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Abstract
Background: One of the major recent advances in evolutionary biology is the recognition that
evolutionary interactions between species are substantially differentiated among geographic
populations. To date, several authors have revealed natural selection pressures mediating the
geographically-divergent processes of coevolution. How local, then, is the geographic structuring
of natural selection in coevolutionary systems?

Results: I examined the spatial scale of a "geographic selection mosaic," focusing on a system
involving a seed-predatory insect, the camellia weevil (Curculio camelliae), and its host plant, the
Japanese camellia (Camellia japonica). In this system, female weevils excavate camellia fruits with
their extremely-long mouthparts to lay eggs into seeds, while camellia seeds are protected by thick
pericarps. Quantitative evaluation of natural selection demonstrated that thicker camellia pericarps
are significantly favored in some, but not all, populations within a small island (Yakushima Island,
Japan; diameter ca. 30 km). At the extreme, camellia populations separated by only several
kilometers were subject to different selection pressures. Interestingly, in a population with the
thickest pericarps, camellia individuals with intermediate pericarp thickness had relatively high
fitness when the potential costs of producing thick pericarps were considered. Also importantly,
some parameters of the weevil - camellia interaction such as the severity of seed infestation
showed clines along temperature, suggesting the effects of climate on the fine-scale geographic
differentiation of the coevolutionary processes.

Conclusion: These results show that natural selection can drive the geographic differentiation of
interspecific interactions at surprisingly small spatial scales. Future studies should reveal the
evolutionary/ecological outcomes of the "fine scale geographic mosaics" in biological communities.

Background
Evolutionary biologists have recently acknowledged that
interspecific interactions and coevolutionary processes are
structured across geographic populations [1-6]. In his geo-
graphic mosaic theory of coevolution, Thompson [7,8]

argued that the forms and strength of natural selection on
interacting species vary among populations (geographic
selection mosaic; [9-13]), and therefore reciprocal selec-
tion on traits important for interspecific interactions
mediates the coevolution of interacting species in some
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populations (coevolutionary hotspots) but not in others
(coevolutionary coldspots). In addition, gene flow, ran-
dom genetic drift, and extinction of local populations pro-
mote the geographic structuring of coevolutionary
interactions, sometimes perturbing or promoting the
local adaptation of interacting species (trait remixing; [14-
17]). Based on this tripartite recognition, the theory pre-
dicts that coevolving traits vary among populations [18-
25], and that traits are well matched in some local com-
munities but not in others [13,26-29]. Consequently, few
coevolving traits or underlying alleles are expected to be
widespread across geographic ranges or fixed within inter-
acting species [30].

These geographic structures of coevolution are expected to
differ among the spatial scales at which the observations
are conducted [3]. Given that the relative contributions of
local natural selection and gene flow to the spatial struc-
turing of coevolutionary interactions is dependent on spa-
tial scales, the geographic patterns of local adaptation and
maladaptation can vary depending on the spatial scale
examined [17]. In addition, because interacting species
often differ in their dispersal abilities, the spatial scale of
local adaptation can be different between interacting spe-
cies [31]. Furthermore, unique environmental factors may
contribute to the geographic differentiation of coevolu-
tionary interactions at each spatial scale, thereby shaping
the spatial hierarchies of coevolutionary processes. Thus,
to fully understand the ecological and evolutionary out-
comes of the geographic structuring of coevolution, we
need to reveal the processes by which coevolutionary
interactions of focal systems are geographically differenti-
ated at multiple spatial scales. Nevertheless, there have
been few coevolutionary systems in which the geographic
variation in coevolving traits, geographic selection mosa-
ics and the effects of gene flow on local adaptation are
investigated at more than one spatial scale (cf [32,33]).
Moreover, although factors contributing to the geographic
differentiation of coevolutionary interactions have been
discussed in several interspecific interactions [9,34-36],
no study has tested whether such factors could differ, or
are the same, among spatial scales.

This paper elucidates the hierarchy of the geographic
mosaic of a coevolutionary arms race (sensu [37]) involv-
ing a seed predatory insect, the camellia weevil (Curculio
camelliae: Curculionidae: Coleoptera), and its host plant,
the Japanese camellia (Camellia japonica: Theaceae)
[12,13,28,38,39] (see also [40]) (Fig. 1A, B). The camellia
weevil is an obligate seed-predator of the Japanese camel-
lia, whose larvae feed exclusively on camellia seeds. To lay
eggs into camellia seeds, which are physically defended by
a very thick pericarp, female weevils make holes in the
pericarp with their extremely long mouthparts (rostra),
into which they insert their ovipositor. In previous studies

over a 700-km area in Japan, it was shown that the sizes of
the putative coevolving traits, that is, weevil rostrum
length and camellia pericarp thickness, varied remarkably
between populations (Fig. 1C, D), and that these traits
were correlated across the Japanese archipelago [13,28].
Analyses of the geographic variation in natural selection
also suggested that both weevil and camellia traits were
locally adapted by reciprocal selection between the two
species [12,13,39]. In addition, based on population
genetic analyses of both species, it was expected that lim-
ited gene flow between populations could potentially
facilitate geographic differentiation in the coevolutionary
processes across the Japanese archipelago [39,41]. Also
importantly, latitudinal gradients of the putative coevolv-
ing traits (i.e., weevil rostrum length and camellia pericarp
thickness), the strength of natural selection on camellia
pericarp thickness, and the nature of weevil attacks (Figs.
1G-I) (see additional file 1) [13,39] suggest that climatic
factors (e.g., habitat temperature) have promoted the geo-
graphic structuring of this coevolutionary arms race [13].
However, the possibility that the ecological and evolu-
tionary interaction between the two species is differenti-
ated at smaller spatial scales (e.g., [42]) has not yet been
tested.

