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Abstract

Background: Whenever different data sets arrive at conflicting phylogenetic hypotheses, only
testable causal explanations of sources of errors in at least one of the data sets allow us to critically
choose among the conflicting hypotheses of relationships. The large (28S) and small (18S) subunit
rRNAs are among the most popular markers for studies of deep phylogenies. However, some
nodes supported by this data are suspected of being artifacts caused by peculiarities of the
evolution of these molecules. Arthropod phylogeny is an especially controversial subject dotted
with conflicting hypotheses which are dependent on data set and method of reconstruction. We
assume that phylogenetic analyses based on these genes can be improved further i) by enlarging the
taxon sample and ii) employing more realistic models of sequence evolution incorporating non-
stationary substitution processes and iii) considering covariation and pairing of sites in rRNA-genes.

Results: We analyzed a large set of arthropod sequences, applied new tools for quality control of
data prior to tree reconstruction, and increased the biological realism of substitution models.
Although the split-decomposition network indicated a high noise content in the data set, our
measures were able to both improve the analyses and give causal explanations for some
incongruities mentioned from analyses of rRNA sequences. However, misleading effects did not
completely disappear.
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Conclusion: Analyses of data sets that result in ambiguous phylogenetic hypotheses demand for
methods, which do not only filter stochastic noise, but likewise allow to differentiate phylogenetic
signal from systematic biases. Such methods can only rely on our findings regarding the evolution
of the analyzed data. Analyses on independent data sets then are crucial to test the plausibility of
the results. Our approach can easily be extended to genomic data, as well, whereby layers of quality
assessment are set up applicable to phylogenetic reconstructions in general.

Background

Most recent studies that focused on the reconstruction of
ancient splits in animals, have relied on 18S and/or 28S
rRNA sequences, e.g. [1]. These data sets strongly contrib-
uted to our knowledge of relationships, however, several
nodes remain that are suspected of being artifacts caused
by peculiar evolutionary rates which may be lineage spe-
cific. Particular unorthodox nodes were discussed as long
branch artifacts, others were held to be clusters caused by
non-stationary evolutionary processes as indicated by dif-
ferences in nucleotide composition among the terminals.
The reconstruction of ancient splits seems to be especially
dependent on taxon sampling and character choice, since
in single lineages the signal-to-noise ratio is consistently
marginal in allowing a reasonable resolution. Thus, qual-
ity assessment of data via e.g. secondary structure guided
alignments, discarding of randomly similar aligned posi-
tions or heterogeneity of the data set prior to analysis is a
crucial step to obtain reliable results. Arthropod phylog-
eny is especially suitable as a case study, since their
ancient and variable phylogenetic history, which may
have included intermittent phases of fast radiation,
impedes phylogenetic reconstruction.

Major arthropod relationships

While currently there is wide agreement about the mono-
phyly of Arthropoda, relationships among the four major
subgroups (Chelicerata, Myriapoda, Crustacea, Hexap-
oda) remain contested, even the monophyly of each of
the subgroups has come under question. The best sup-
ported relationship among these subgroups seems to be
the clade comprising all crustaceans and hexapods. This
clade, named Pancrustacea [2], or Tetraconata [3], is sup-
ported by most molecular analyses, e.g. [1,4-14]. Like-
wise, the clade has increasingly found support from
morphological data [3,15-18], especially when malacost-
racans are directly compared with insects. Most of these
studies reveal that crustaceans are paraphyletic with
respect to a monophyletic Hexapoda. However, most
analyses of mitochondrial genes question hexapod mono-
phyly [19-22]. Additionally, various crustacean subgroups
are discussed as potential hexapod sister groups. Fanen-
bruck et al. [15] favored a derivation of Hexapoda from a
common ancestor with Malacostraca + Remipedia based
on neuroanatomical data. In recent molecular studies,
either Branchiopoda [12] or Copepoda [1,11,23] emerged

as the sister group of Hexapoda. The Pancrustacea hypoth-
esis implies that Atelocerata (Myriapoda + Hexapoda) is
not monophyletic. In most of the above mentioned
molecular studies, the Myriapoda appear at the base of the
clade Mandibulata or as the sistergroup to Chelicerata.
The combination of Chelicerata + Myriapoda
[1,7,13,14,24] was coined Paradoxopoda [11] or Myrio-
chelata [10]. It seems that this grouping can be partly
explained by signal erosion [25], and likewise is depend-
ent on outgroup choice [26]. In addition, the most recent
morphological data is consistent with the monophyly of
Mandibulata [27], but not of Myriochelata. Almost no
morphological data corroborate Myriochelata except for a
reported correspondence in neurogenesis [28]; this how-
ever alternatively may reflect the plesiomorphic state
within Arthropoda [29,30]. Within Hexapoda, relation-
ships among insect orders are far from being resolved [31-
35]. Open questions concern the earliest splits within
Hexapoda, e.g. the monophyly or paraphyly of Entog-
natha  (Protura + Diplura +  Collembola)
[9,19,22,32,34,36-45].

