron loss, with intron r being lost 10 times while
intron s was only lost twice, in a mosquito lineage and in
DwilGr64e. It remains unclear why the final intron is so
seldom lost. This pattern is found not only in the SRs, but
is consistent throughout the entire superfamily, as this C-
terminal intron is almost always present. The only major
ambiguity in this analysis of intron evolution is the series
of phase 1 introns near the N-terminus, named b, ¢, and
d. These three introns are in roughly the same location,
but are found in subsets of the dipteran, moth, and
hymenopteran SRs. Unfortunately, the N-terminal
sequences are so divergent across these three insect orders
that they cannot confidently be considered to be homolo-
gous intron placements, and given their disparate loca-
tions in the tree, are considered here to be independent
gains. As was true for the carbon dioxide receptors [27],
and appears generally true across entire genomes (e.g.
[29]), intron losses are more frequent in the Diptera, with
all dipteran gene lineages having lost at least one intron,
while some moth, beetle, and hymenopteran lineages
have lost none and some only gained introns (although it
is also formally possible that some of these non-dipteran
introns are ancestral to the SR family and were lost from
the dipteran gene lineages).

Distinctive features of SRs

The SRs form a distinctive subfamily, with a long branch
connecting them to the rest of the Gr family [5]. They
appear, therefore, to have been evolving independently
from the rest of the family for some time, which in part
explains their distinctive set of introns. SRs are also slightly
longer than most Grs, most often attributed to an N-termi-
nal extension. This extension is particularly long in the
DmGr5a/DmGr64e/DmGr64f and related mosquito SR
lineage, which includes one or two additional N-terminal
exons (separated by introns a and/or b in Figure 6, except
for AaGr4 and AgGrl5 which lost both introns). All SRs
have a "pre-peak" of hydrophobic amino acids in the N-ter-
minus that is sometimes predicted to be an eighth T™M
domain by various TM-domain prediction programs (see
below). The amino acids within this "pre-peak” region are
remarkably well conserved, with a motif that can be
described as  hHxAh(G/A/S)Phhhh(G/A/S)Qhh(G/A/
S)hhPh, where h stands for any hydrophobic amino acid
(F, I, L, M, or V; alignment positions 84-103 in Figures 7,
8,9,10, 11, 12 and 13). The final proline is the most con-
served position. This motif is shared by most other Grs,
including the carbon dioxide receptors, which in larger
phylogenetic analyses usually form the sister group to the
SRs. However, the somewhat conserved histidine at the
start of the motif is distinctive to the SRs. The otherwise

http://www.biomedcentral.com/1471-2148/9/41

unconserved TM1 domain starts with a well-conserved ser-
ine (S alignment position 121) that is only shared with the
carbon dioxide receptors, while the TM2 domain ends with
a completely conserved tryptophan (W 189) that is idiosyn-
cratically present in other Grs. TM3 has a highly conserved
glutamic acid (E 238), while TM4 has a completely con-
served aspartic acid (D 309), both seemingly unique to the
SRs, although these regions are poorly aligned across all
Grs. The intracellular loop 2 (ICL2) contains a highly con-
served tryptophan (W 357), shared only with the carbon
dioxide receptors, followed after four amino acids by a dis-
tinctively conserved arginine (R 361). The C-terminal TM6/
ICL3/TM7 region is the most highly conserved region of the
Grs, so it is not surprising that the SRs contain several con-
served residues here that are shared with the rest of the Gr
family, including the TY (521/2) and QF (528/9) pairs in
TM7, although the QF pair was replaced in about half the
fly SRs. The most distinctive residue in the SRs is a com-
pletely conserved glutamic acid (E 523) immediately after
the TY pair in TM7. In other Grs this residue is usually a
hydrophobic amino acid. This glutamic acid is seen in no
other available insect Grs, hence is apparently diagnostic
for the SR subfamily. Its conservation within the SR sub-
family suggests that it somehow plays a crucial role in the
perception of sugars.