To test whether the weevil-camellia coevolutionary inter-
action is structured at a spatial scale of several kilometers,
this study focused on Yakushima Island, in the southern-
most region of the area examined in previous studies
[12,13,28,38,39] (Fig. 1E). Although small (ca. 30 km
diameter), this island has very steep environmental clines
in terms of altitude (ca. 1936 m), from coastal subtropical
to central cool-temperate areas (Fig. 1F). This variation in
environmental conditions is expected to cause geographic
divergence of the weevil-camellia coevolutionary proc-
esses and thus provide an ideal opportunity to examine
"the sizes of the 'tiles' within the geographic mosaic" [3].
A preliminary analysis indicated that weevil rostrum
length and camellia pericarp thickness differ significantly
among populations separated by only several kilometers
on Yakushima [38], and thus high levels of interpopula-
tion variation in natural selection pressures is expected. In
addition, analyses of molecular markers for the Japanese
camellia and the camellia weevil revealed that significant
positive relationships between genetic and geographic
distance are observed at scales of 100 m or <10 km,
respectively ([43]; reanalysis of data from [39]). Thus, by
revealing geographic variation in the direction/strength of
natural selection on coevolving traits within Yakushima,
one can fully understand the spatial scale of the weevil-
camellia arms race and then compare the coevolutionary
processes at two spatial scales: within Yakushima Island
and across the Japanese archipelago.
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Figure 1
Study organisms and map of study sites. (A) Cross-section of a Japanese camellia fruit showing holes in the woody peri-
carp made by female camellia weevils (arrows). (B) A female camellia weevil drilling with her long rostrum into a camellia peri-
carp. (C) Geographic variation in weevil rostrum length. Female weevils from Taiji, Honshu (33.58 °N, 135.96 °E; top) and
Hanyama, Yakushima Island (30.38 °N, 130.39 °E; bottom). (D) Geographic variation in camellia pericarp thickness. The dissec-
tions of camellia fruits in Kiioshima, Honshu (33.47 °N, 135.86 °E; top) and Shitoko, Yakushima Island (30.44 °N, 130.54 °E;
bottom). (E) Study sites in which the latitudinal gradient of the ecological interaction between the weevil and camellia was
examined (see -G-I). (F) The topography of Yakushima Island. Six populations in which natural selection acting on camellia peri-
carp thickness was evaluated and three transects used for testing the altitudinal gradients of the weevil-camellia interaction are
shown. See Table 1 for abbreviations of populations. (G) The relationship between latitude and the number of trial holes per
camellia fruit made by camellia weevils (y = - 0.810x + 41.3, F1,20 = 0.4, P = 0.54). See Additional file 1 for sampling localities.
(H) The relationship between latitude and the proportion of successful excavations of camellia pericarps by camellia weevils (y
= 0.0829x - 2.22, F1,19 = 33.1, P < 0.0001). (I) Relationship between latitude and the proportion of camellia seeds infested by
camellia weevil larvae (y = 0.0350x - 0.943, F1,20 = 5.4, P = 0.0308).
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Two questions were addressed. First, do the direction and
strength of natural selection acting on camellia pericarp
thickness vary at the spatial scale of several kilometers?
Second, what factors promote the geographic structuring
of coevolution within Yakushima Island? I first examined
the interpopulation variation in the direction and/or
strength of natural selection on camellia pericarp thick-
ness within Yakushima Island using Lande and Arnold's
selection analyses [44]. Then, to evaluate the influence of
environmental conditions on the geographic mosaic of
coevolution, geographic variation in the success and
severity of weevil attacks on the Japanese camellia were
examined. Furthermore, I tested the hypothesis that cli-
matic factors contribute to the geographic structuring of
the weevil-camellia interaction, not only at the entire
Japan spatial scale ([13,39]; Figs. 1H, I) but also at a much
smaller spatial scale. Overall, the paper shows that coevo-
lutionary processes can be differentiated at surprisingly
small spatial scales, and provides a novel example in
which the causes of the geographic mosaics of coevolu-
tion are investigated at multiple spatial scales.

Methods
Study system
The camellia weevil is an obligate predator on seeds of the
Japanese camellia, a broad-leaved evergreen tree, com-
mon in warm-temperate forests of Japan, southern Korea,
and Taiwan. In the wild, the weevil is found over almost
the entire range of the Japanese camellia and is an agricul-
tural pest affecting the production of camellia oils [45],
although it is usually absent on small islands surrounding
the mainlands of Japan. The emergence of the weevil
adults usually begins in May, and oviposition occurs
when the pericarp of the Japanese camellia has almost
matured (usually from mid-July to mid-August; [45]; H.
Toju, pers. obs.). Unripe fruits that have yet to reach the
maximum size contain small, undeveloped seeds with a
jellylike endosperm, which appears to be unsuitable for
the development/growth of weevil eggs/larvae [46]. To lay
an egg into a camellia seed, a female weevil uses its
extremely long rostrum to excavate the very thick, woody
pericarp of the camellia (Fig. 1A, B) [46,47]. Importantly,
the probability of successful excavation of pericarps
increases with increasing weevil rostrum length and
decreases with increasing camellia pericarp thickness [13].
Thus, a coevolutionary arms race (sensu [37,48]) is
expected to occur between weevil rostrum length and
camellia pericarp thickness. Indeed, the length of the
camellia weevil rostrum and the thickness of the Japanese
camellia pericarp are extraordinary in the weevil genus
Curculio and the plant genus Camellia (see [40,49-52]),
suggesting the occurrence of coevolutionary escalation
between the two species. The camellia pericarp thickness
is assumed to be heritable because an analysis of inter-
individual relatedness with microsatellite markers

revealed a significant heritability for the trait (H. Toju, H.
Abe and S. Ueno, unpubl.; sensu [53]). Thus, the plant trait
is expected to respond to natural selection exerted by the
weevil.

Field sampling over almost the entire range of the two spe-
cies revealed that both weevil rostrum length and camellia
pericarp thickness varied remarkably among populations
(9-19 mm for weevils; 6-20 mm for camellias; [13]. More-
over, the sizes of the two traits were clearly correlated
across geographic populations, suggesting that at least one
of the two species is locally adapted to the other [13,28].

In these previous studies, the geographic selection mosaic
for camellia pericarp thickness was evaluated across the
Japanese archipelago [12,13]. A quantitative evaluation of
natural selection, in which the relationship between
camellia pericarp thickness and the proportion of intact
(surviving) camellia seeds was estimated in each camellia
population, revealed that the direction and strength of
natural selection acting on the camellia trait varied signif-
icantly between geographic populations [13]. Moreover,
thicker camellia pericarps were favored in low-latitude
populations [13]. The interpopulation variation in natu-
ral selection experienced by camellia was partly attributa-
ble to geographic variation in the behavior of female
weevils. That is, due to the geographic gradient in the risk
of failing to excavate camellia pericarps [13] (Fig. 1G),
female weevils tend to avoid attacking camellia fruits with
thick pericarps in the low-latitude populations (see [12]).
For the camellia weevil, it was suggested that interpopula-
tion variation in rostrum length was mediated by geo-
graphically varying pressures of natural selection exerted
by the camellia [39]. These studies support the hypothesis
that the camellia weevil and the Japanese camellia are
involved in a geographically structured coevolutionary
arms race [13,28,39].

Sampling of fruits
Fruits of the Japanese camellia were collected across its
entire range on Yakushima Island, Kagoshima Prefecture,
Japan (Fig. 1E, F) about 1 month after the oviposition sea-
son of the camellia weevil (from August to October 2005,
depending on the season of fruit maturation). This circu-
lar island is about 30 km in diameter and has a steep cli-
matic cline in altitude, from broad-leaved evergreen forest
in lowland areas (0-700 m), mixed broad-leaved ever-
green and coniferous forest (700-1200 m), and coniferous
forest (1200-1500 m) to bamboo thicket in central areas
(1500-1936 m). The Japanese camellia is distributed over
the entire island below 1400 m altitude, which is the
physiological boundary of the plant. I randomly collected
fruits from individual trees (up to two fruits) throughout
the island. The sampling locations were recorded using a
portable global positioning system unit (Geko 201; Ger-
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min Ltd.). Also, the diameter at breast height (DBH) and
the number of fruits were recorded for each tree. From
those fruit specimens, I excluded fruits without mature
seeds and then samples used for subsequent analyses
became 968 fruits of 611 individuals from 499 locations.
Fruit size was measured to the nearest 0.01 mm using dig-
ital calipers; fruit diameter was measured as the mean of a
longitudinal diameter and two equatorial diameters that
were perpendicular to each other. Pericarp thickness was
the mean of four measurements along cross-axes of a lon-
gitudinal section of the fruit. Also, whole wet weight and
pericarp wet weight were measured for each fruit. These
four measurements were averaged for individual trees,
respectively. Note that significant variation of pericarp
thickness between trees was confirmed in a previous study
[13].