Goals and methodological background

The aim of the present study is to optimize the phyloge-
netic signal contained in 18S and 28S rRNA sequences for
the reconstruction of relationships among the major
arthropod lineages. A total of 148 arthropod taxa repre-
senting all major arthropod clades including onychopho-
rans and tardigrades (the latter as outgroup taxa) were
sampled to minimize long-branch artifacts [25]. A new
alignment procedure that takes secondary structure into
account is meant to corroborate the underlying hypothe-
ses of positional homology as accurately as possible. A
new tool for quality control optimizes the signal-to-noise
ratio for the final analyses. In the final step, we try to
improve the analyses by fitting biologically realistic mixed
DNA/RNA substitution models to the rRNA data. Time-
heterogeneous runs were performed to allow for lineage
specific variation of the model of evolution.

The use of secondary structure information both corrobo-
rates hypotheses of positional homology in the course of
sequence alignment, as well as helps to avoid misleading
effects of character dependence due to covariation among
sites. It was demonstrated that ignoring correlated vari-
ance may mislead tree reconstructions biased by an over-
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emphasis of changes in paired sites [34,46,47].
Evolutionary constraints on rRNA molecules are well
known, for example constraints resulting from secondary
structure interactions. The accuracy of rRNA comparative
structure models [48-50] has been confirmed by crystallo-
graphic analyses [51,52]. Based on this background
knowledge, rRNA sequences are an ideal test case to study
the effect of biologically realistic substitution models on
tree reconstructions.

Recent studies of genome scale data revealed that a careful
choice of biologically realistic substitution models and
model fitting are of particular importance in phylogenetic
reconstructions [53-55]. The extent, however, to which
biological processes can/should be modeled in detail is
still unclear. The analyses of rRNA sequences can still
deliver new insights in this direction, since the relatively
comprehensive background knowledge allows to better
separate different aspects of the substitution processes. In
order to model covariation in TRNA sequences, we esti-
mated secondary structure interactions by applying a new
approach implemented in the software RNAsalsa [56]
(download available from http://rnasalsa.zfmk.de/),
which helps to accommodate inadequate modeling (e.g.
missing covariotide effects) of rRNA substitution proc-
esses in deep phylogenetic inference [34,57]. Essentially,
this approach combines prior knowledge of conserved site
interactions modeled in a canonical eukaryote secondary
structure consensus model with the estimation of alterna-
tive and/or additional site interactions supported by the
specific data. Inferred site covariation patterns were used
then to guide the application of mixed substitution mod-
els in subsequent phylogenetic analyses.

Finally, we accounted for inhomogeneous base composi-
tion across taxa, a frequently observed phenomenon indi-
cating non-stationary substitution processes [58-60].
Non-stationary processes, if present, clearly violate
assumptions of stationarity regularly assumed in phyloge-
netic analyses [60-62]. Thus, we modeled non-stationary
processes combined with the application of mixed DNA/
RNA substitution models in a Bayesian approach using
the PHASE-2.0 software package [63] to provide a better
fit to our data than standard substitution models [60,64].
In PHASE-2.0 a nonhomogeneous substitution model is
implemented [...] "by introducing a reversible jump
Markov chain Monte Carlo method for efficient Bayesian
inference of the model order along with other phyloge-
netic parameters of interest" [60].

Application of a new hierarchical prior leads to more rea-
sonable results when only a small number of lineages
share a particular substitution process. Additionally
PHASE-2.0 includes specialized substitution models for
RNA genes with conserved secondary structure [60].

http://www.biomedcentral.com/1471-2148/9/119

Results

We contributed 103 new and nearly complete 18S or 28S
rRNA sequences and analyzed sequences for 148 taxa
(Additional file 1), of which 145 are Arthropoda sensu
stricto, two onychophorans and Milnesium sp. (Tardi-
grada). The alignment of the 18S rRNA sequences com-
prised 3503 positions, and the 28S rRNA alignment 8184.
The final secondary consensus structures included 794
paired positions in the 18S and 1326 paired positions in
the 28S. The consensus structures contained all paired
sites that in 60% or more sequences were detected after
folding (default s3 = 0.6 in RNAsalsa). ALISCORE[G5]
scored 1873 positions as randomly similar (negative scor-
ing values in the consensus profile) to the 18S and 5712
positions of the 288 alignment (Figure 1).