Membrane topology

Recent studies have shown that the insect Ors, while most
likely containing seven TM domains, have the opposite
membrane topology to that of the G-protein coupled
receptors that constitute chemoreceptors in vertebrates
and nematodes [30-33]. That is, their N-termini are inter-
nal while their C-termini are external. We believe this
topology is present throughout the Gr family as well and
hence the entire superfamily [27]. These SRs provide a
particularly clear illustration of this topology. Examina-
tion of the CLUSTALX alignment in Figure 7 shows clearly
the relatively long intracellular (IC) loop 2 between TM4
and TMS5, and IC3 between TM6 and TM7. Furthermore,
these intracellular loops each have several conserved pos-
itively charged arginine (R) and lysine (K) residues, in
agreement with the "positive inside" rule of von Heijne
[34,35]. In contrast, the extracellular loop 3 between TM5
and TM6 is particularly short (except in the lepidopteran
lineage with a novel exon), and devoid of conserved pos-
itively charged residues. Similar trends apply to the more
N-terminal loops. A remaining uncertainty with respect to
the membrane topology of these SRs, and Grs in general,
is the presence of a "pre-peak" of hydrophobic amino
acids that is less evident in the Ors, the only family studied
experimentally to date. This pre-peak is around 21 amino
acids long, the minimum required for a TM domain. For
most of the SRs, it is predicted to be a TM domain by most
hydropathy and TM domain prediction programs, as sum-
marized in the ConPredIl website [36]. Most of these pro-
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Figure 7

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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Figure 8

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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Figure 9

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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Figure 10

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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Figure 11

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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Figure 12

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.

Page 15 of 20

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:41 http://www.biomedcentral.com/1471-2148/9/41

530 540

DRarsa F NV < DR A ARG VIR - E OK K TWDC S FNLD - === == m e e e e = =
DaGréte 3 REEEVY L s VAGE I VR L L N e Ex VEBCFEN-- - - - - - — - e m e o
bpGrédalr K RGN A R A K EETTAFTCENA- - === ======
DeGréd st K H HEDNDLWDCDQSYY S e cnnnncnnn=ns
DpGrédf K H HEDNDLWDCNQSYYS= ===
AgGris 3 s HKDEASDVDLCKLKRMDT
Asard K N HOQDETADYDLCTFRRT - -~
cpard K N
Agarie \
AaGrs H
cpors H
beGréla 'C
pparéla Y
DeGréda F Nuxl LCA-
opGréia F NRRK
AFGTI0 T T R Hnssxlv em
AaGré L T SERKR IMDEPDDNNDVSCE
Cparé ¥ T SERKDSSEQ-HSSKLS-COBW--------=-~
cparT s T SHR EESSDQ-MSTTVSSCE [} PR
Ager2l H 3 K NIBLCTKFRRFEHVSV ==~~~
AaceT H s K I YIRFCSFFDIEKKWLT « =« « «
cparE H s K CSMFDI ERQWLESH- - -
Agarior R T H IVRACSEeQrLFQERMQITTN
AMGT1IP H A K DVVECSNLAFSKD--------
Cparie H A K DVKECSRLAFSKDT-------
cpari? H A K DVKPICSRLAFSKDT------~
AMGrER \d T KMSRMTAADVE I BENCSAMAFSQD------ -~
cpary Y KBSKM-ARNSEVEADCSTLAFSQD--------
beGrédb \d 5] SIRQKTQYCREY - - - - - === -=---=
DpGrédl \d o IRQKTQYCREFrmmmnmenmmnnn=
DeGréde L SEVAXSFCERBVEBSSKS I FS-ccnnx
PpGrtic F TVSQKSFC VESSKSVFA------
DeGrétd \d AVVAKSICSR SSMS I FFS----~
Dparédd v EEVORS | CNRGAGSSMS | FFS--
Agdrid rrRBP LR AMAGE IR LY LU OO VKK TEDTTRDCNF - = = == mm === = = = =
AadGril ¥ DQVAK EQDTTRDCDF----=-=-ccccccuanx
CpGris Y DQVSKDQDTTEKDCNF----= === = s === == =
Agari? ¥ u\mlss:xsmcgﬁuu ------------
AaGzd F SEVRH-SDNTQFC HRLY == smccccenn-
cparil Y SEEEl-cossNICH---c-ccaacisaiasaa
Cpario F SQVKA-TDSEIKCED---ccccccccacaaax
Cpariie A SEEXIR-LENSNICH: -~ --crcccacancaca
Agarie F DTSTDCSYFe-ccccccnccccana
AaGrlo Y DETTDCSFY--mmm e e e e e e
Cpari2 \ DEKTKDCSYF-mmmmm e e e e
cparid \d DllSKDCSYF--crcmcccccmeaae
TeGed K
TeGrS R
ToGré T
TeGr7T I
Toars R
ToGry K
Toario s NDSLLETISEQIDSCEVYL-----nmnan-
TeGril S NYNLLQBELNKKESCRVYVecmmmccn e
TeGr12 ] NKKLLNEFDETSVQQLE | LHNNTYWLC- -~
TeGerll KIEEOE I EQTACA IV LV IEREN LR LTEDNDSNEANLLA- =« = = = = = = = .-
ToGrid K
TCGris R
TcGri6 K
Tedri? R
Tcdrig L
TeGris K
Hverl 3 NSSTRSLNITSETSATHIITTLAT-wvnw-
DesGréX s NQABASDSFTEKLVENNISTIETFYNYS= =
DG \d
BaGzT N
Baar# H
HvCrSN Y/
Bodrd s
ARGEIN s NTTQ---QTDASNATIVC[\H: ---------
MwGrl s NAVQAEHQQSESNI TKVCEVK === === ===
AmGs2 H I e e
WwGr2 s NIALQRDEELNNMAABSNE- - -« - - ccoan
Conservation
! '2245122036588-246 ] 2 8§8743130-000000000-------——-===—===-=~
o et O
Consensus