Interpopulation variation
I first focused on camellia individuals from six popula-
tions among which significant variation in both camellia
pericarp thickness and weevil rostrum length had been
found in a previous study [38] to test whether the direc-
tion and/or strength of natural selection also varied
among the populations (Table 1): geographic distance
between populations ranged from 4 to 19 km (Fig. 1F).
Note that one population examined previously (Shitoko)
was excluded because the small sample size was insuffi-
cient for natural selection analyses. In two populations
(Yahazu and Hanyama), data on camellia fruit obtained
in 2003 [13] were used because almost no fruit was pro-
duced in 2005 due to severe salt damage caused by
typhoons in the previous year. The results of analyses pre-
sented below did not change qualitatively after excluding
these two populations. Genetic analyses using 29 micros-
atellite markers revealed that each of the six populations
constituted a unique genetic cluster and gene flow
between the populations was limited (Toju et al.
unpubl.).

Before studying interpopulation variation in natural selec-
tion pressures exerted on camellia pericarp thickness, I
examined the geographic variation in the success and
severity of weevil attacks on camellia fruits among the
above-mentioned six populations. To evaluate the nature
of weevil attacks, I used three variables. First, because the
excavations of weevils into camellia pericarps remained as
visible holes (Fig. 1A), I counted the number of holes
(hereafter, trial holes) for each fruit, and used the number
of trial holes per fruit to evaluate the frequency of weevil
attacks. Second, in counting the trial holes, I evaluated the
success of weevils in reaching seeds and calculated the
fraction of the holes reaching seeds to total trial holes for
each population, representing the proportion of success-
ful excavations of camellia pericarps by the weevils. Third,
I counted the number of seeds within each fruit and

recorded the fraction of seeds infested by weevil larvae
(hereafter, the proportion of infested seeds): note that
each fruit usually contains up to ten seeds. Seeds or ovules
that died before maturation were excluded from the total
seed number because the mortality factors affecting such
seeds, for example, fertilization failure, were difficult to
evaluate. Therefore, the mortality of mature seeds were
determined exclusively through infestation by weevil lar-
vae. Although Japanese camellia seeds are also rarely
attacked by larvae of an unidentified lepidopteran species
(Toju, pers. obs.), none of the 4969 seeds examined in
2005 was infested by this species.

For each population, I calculated the number of trial holes
per fruit for each tree, and tested its interpopulation vari-
ation with the Welch's test and its interpopulation varia-
tion in the proportion of successful excavations with the
chi-square test. The numbers of successful excavations and
of unsuccessful excavations were represented by the
number of holes reaching seeds and holes not reaching
seeds, respectively. These numbers were pooled within
each population, and then a chi-square test was per-
formed. Finally, the chi-square test was also applied to the
proportion of infested seeds. Before analysis, the numbers
of intact and infested seeds were pooled within each pop-
ulation.

Relationship between pericarp thickness and the success 
of weevil attacks
To evaluate the function of thick camellia pericarps in
defending against camellia weevils (cf [13]), I examined
the relationship between pericarp thickness and the suc-
cess of weevil attacks for each of the six populations. First,
I conducted a regression of the proportion of successful
excavations on pericarp thickness. A logistic regression
[54] was used to infer the relationship between the success
of weevil attacks and the camellia pericarp thickness in
each population. To avoid overdispersion, a generalized
linear mixed model was used with a logit-link and a bino-
mial error (penalized quasi-likelihood procedure) using R
with the MASS package [55]. In the model, individual
trees and each fruit nested within trees were fitted as ran-
dom terms.

I then calculated the pericarp thickness at which the wee-
vil excavation attempts were expected to succeed at a
probability of 50% (boring success 50%; BS50) for each
population, with a 95% confidence interval using the
delta method [56] (cf., [57]). A population in which a sig-
nificant relationship between pericarp thickness and the
proportion of successful excavations did not exist was
excluded from the analysis of the BS50 (i.e., at Fukagawa).

I expected the BS50 to be determined by the rostrum length
of the sympatric camellia weevils [13] and thus evaluated
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Table 1: Six study sites and sample sizes.

Curculio camelliae Camellia japonica

Latitude Longitude Altitude Body 
length (mm)

Rostrum 
length (mm)

No. trees No. fruits No. seeds Fruit 
diameter (mm)

Pericarp 
thickness (mm)

CV

Locality (°N) (°E) (m) N Mean SD Mean SD trees fruits seeds Mean SD Mean SD (%)

Yahazu (YH) 30.46 130.50 53 20 8.30 0.50 14.54 1.87 41 101 512 48.09 8.08 12.49 3.39 27.2

Fukagawa (FK) 30.44 130.56 12 2 8.16 0.57 12.99 1.14 35 52 271 47.84 8.18 12.97 3.60 27.8

Shiratani (SR) 30.38 130.58 670 2 9.60 0.73 21.11 1.55 33 43 248 58.59 8.86 19.69 3.39 17.2

Hanyama (HY) 30.38 130.39 124 13 9.31 0.68 19.48 1.85 21 51 365 64.87 7.78 20.41 3.99 19.5

Kawahara (KW) 30.35 130.39 147 5 8.87 0.52 18.28 1.61 76 122 702 66.71 6.70 21.21 2.38 10.9

Ohko-rindoh (OK) 30.31 130.42 411 3 9.34 0.16 20.59 0.46 33 56 273 56.49 6.11 19.35 2.68 13.9

Morphological data are from a previous study [38]. The coefficient of variation (CV) of camellia pericarp thickness is also shown.
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the relative levels of 'armament escalation' between
camellias and weevils based on information from the BS50
(cf., [13,58]). I postulated that the Japanese camellia was
more likely to be successful in defending its seeds against
weevil attacks if the plant had already evolved a very thick
pericarp relative to the BS50 and tested this prediction by
regressing the proportion of successful excavations on the
differences between the mean pericarp thickness and BS50.

Quantitative evaluation of natural selection
I evaluated the direction and strength of natural selection
on camellia pericarp thickness for each population using
Lande and Arnold's selection analyses [44,59]. Two types
of fitness measures were used: the "proportion" of surviv-
ing (intact) seeds (see [13]) and the "number" of surviv-
ing seeds. To obtain the former fitness measure, I counted
the number of mature seeds for individual trees and then
divided them into two categories, depending on whether
they survived or were infested by weevil larvae. Subse-
quently, I calculated the proportion of surviving seeds for
fruit specimens from each tree and used as the fitness
measure, after converting this value into relative fitness
(i.e., fitness of each individual/mean fitness). The relative
fitness was regressed on pericarp thickness, which was z-
standardized (zero-mean, unit-variance) before regres-
sion. Thus, the standardized linear/nonlinear selection
coefficients (βσ and γσ, respectively) [57,60] were
obtained for each population. The significance of the lin-
ear coefficients was tested by randomization using RT ver-
sion 2.1 (West, Inc.; http://www.west-inc.com/
computer.php). The significance of nonlinear coefficients
was tested by nonlinear least-square regressions. In addi-
tion, the relationship between pericarp thickness and the
proportion of surviving seeds was visualized with a cubic
spline [61] using the software glms ver.4.0 [62]. In two
populations (Yahazu and Hanyama), data obtained in
2003 [13] were used (see above), which was valid because
geographic variation in the direction and strength of nat-
ural selection on the camellia trait is usually preserved
between years (Toju, unpubl.). Finally, the variance of rel-
ative fitness (i.e. opportunity for selection; [59]) was cal-
culated for each population to evaluate the potential
maximum strength of natural selection on camellia peri-
carp thickness.

I then reevaluated natural selection on pericarp thickness
based on the number of surviving seeds. This measure is a
more standard measure of plant fitness because fecundity
of individual plants is determined by the number, but not
the fraction, of intact seeds. This measure of fitness was
obtained for each tree by multiplying the number of fruits
by the average number of surviving seeds in a fruit. To
quantify a linear selection coefficient, the number of sur-
viving seeds, which was converted into relative fitness
beforehand, was regressed on pericarp thickness (z-stand-

ardized). Because the number of (surviving) seeds was
positively correlated with tree size, as evaluated by DBH,
in a population (at Kawahara), DBH (z-standardized) was
incorporated as an explanatory variable in a generalized
linear model (GLM; Gaussian error and identity-link func-
tion). A standardized linear selection coefficient for peri-
carp thickness was obtained as a partial regression
coefficient of the GLM for each population. Concomi-
tantly, nonlinear selection coefficients were quantified for
the respective populations by quadratic regressions of the
relative fitness on the pericarp thickness, in which the
effects of DBH were also controlled. R was used for both
analyses. Note that excluding DBH from the explanatory
variables did not qualitatively change the results. The rela-
tionship between pericarp thickness and the number of
surviving seeds was visualized with a cubic spline. The
opportunity for selection was calculated for each popula-
tion.

In addition to natural selection analyses for camellia peri-
carp thickness, the potential resource allocation costs of
thick pericarps were examined in the abovementioned
four populations. First, the mean wet weight of fruits and
that of pericarps were calculated in each population and
then geographic variation in each measure was examined
with the Welch's test and the Tukey-Kramer's HSD test.
Second, the potential tradeoffs between pericarp thickness
and the number of fruits produced in a tree was examined
by regressing the number of fruits by pericarp thickness
across individual trees. The effect of tree size was control-
led by incorporating DBH as an explanatory variable in
each regression.

Environmental factors
The latitudinal variation of the nature of weevil attacks
(Figs. 1G-I; [13]) suggests that some climatic factors medi-
ate geographic structuring of the coevolutionary proc-
esses. In comparison to the geographic variation across
the Japanese archipelago, the present study examined the
dependence of the weevil-camellia interaction on climates
at a much smaller spatial scale, i.e., within Yakushima
Island.

First, the geographic pattern of weevil attacks within
Yakushima Island was visualized by means of geostatisti-
cal analysis. A prediction surface of the geographic varia-
tion in the number of trial holes per fruit, calculated for
individual trees (N = 611), was constructed by kriging,
which is a method of the interpolation of a random field
and is frequently used in landscape ecology [63]). Using
Arc GIS 9 with the Geostatistical Analyst extension (ESRI)
according to the user manual, an empirical semivariogram
was inferred [64]. Among the models examined (expo-
nential, Gaussian, and spherical), the best-fit model was
chosen according to the scores of the root mean square
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standardized prediction error and the mean prediction
error. Isotropy of the semivariogram (i.e. the uniformity
in all directions) was assumed because preliminary analy-
ses revealed that models with anisotropy (i.e. directional
dependence) did not show good scores for prediction
errors. Based on the semivariogram, I computed a predic-
tion surface of the variation in the number of trial holes
per fruit within Yakushima Island. This kriging analysis
was also applied for the proportion of successful excava-
tions, calculated for individual trees. Trees without trial
holes from weevils were excluded from the second analy-
sis; leaving the sample size at 548. Isotropy of the semivar-
iogram was also assumed in this analysis. For the
proportion of infested seeds, however, kriging was not
performed because preliminary analyses of the semivario-
gram failed to detect the relationship between geographic
distance and difference in this variable, which varied
remarkably among neighboring trees.

Second, each number of trial holes per fruit, the propor-
tion of successful excavations of pericarps by weevils, and
the proportion of infested camellia seeds was regressed on
altitude using R. In addition, regression by annual mean
temperature (°C) and annual precipitation (mm) was
performed to reveal the effects of climate on the weevil-
camellia interaction. The climatic data were obtained
from Mesh Climate Data of Japan 2000 [65]. In the regres-
sion analyses, generalized linear models were constructed
with Gaussian error and identity link functions for the
regression of the number of trial holes, and binomial error
and a logit link function for that of the remaining two
response variables. Taking into account the strong nega-
tive correlation between annual mean temperature and
annual precipitation in the data set (r = - 0.749, t609 = -
27.9, P < 0.0001), univariate regression was performed.

Results
Geographic variation in the ecological interaction
The number of weevil attacks per camellia fruit varied sig-
nificantly between the six populations examined (Welch's
test; F5,165.2 = 17.5, P < 0.0001). Among the populations,
the camellia population at Fukagawa was subject to less
frequent attacks (Fig. 2A). The proportion of successful
excavations of camellia pericarps by weevils significantly
differed between populations (χ2 = 216.7, df = 5, P <
0.0001). In Fukagawa, Hanyama, and Kawahara, only one
of five attacks by weevils was successful (Fig. 2B). The
probability of the success of weevil attacks in these popu-
lations on Yakushima Island was the lowest among the
previously examined populations across the Japanese
archipelago (Fig. 1H). The severity of seed infestation by
weevil larvae (i.e., the proportion of infested seeds) also
varied among populations within Yakushima Island (χ2 =
68.7, df = 5, P < 0.0001). The proportion of infested seeds

Interpopulation variation in weevil attacks within Yakushima IslandFigure 2
Interpopulation variation in weevil attacks within 
Yakushima Island. (A) Number of trial holes per camellia 
fruit made by camellia weevils. Bars represent 95% confi-
dence intervals obtained from bootstrap (10,000 replica-
tions). (B) Proportion of successful excavations of camellia 
pericarps by camellia weevils. (C) Proportion of camellia 
seeds infested by camellia weevil larvae.
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was especially low in Fukagawa (Fig. 2C), where the fre-
quency of weevil attacks was lowest (Fig. 2A).

Relationship between pericarp thickness and the success 
of weevil attacks
A clear relationship was observed between camellia peri-
carp thickness and the probability of successful excava-

tions of pericarps by weevils in five of the six populations
examined (Fig. 3; Table 2). This indicates that thicker
camellia pericarps were effective at defending seeds from
weevils in these plant populations. Note that the pericarp
thickness at which the probability of successful excava-
tions was 50% (i.e., BS50) varied significantly among pop-
ulations (Fig. 4A; compare 95% confidence intervals). To

Relationship between camellia pericarp thickness and the success of weevil attacksFigure 3
Relationship between camellia pericarp thickness and the success of weevil attacks. Solid line indicates a significant 
relationship between the pericarp thickness of the Japanese camellia and the proportion of successful excavations by the 
camellia weevil (logistic regression; see Table 2). Triangles represent mean rostrum length of camellia weevils (open blue), 
mean pericarp thickness of camellias (filled yellow), and the pericarp thickness at which weevil excavation attempts are 
expected to succeed at a probability of 50% (BS50; filled red).
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avoid the attacks of weevils by a probability of 50%, a 12-
mm-thick pericarp is sufficient in Yahazu, whereas a 16-
mm-thick pericarp is needed in Ohko-rindoh (Fig. 4A).
Due to variations in BS50 and pericarp thickness (Table 1),
interpopulation variation occurred in the difference
between mean pericarp thickness and BS50 (Fig. 4B). This
result indicates that some populations of Japanese camel-
lia have already evolved pericarps thick enough to defend
the seeds against most camellia weevil attacks (e.g., Han-
yama and Kawahara in Fig. 4C), while other populations
have not (e.g., Yahazu). As expected, weevils were more
susceptible to failure of attacks in populations in which
the difference between mean pericarp thickness and BS50
(mean - BS50) was larger (y = -4.15x + 45.1, N = 5, r = -
0.97, P = 0.0078; reduced major axis regression; Fig. 4C).