WCH+EVORFIEOLKSDTVALSCMKFFYLTRGLILAMAGT IVTYELYLLOFNK+ES+NOGDCSLCS+LAFSKD+FS~- =

Figure 13

Multiple alignment of the insect SRs. This is the CLUSTALX alignment employed for the phylogenetic analysis in Figure 3,
except that positions of uncertain alignment and large gaps, specifically alignment positions 1-82, 150-160, 209-219, 340-355,
405-435, and 531-559, were excluded from the phylogenetic analysis. The Xs at the start of some sequences were added to
facilitate splitting the figure into six convenient parts. Alignment positions are shown at the bottom, along with the "conserva-
tion" histogram from CLUSTALX. The predicted TM domains are evident as vertical bands of hydrophobic amino acids shaded
blue, and the "pre-peak” is approximately alignment positions 84—103, TM| is 121-142, TM2 is 161-189, TM3 is 224-234, TM4
is 291-314, TM5 is 378-398, TM6 is 438—457, and TM7 is 511-529.
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teins are predicted to have eight TM domains with the N-
terminus external, although the range is from six to nine
TM domains (insect chemoreceptor TM domains are sel-
dom as well-defined as those of most other TM proteins,
while TM4 is sometimes split into two). An example of
these hydropathy plots, predicted TM domains, and pre-
dicted topology is shown for AmGr?2 in Figures 14 and 15.
Further experimental work will be required to resolve this
issue, however, it has now been shown that at least the
Ors are in fact ligand-gated ion channels [33,37,38], and
the same is surely true of these Grs.

Discussion

Our analysis of the evolution of the SRs in insects reveals
aremarkable pattern (Figure 3). Each major lineage of SRs
within an insect order appears to have originated from
just one or two genes. Thus we hypothesize that all the fly
SRs, all the Tribolium SRs, and most of the moth SRs orig-
inated from a single basal gene within each organismal
lineage. In contrast, both moths and the hymenopteran
wasp/bee lineage appear to have shared two SRs lineages
for a long time. Recent work on the SRs in D. melanogaster
strongly suggests that, like the Ors and the carbon dioxide
receptors, they function as heterodimers [9,10,39]. If this
is the case, then we can predict that the two existing SRs in
the wasp/bee lineage function as a single receptor capable
of recognizing all sugars that these hymenopterans can
sense. This implies that, much like mammals which have
a single heterodimeric SR pair [40], these species should
not be able to differentiate different sugars. We infer then
that moths, through duplication of one of their two ances-
tral SRs into four genes, probably do have the ability to
discriminate different sugars, most likely by combining
one of these four proteins with the single BmGr4/HvCr5
protein in different gustatory sensory neurons. Finally,
although all existing fly and Tribolium SRs each appear to