Quantitative evaluation of natural selection
Natural selection analyses, in which the proportion of sur-
viving seeds was used as a fitness measure, revealed signif-
icant or marginally significant directional selection for
thicker pericarps in four of the six populations examined
(P < 0.09), whereas it was nonsignificant but positive in
the remaining population (Fukagawa; P > 0.5) (Table 3).
Although cubic spline visualization showed a U-shaped
fitness function in Kawahara (Fig. 5), significant disrup-
tive or stabilizing selection was not observed in any pop-
ulations (Table 3).

I then reevaluated natural selection on camellia pericarp
thickness using another fitness measure, the number of
surviving seeds. In Shiratani and Ohko-rindoh, in which
marginally significant directional selection for thicker
pericarps was detected in a previous natural selection
analysis (Table 3), thicker pericarps were favored (Table 4;
Fig. 6). In Kawahara, however, natural selection for
thicker pericarps was not confirmed (compare Table 4
with Table 3); note that an outlier individual was

Figure 4

Locality

0

1

2

3

4

5

6

YH HYSR KW OK

M
ea

n 
pe

ric
ar

p 
th

ic
kn

es
s

B
S

50
 (

m
m

)

YH HYSR KW OK

12

13

14

15

16

17

Locality

P
er

ic
ar

p 
th

ic
kn

es
s 

at
 5

0%
bo

rin
g 

su
cc

es
s 

(B
S

50
) 

(m
m

)
P

ro
po

rt
io

n 
of

su
cc

es
sf

ul
 e

xc
av

at
io

ns

Mean pericarp thickness
    BS50 (mm)

0 1 2 3 4 5 6 7

15
20

25
30

35
40

HY

KW

SR

OK
YH

A

B

C

Interpopulation variation in the camellia pericarp thickness at which a half of weevil attacks are successfulFigure 4
Interpopulation variation in the camellia pericarp 
thickness at which a half of weevil attacks are suc-
cessful. (A) In each population, the pericarp thickness at 
which weevil excavation attempts are expected to succeed at 
a probability of 50% (BS50; ± 95% CI) was calculated from a 
logistic regression (Fig. 3; Table 2). A population (Fukagawa) 
was excluded due to lack of a significant relationship between 
camellia pericarp thickness and the success of weevil attacks. 
(B) Difference between mean pericarp thickness and BS50. 
(C) Relationship between the degree of pericarp evolution 
and the success of weevil attacks. The proportion of success-
ful excavations of camellia pericarps by camellia weevils was 
regressed on the difference between mean pericarp thick-
ness and BS50. Solid line represents a significant reduced 
major axis regression.
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excluded from this analysis. No relationship between
pericarp thickness and fitness was observed in Fukagawa,
where the opportunity for selection was the smallest
among the four populations analyzed (Table 4). I found
no evidence of nonlinear selection acting on this plant
trait in the four populations (Additional file 2). However,
individuals with intermediate pericarp thickness had rela-
tively high fitness in Kawahara (Fig. 6).

Among the four populations examined above, camellias
in Kawahara had the heaviest fruits (Welch's test; F3,80.8
=, P < 0.0001; Tukey-Kramer's HSD test; α = 0.05, Fuka-
gawa < Ohko-rindoh ≈ Shiratani < Kawahara: Table 5)
and pericarps (Welch's test; F3,80.4 =, P < 0.0001; Tukey-
Kramer's HSD test; α = 0.05, Fukagawa < Ohko-rindoh ≈
Shiratani < Kawahara: Table 5) on average. Importantly,
the number of fruits decreased with increasing pericarp
thickness across trees examined in the natural selection
analysis in Kawahara, although the relationship was mar-
ginally significant (Table 5). The negative correlation
between fruit production and pericarp thickness was not
observed in other populations (Table 5).

Environmental factors
A geostatistical analysis revealed that the frequency of
weevil attacks (i.e., the number of trial holes per fruit) var-
ied locally within Yakushima Island (Fig. 7A; Gaussian
model), as shown in Fig. 2A. In the northwest part of the
island, camellia fruit was subjected to frequent weevil
attacks (<25 times per fruit), whereas in the southwestern
area, fruits were only attacked a few times (Fig. 7A). The
probability of the success of weevil attacks (i.e., the pro-
portion of successful excavations) also varied within the
island (Fig. 7B; Gaussian model). In the southwest, the
excavations of camellia pericarps by weevils were more

likely to succeed, whereas in the north and southeast most
weevil attacks failed (Fig. 7B).

Regression analyses further revealed geographic patterns
of the nature of weevil attacks. The proportion of success-
ful excavations and the proportion of infested seeds
increased at higher altitudes (Table 6). As expected by the
altitudinal gradient, the two variables were significantly
increased with decreasing annual mean temperature
(Table 6). All of the number of trial holes per fruit, the
proportion of successful excavations, and the proportion
of infested seeds increased with increasing annual precip-
itation (Table 6; marginally significant for the number of
trial holes), respectively.

Discussion
A series of selection analyses showed herein that natural
selection driving interspecific interactions could vary
among geographic populations separated by only several
kilometers. Results further suggested that interpopulation
variation in trait costs or climatic environment could pro-
mote the geographic differentiation of coevolutionary
processes. Thus, these findings detailed below illuminate
the possibility that evolutionary interactions between spe-
cies are spatially far more dynamic than ever thought.

Potential of a coevolutionary arms race
Before considering weevil attacks as a major driving force
of pericarp evolution, alternative factors that may also
promote the evolution of thick pericarps should be con-
sidered. Importantly, camellia pericarps dehisce after seed
maturation and seeds then fall to the ground; hence, peri-
carps are not an adaptation for attracting animals to dis-
perse seeds (see [66]). Therefore, the adaptive function of
pericarps is likely to be protecting seeds against abiotic or

Table 2: Relationship between camellia pericarp thickness and the success of weevil attacks.

Locality No. trial holes Coef. SE t P

Yahazu (YH) 2912 - 0.268 0.031 - 8.6 < 0.0001*

Fukagawa (FK) 416 - 0.149 0.087 - 1.7 0.1485

Shiratani (SR) 1311 - 0.221 0.037 - 5.9 0.0002*

Hanyama (HY) 1017 - 0.437 0.059 - 7.4 < 0.0001*

Kawahara (KW) 3262 - 0.327 0.038 - 8.5 < 0.0001*

Ohkorindo (OK) 1312 - 0.204 0.051 - 4.0 0.0006*

The proportion of successful excavations of camellia pericarps by camellia weevils was regressed on camellia pericarp thickness for each population. 
In each model, generalized linear mixed model with binomial error and a logit-link function was constructed. Individual camellia trees and each fruit 
nested within trees were fitted as random terms to avoid overdispersion. Trees with no trial holes were excluded from the analysis.
*Significant after sequential Bonferroni correction (α = 0.05).
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biotic environmental factors before seed dispersal. For
example, desiccation or cold/frost damage to seeds might
favor thicker pericarps. However, given that a sympatric
congener of the Japanese camellia, Camellia sasanqua,
bears fruit with a very thin pericarp (ca. 1 mm), thick peri-
carps should not be necessary to defend Japanese camellia
seeds against abiotic environmental stresses. In addition,
thicker pericarps are found in regions at lower latitudes or
lower altitudes, where climatic conditions are relatively
moderate [13,38]. Alternatively, the evolution of thick
pericarps may be driven by organisms that attack camellia
seeds. Apart from weevils, the larvae of an unidentified
lepidopteran species infest camellia seeds very rarely;
however, its impact on the evolution of pericarp thickness
is thought to be negligible (see Methods).

In contrast to abovementioned alternatives, the adaptive
significance of having thick pericarps to defend against
the camellia weevil is evident from the results. These
clearly showed that the camellia weevil is a very important
mortality factor for camellia seeds (Fig. 2C), and that
camellias defend against weevil attacks, that is, excavation
of pericarps, more effectively when they have thicker peri-
carps (Fig. 3; Table 2). Because this negative relationship
between camellia pericarp thickness and the probability
of successful weevil attacks has also been supported by a
laboratory experiment [13], it is highly probable that
camellias have evolved thicker pericarps to defend their
seeds against weevils. Indeed, the proportion of surviving
camellia seeds, which represents fitness of camellia indi-
viduals, was found to be positively correlated with peri-

Form of natural selection evaluated based on the proportion of surviving seedsFigure 5
Form of natural selection evaluated based on the proportion of surviving seeds. The proportion of surviving seeds 
was regressed on pericarp thickness in each population (see Table 3). Solid lines represent prediction curves by cubic splines 
with ± SE.
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carp thickness within Yakushima Island (Table 3). It is
also noteworthy that the Japanese camellia has signifi-
cantly thicker pericarps on islands with the camellia wee-
vil than on islands where the weevil is absent (H. Toju, H.
Abe and S. Ueno, unpubl.). Overall, these results indicate
that defending seeds against the camellia weevil is the
most plausible explanation for the evolution of thick
camellia pericarps. In the following discussion, I postulate
that the pericarp thickness of the Japanese camellia can
evolve through natural selection exerted by the camellia
weevil.

Spatial scale of the geographic selection mosaic
Previous studies [13,28,38] have shown that camellia
pericarp thickness and weevil rostrum length varied
remarkably within Yakushima Island (Table 1). At the
extreme, the camellia and weevil traits were differentiated
between populations separated by only several kilom-
eters, and the sizes of these defensive and offensive traits
were correlated across populations within the island [38].
In addition to phenotypic variation, the success and sever-
ity of weevil attacks on camellias varied geographically
within Yakushima Island (Figs. 2 and 7). These results
suggest that the evolutionary interaction between the two
species also varies at the same spatial scale.

The results first indicate that the benefit of having thicker
pericarps in resisting severe weevil attacks was ubiquitous
among camellia populations within Yakushima Island. In
most populations, excluding Fukagawa, where the sample
size of trial holes was small (Fig. 2), thicker pericarps were
effective in defending against weevil excavations (Fig. 3).
In addition, in the same five populations, camellia indi-
viduals with thicker pericarps were more likely to protect
seeds from oviposition of weevils (Table 3; Fig. 5).

Nonetheless, several lines of evidence indicate that the
strength of directional selection for thicker pericarps var-
ies geographically. First, the camellia pericarp thickness at
which weevil excavations are successful by the probability
of 50% (i.e., BS50) differed among populations (Fig. 4A),
suggesting that the degree of pericarp evolution necessary
to defend against weevils is geographically differentiated.
This is presumably due to differences in the mean rostrum
length of sympatric female weevils (Fig. 3). Second, natu-
ral selection analyses showed that camellias with thicker
pericarp were favoured in five populations, while no sig-
nificant selection was observed in the remaining popula-
tion, Fukagawa (Table 3).

It is important to note that the evolution of thick pericarps
may be restricted by the cost of having such a trait, despite
the clear benefit of thick pericarps in defending against
attacks by camellia weevils. For example, if the amount of
photosynthetic products is limited, producing thick peri-
carps may reduce the number of fruits or seeds that can be
produced. Therefore, I examined the geographic variation
in natural selection pressures, using the number of surviv-
ing seeds as a measure of fitness. This should incorporate
the effects of potential tradeoffs between the pericarp
thickness of individual fruits and the number of fruits pro-
duced. Quantitative evaluation of natural selection indi-
cated that natural selection pressures exerted on camellia
pericarp thickness varied within Yakushima Island (Fig. 6;
Table 4). Relatively strong directional selection (βσ > 0.5;
cf., [67]) was detected for pericarp thickness in Shiratani
and Ohko-rindoh, while thicker pericarps were not
favored in Kawahara and Fukagawa. Because camellias
have considerably heavy pericarps in Kawahara compared
to those in other populations (Table 5), producing peri-
carps would be more costly in the population. Indeed, the

Table 3: Relationship between camellia pericarp thickness and the proportion of surviving seeds.

Opportunity for βσ γσ

Locality selection Coef. SE t P Coef. SE t P

Yahazua (YH) 0.152 0.149 0.058 2.6 0.0137 0.111 0.089 1.2 0.2224

Fukagawa (FK) 0.055 0.024 0.040 0.6 0.5781 0.026 0.079 0.3 0.7459

Shiratani (SR) 0.111 0.109 0.057 1.9 0.0639 0.004 0.097 0.0 0.9660

Hanyamaa (HY) 0.039 0.080 0.041 1.9 0.0685 0.021 0.069 0.3 0.7643

Kawahara (KW) 0.114 0.100 0.038 2.7 0.0094 0.038 0.055 0.7 0.4956

Ohko-rindoh (OK) 0.134 0.111 0.063 1.8 0.0878 0.038 0.080 0.5 0.6398

The proportion of surviving (intact) seeds was regressed on camellia pericarp thickness for each population. Standardized linear/nonlinear selection 
coefficients [57,60] are shown (βσ and γσ, respectively) with the opportunity for selection (i.e. the variance of relative fitness; [44]).
aData from a previous study [12].
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number of fruits produced by camellia individuals
decreased with increasing pericarp thickness in Kawahara,
although the correlation was marginally significant (Table
5). On the other hand, much less resources were allocated
to pericarps in Fukagawa compared to other populations
and the resource costs of producing pericarps may not
explain nonsignificant directional selection observed in
this population (Tables 4 and 5). Alternatively, the low

frequency of weevil attacks (Fig. 2) and the resultant lack
of benefit of having thick pericarps in this population
(Fig. 5; Table 3; see also the opportunity for selection in
Table 5) would be responsible for the lack of significant
directional selection (Table 4; Fig. 6). Overall, these
results indicate that the (co-)evolutionary process of the
weevil-camellia interaction is structured at a spatial scale
of several kilometers (e.g., Ohko-rindoh vs. Kawahara), as

Geographic selection mosaic for camellia pericarp thicknessFigure 6
Geographic selection mosaic for camellia pericarp thickness. The number of surviving seeds was regressed on peri-
carp thickness in each population (see Table 4 and Additional file 2). Because the effect of individual tree size, as evaluated by 
diameter at breast height, was controlled in the regression, the residual of the number of surviving seeds is shown in this figure. 
Solid lines represent prediction curves by cubic splines with ± SE.
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suggested by the phenotypic variations in the weevil and
camellia traits within this island.