2
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Figure 14

Hydropathy plot and predicted TM domains for
AmGr2. Regions of hydrophobic amino acids yield stretches
of positive hydropathy, and these are predicted to be TM
domains by the ConPredIl prediction program (indicated by
thick green bars).
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Figure 15

Predicted membrane topology for AmGr2. ConPredll
predicts eight TM domains for this protein and many other
SRs, usually as here with the N-terminus internal and the C-
terminus external.

have evolved from a single SR gene, as noted in the results
this does not imply that ancestral flies and beetles had a
single SR, because additional genes could have been lost.
Today, however, flies apparently employ combinations of
their SRs allowing recognition and discrimination of
diverse sugars. Dahanukar et al. [9] infer that DmGr5a
and DmGr64a are crucial to sugar perception because a
double mutant removing both of them is incapable of rec-
ognizing any sugars. Since Gr5a and Gr64a are the most
widely expressed of the SRs, with Gr61la and Gr64b-f
apparently being expressed in limited sets of neurons
overlapping with Gr5a and Gr64a [9,10,39], a simple
model is that functional heterodimers require either Gr5a
or Gr64a. An obvious problem with this simple model is
that Gr5a has been lost independently from both the D.
pseudoobscura/persimilis and D. grimshawi lineages, and it
seems unlikely that these species would have lost such a
major portion of their sugar-sensing abilities. Gr5a and
Gr64a nevertheless do represent the two major SR fly lin-
eages after an initial duplication (Figure 3), so it appears
that one daughter gene from each of these two lineages
has specialized in being the more widely expressed part-
ner, while the others, Gr6la and Gr64b-f, might be
involved in recognition of particular suites of sugars. It is
not obvious from the Tribolium SRs which protein(s)
might be the widely expressed heterodimeric partner(s) of
the others.

An unusual aspect of these SRs is the origin of a novel
exon from within an intron in the expanded lineage of
moth SRs. Novel exons are known to have evolved from
intronic sequences in various vertebrates, in a process
called "exonization". Most such instances have resulted
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from the evolution of splice sites involving a short retro-
transposon or SINE, such as Alu elements in humans
(reviewed by [41]), however no such examples appear to
have been published from an insect. Exonization is
thought to occur with such a retroelement inserted in the
opposite orientation to transcription with the inverse
"poly-A" tail of the retroelement forming a pseudo 3'
splice acceptor site, along with de novo formation of a 5'
splice donor site within the retroelement. SINEs are wide-
spread in B. mori [25,26] and likely other moth genomes,
so perhaps such exonization events will be relatively com-
mon in moths. This particular event is too old for any ves-
tiges of the potentially originating retroelement to
remain. The novel exon in the four BmGr5-8 genes is
short, encoding just 15-20 amino acids. The exon exhibits
no sequence conservation among the four genes. These
extra amino acids nevertheless more than double the
length of the third extracellular loop in these four moth
SRs relative to all the other SRs, and most other Grs. The
origin of the one or two N-terminal exons in the Dro-
sophila Gr5a/64e/f lineage and mosquito relatives, and
hence the existence of introns a and b, is also a novelty in
the SR subfamily and Gr family, but whether these
evolved by insertion of introns into an extended 5' exon,
extension of the start of translation into a 5' UTR exon, or
true exonization is unclear.

Conclusion

Our investigation reveals that the repertoire of extant
insect sugar receptors can be traced to one or two ancestral
genes in each major insect order. We are unable to say
much about the even older evolutionary history of the
insect SRs because the body louse Pediculus humanus, rep-
resenting a more basal insect lineage in the Exopterygota
as compared with the endopterygote insects herein, does
not have SRs (HMR unpublished results). The long
branch leading to the SRs from the rest of the Gr family
[5], suggests that the louse should have SRs but may have
lost them during evolution of its obligate ectoparasitic
lifestyle. The imminent availability of genome sequences
for two other exopterygote insect lineages, the pea aphid
Acyrthosiphon pisum and the kissing bug Rhodnius prolixus,
as well as other arthropod genomes, will hopefully further
illuminate the origin of the insect sugar receptors from
within the Gr family. We predict, however, that those with
SRs will always have at least two proteins forming a het-
erodimer capable of detecting diverse sugars, as repre-
sented today by the two SRs in bees and wasps.
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