The extent of local adaptation, however, is influenced not
only by local selection pressures but also by the levels of
gene flow for both species. For the Japanese camellia, gene
flow is expected to be localized at fine spatial scales
because the home range of its major avian pollinator (Zos-
terops japonica; [68]) is estimated to be 0.3 ha [69], and
seed dispersal by rodent dispersers is only by 5.8 m on
average [66]. Indeed, population genetic analyses using
microsatellite markers have shown a significant positive
relationship between genetic and geographic distance
(i.e., isolation by distance) between adult trees at spatial
scales of 100 m ([43]; see also [41,70-72]). In addition,
for weevils, analysis of molecular variance [73] from the
published data on mitochondrial DNA sequences [39]
have revealed significant genetic differentiation in the six

populations examined in this study (H. Toju and T. Sota,
unpubl.). Pairwise interpopulation comparison of mito-
chondrial haplotypes of the weevils also indicated that
gene flow is restricted, even between populations sepa-
rated by only several kilometers (e.g., Fukagawa vs. Shira-
tani; H. Toju and T. Sota, unpubl.). Consequently, the
evidence for localized gene flow for both species suggests
that geographic selection mosaics can drive fine-scale phe-
notypic differentiation of camellia pericarp thickness and
weevil rostrum length among populations, in spite of the
homogenizing effects of gene flow (see [17,74]).

Relationship between natural selection and levels of 
coevolutionary escalation
Although the geographic selection mosaic for camellia
pericarp thickness indicates that the process of weevil-
camellia coevolution is spatially structured, variation in
the levels of coevolutionary escalation, as evaluated by

Table 4: Geographic variation in natural selection acting on camellia pericarp thickness.

Pericarp thickness (βσ) DBH

Locality Opportunity for
selection

Coef. SE t P Coef. SE t P

Fukagawa (FK) 0.459 0.074 0.119 0.6 0.5380 - 0.024 0.119 - 0.2 0.8420

Shiratani (SR) 1.305 0.524 0.188 2.8 0.0089* 0.141 0.188 0.8 0.4566

Kawahara (KW) 1.998 - 0.070 0.147 - 0.5 0.6340 0.660 0.147 4.5 < 0.0001*

Ohko-rindoh (OK) 2.764 0.669 0.277 2.4 0.0218 0.136 0.277 0.5 0.6265

The number of surviving seeds, which was converted into relative fitness, was regressed on the pericarp thickness of camellia trees for each 
population. The effect of tree sizes on the number of seeds was controlled for by incorporating diameter at breast height (DBH) into a generalized 
linear model (i.e. multiple regression on pericarp thickness and DBH). Both explanatory variables were z-standardized (zero-mean, unit-variance) 
before regression. Thus, the partial regression coefficient for pericarp thickness represents standardized linear selection coefficient (i.e. βσ). The 
opportunity for selection (i.e. the variance of relative fitness) is also shown. See additional file 2 for the results of quadratic regression analyses.
*Significant after sequential Bonferroni correction, which was applied for each column (i.e. explanatory variable) (α = 0.05).

Table 5: Costs of thick camellia pericarps.

Regression: No. of fruits

Fruit weight (g) Pericarp weight (g) Pericarp thickness DBH

Locality Mean SD Mean SD Coef. SE t P Coef. SE t P

Fukagawa (FK) 61.71 38.28 55.51 37.05 0.194 0.164 1.2 0.2448 0.342 0.164 2.1 0.0442

Shiratani (SR) 107.30 49.24 103.29 47.78 0.086 0.181 0.5 0.6380 0.186 0.181 1.0 0.313

Kawahara (KW) 156.60 46.20 149.31 43.95 - 0.169 0.101 - 1.7 0.0981 0.503 0.101 5.0 < 0.0001

Ohko-rindoh (OK) 95.46 29.80 92.47 29.07 0.214 0.174 1.2 0.2290 0.207 0.174 1.2 0.243

The mean weight of camellia fruits and pericarps are shown for each locality. The potential tradeoff between pericarp thickness and the number of 
fruits were tested by the regression analyses, in which individual tree size (i.e. DBH) was controlled. All response and explanatory variables were z-
standardized before regression analyses.
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Geostatistical analyses of weevil attacks on camellia fruits within Yakushima IslandFigure 7
Geostatistical analyses of weevil attacks on camellia fruits within Yakushima Island. (A) Geographic variation in the 
number of trial holes per camellia fruit made by camellia weevils. Areas where the Japanese camellia is absent (> 1,400 m) are 
represented by grey. Vertical bars represent sampling locations. (B) The geographic variation in the proportion of successful 
excavations of camellia pericarps by camellia weevils.
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Table 6: Effects of climate on the geographic variation in weevil attacks within Yakushima Island.

No. of trial holes per fruita, b Proportion of successful excavationsc Proportion of infested seedsa

Locality Coef. (SE) d.f. t P Coef. (SE) d.f. t P Coef. (SE) d.f. t P

Altitude 0.014 (0.041) 609 0.3 0.73 0.189 (0.018) 546 10.6 < 0.0001* 0.403 (0.038) 609 10.7 < 0.0001*

Temperature 0.028 (0.041) 609 0.7 0.489 - 0.166 546 - 9.6 < 0.0001* - 0.326 609 - 8.8 < 0.0001*

Precipitation 0.079 (0.040) 609 2.0 0.051 0.162 (0.017) 546 9.5 < 0.0001* 0.335 (0.040) 609 8.4 < 0.0001*

A generalized linear model was constructed to explain the geographic variation in each of the number of trial holes per fruit, the proportion of 
successful excavations of camellia pericarps by weevils and the proportion of seeds infested by weevil larvae. An univariate regression was 
performed for each explanatory variable, annual mean temperature (°C), annual precipitation (mm), the annual mean of the monthly amount of 
global solar radiation with shading effects of topography (MJ/m2). All explanatory variables and the number of trial holes were z-standardized (zero-
mean, unit-variance).
*Significant after sequential Bonferroni corrections applied for each response variable.
aNo. of trees = 611, no. of fruits = 968.
bThe response variable was z-standardized.
cNo. of trees = 548, no. of fruits = 844.
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camellia pericarp thickness and weevil rostrum length,
were not consistent with variations in current selection
pressures. That is, significant directional selection for
thicker pericarps was not detected in Kawahara (Table 4;
Fig. 6), in which the camellia and weevil traits have been
already highly escalated (Table 1). The present direction
and/or strength of natural selection, however, are not nec-
essarily the same as those in the past [75]. Given that the
volume or weight of resources allocated to pericarps is
proportional to cubed pericarp thickness, evolving per
unit thickness of pericarps is expected to become increas-
ingly costly as coevolutionary escalation proceeds. There-
fore, although the benefit of having thicker pericarps is
still significant in Kawahara (Table 3), considerable costs
of resource allocation to pericarps may prevent further
evolution (Tables 4 and 5). In fact, a cubic spline analysis
showed that camellia individuals with intermediate peri-
carp thickness represent relatively high fitness as balanced
by the benefit (Table 3) and cost (Table 5) of having thick
pericarps, although relatively small sample size might pre-
vent the detection of significant stabilizing selection
(Additional file 2; [67]). Thus, the coevolutionary process
may be at an equilibrium in Kawahara, whereas in Shira-
tani and Ohko-rindoh, relatively low resource costs may
allow the evolution of thicker pericarps (Fig. 6; Table 5).

In addition to trait costs, two other factors may cause the
negative or positive relationships between the levels of
coevolutionary escalation and the strength of directional
selection for thicker pericarps. One is suggested by the
interpopulation variation in the difference between mean
pericarp thickness and BS50 (Fig. 4B). Because camellias
have already evolved very thick pericarps to resist most
weevil attacks in some populations (e.g., Hanyama and
Kawahara; Figs. 3 and 4C), further evolution of pericarps
may not effectively increase fitness in these camellia pop-
ulations. This loss of the benefit of thicker pericarps, how-
ever, is not evident in the present data sets (see Kawahara
in Table 3). The second factor is the dependence of weevil
behavior, that is, the preference of female weevils for
camellia fruits based on pericarp thickness, on the levels
of coevolutionary escalation [12]. A previous study
showed that the preference of weevils varied among pop-
ulations, and that interpopulation variation in weevil
behavior is an important determinant of the geographic
selection mosaic for camellia pericarp thickness [12].
Importantly, female weevils avoid attacking fruits with
relatively thick pericarps in populations in which they are
subject to higher risks of failure in attacking such fruits
due to low average probability of successful excavations
[12]. Given that the proportion of successful excavations
decreases as coevolutionary escalation proceeds ([13]; see
also Fig. 4C; Table 1), presumably due to the mortality
costs of weevils with long rostra (cf., [76]) and the result-
ant limitation in the evolution of this weevil trait, thicker

pericarps might further increase the fitness of camellias.
Indeed, camellia fruits with relatively thick pericarps were
avoided by weevils in Ohko-rindoh and Shiratani (Toju,
unpubl.), leading to further directional selection (Table
4), but were preferred in Fukagawa, preventing the evolu-
tion of thick pericarps. No significant tendency was
observed in Kawahara.

Environmental dependence of the weevil-camellia 
coevolution
Geostatistical analyses confirmed that the attacks of wee-
vils on camellia fruits varied at a fine scale within
Yakushima Island (Fig. 7). Moreover, regression analyses
showed that the proportion of successful pericarp excava-
tions by weevils and the proportion of infested seeds
increased with decreasing temperature within the island
(Table 6).

The environmental clines of the weevil-camellia interac-
tion are observed not only within Yakushima Island, but
also across the Japanese archipelago [13,28,39]. Examina-
tions of altitudinal gradients within this island, and latitu-
dinal gradients over the whole of Japan, have revealed that
the proportion of successful excavations and the propor-
tion of infested seeds increase in the cooler-temperate
regions (Table 6; Fig. 1G, I; [13]). Analyses at within-
Yakushima and entire-Japan scales also showed that the
size of the camellia defensive trait, i.e. pericarp thickness,
decreased with increasing altitude and latitude
[13,28,38,39]. Together, these results suggest that climatic
factors (e.g., low temperature) limit the evolution of thick
camellia pericarps in populations at higher altitudes and
latitudes, despite the more severe impacts of seed infesta-
tion by weevils in these areas.

A putative factor responsible for the geographic differenti-
ation is geographic variation in "productivity." Mathemat-
ical models of predator-prey or parasitoid-host
coevolution predict that environmental factors influenc-
ing the fecundity, density-dependent factors limiting pop-
ulation dynamics, and the costs of defensive traits of
victims determine the occurrence of arms races or the lev-
els of coevolutionary escalation ([77-79]; N. Iseki, H. Toju
and A. Sasaki, unpubl.). Although these predictions have
not yet been demonstrated in the wild (cf., the laboratory
study of [14]), the influence of productivity on local coev-
olutionary dynamics [35,80] is expected in the weevil-
camellia system. For example, because the photosynthetic
capacity of camellias increases exponentially with increas-
ing temperature [81], local climate would affect the opti-
mal resource allocation strategy [82] (sensu [83]) or
fecundity of camellias, thereby leading to the spatial vari-
ation in the levels of coevolutionary escalation (N. Iseki,
H. Toju and A. Sasaki, unpubl.). Consequently, findings
in the weevil-camellia system support the hypothesis that
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spatial variation in climate is a major factor driving the
geographic differentiation of ecological and evolutionary
interactions between species [84-87].

In contrast to the potential dependence of the weevil-
camellia interaction on temperature, the relationship
between annual precipitation and the variables represent-
ing weevil attacks (Table 6) was not straightforward.
Because the mean of annual precipitation experienced by
sampled individuals is very high (3809.9 mm; SD = 297.0
mm), the photosynthetic activity of the Japanese camellia
is unlikely to be affected by the availability of water. Thus,
given the negative correlation between annual mean tem-
perature and annual precipitation (see Methods), the
association between precipitation and the nature of wee-
vil attacks may be a statistical artifact.

Conclusion
The results of this study show that ecological and evolu-
tionary interactions between the camellia weevil and the
Japanese camellia are structured at a surprisingly fine spa-
tial scale, i.e., within several kilometers. Thus, the spatial
scale of geographic structures of coevolution can be very
small (cf [42]). However, it is expected that the "sizes of
the 'tiles' within geographic mosaics" [3] vary, depending
on the characteristics of focal coevolving systems. Poten-
tial factors determining the spatial scale of the geographic
mosaics involve a balance between local natural selection
and levels of gene flow, which is expected to differ among
systems, depending on the migration abilities of the inter-
acting species [88]. Furthermore, the direction and
strength of local natural selection per se can be affected by
the pattern of migration (i.e. migration load; [89]), influ-
encing the spatial scale of geographic selection mosaics.
Therefore, to further clarify the mechanisms mediating
the geographic structuring of coevolutionary interactions,
comparative studies should be conducted between sys-
tems in which natural selection, gene flow, and local
adaptation are investigated simultaneously.

In this study, I examined the environmental factors medi-
ating the geographic structuring of the weevil-camellia
coevolutionary process at a small spatial scale, in compar-
ison with previous analyses at a larger spatial scale
[13,28,39]. To date, several studies have reported that the
species composition of local communities (e.g.,
[9,34,36,90,91]) or spatial variation in climate (e.g.,
[13,92]) has contributed to the geographic differentiation
in coevolutionary interactions. Such mechanisms mediat-
ing the spatial process of coevolution, however, can differ
between spatial scales. Alternatively, if the same factor is
suggested to play a major role in shaping the geographic
mosaic of coevolution at multiple spatial scales of a sys-
tem, the importance of that focal factor will be further
emphasized. Hence, we need to properly understand the

spatial scales at which focal factors drive the geographic
differentiation of coevolutionary interactions, thereby
elucidating the relative contribution of such factors to the
ecological and evolutionary dynamics of interspecific
interactions.
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