Alignment filtering and concatenation of data

After the exclusion of randomly similar sections identified
by ALISCORE, 1630 (originally 3503) of the 18S rRNA and
2472 (originally 8184) positions of the 28S rRNA
remained. Filtered alignments were concatenated and
used for analyses in PHASE-2.0. The concatenated align-
ment comprised 4102 positions.

Split supporting patterns

The neighbornet graph, which results from a split decom-
position based on uncorrected p-distances (Figure 2) and
LogDet correction plus invariant sites model (see Addi-
tional file 2) pictured a dense network, which hardly
resembles a tree-like topology. This indicates the presence
of some problems typical in studies of deep phylogeny: a)
Some taxa like Diptera (which do not cluster with ectog-
nathous insects), Diplura, Protura and Collembola each
appear in a different part of the network with Diplura and
Protura seperated from other hexapods, Lepisma saccha-
rina (clearly separated from the second zygentoman Cten-
olepisma that is nested within Ectognatha), Symphyla,
Pauropoda, as well as Remipedia and Cephalocarida have
very long branches. Consequently the taxa may be mis-
placed due to signal erosion or occurrence of homopla-
sies, and their placement in trees must be discussed
critically [25]. The usage of the LogDet distance adjusts
the length of some branches but does not decrease the
amount of conflicts in deep divergence splits. b) The inner
part of the network shows little treeness, which indicates
a high degree of conflicting signal.

A remarkable observation seen in both phylogenetic net-
works is that some taxa have long stem-lineages, which
means that the species share distinct nucleotide patterns
not present in other taxa. Such well separated groups are
Copepoda, Branchiopoda, Cirripedia, Symphyla, Collem-
bola, Diplura, Protura and Diptera, while e.g. Myriapoda
partim, Chelicerata and the Ectognatha (bristletails, silver-
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ALISCORE consensus profiles of rRNA alignments. | A ALISCORE consensus profile of the 185 rRNA alignment gener-
ated from single profiles of aligned positions after applying the sliding window approach based on MC resampling. Randomly
similar sections (1873 positions) show negative score values or positive values non-random similarity (y-axis). Sequence length
and positions are given on the x-axis. | B ALISCORE consensus profile of the 285 rRNA alignment generated from single profiles
of aligned positions after applying the sliding window approach based on MC resampling. Randomly similar sections (5712 posi-
tions) show negative score values or positive values for non-random similarity (y-axis). Sequence length and positions are given

on the x-axis.

fish/firebrats and pterygote insects) excluding Diptera
share weaker patterns.

Compositional heterogeneity of base frequency

We excluded in PAUP 4.0b10 [66] parsimony uninforma-
tive positions explicitely for the base compositional heter-
ogeneity test. Randomly similar alignment blocks
identified by ALISCORE were excluded for both, the base
compositional heterogeneity test and phylogenetic

recontructions. 901 characters of the 185 rRNA and 1152
characters of the 28S rRNA were separately checked for
inhomogeneous base frequencies. Results led to a rejec-
tion of the null hypothesis (H,)), which assumes homoge-
neous base composition among taxa (18S: 2= 1168.94,
df =441, P =0.00; 28S: y2=1279.98, df = 441, P = 0.00).
Thus, base frequencies significantly differed across taxa in
both 18S and 28S data sets.
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Neighbornet graph of the concatenated 18S and 28S rRNA alignment. Neighbornet graph based on uncorrected p-
distances constructed in SplitsTree4 using the concatenated |8S and 28S rRNA alignment after exclusion of randomly similar
sections evaluated with ALISCORE. Hexapods are colored blue, crustaceans red, myriapods brown and chelicerates green. Quo-
tation marks indicate that monophyly is not supported in the given neighbornet graph.

A data partition into stems and loops revealed 477
unpaired positions and 424 paired positions in the 188,
and 515 unpaired and 637 paired positions in the 28S.
Separate analyses of all four partitions confirmed hetero-
geneity of base frequencies across taxa in all sets (P = 0.00
in all four partitions).

We repeated the homogeneity test for partitions as used in
tree reconstruction, if base pairs were disrupted by the
identification of the corresponding partner as randomly
similar (ALISCORE), remaining formerly paired positions
were treated as unpaired. Hence, 1848 characters of the
concatenated alignment (18S: 706; 28S: 1142) were
treated as paired in all analyses. Again the test revealed
heterogeneity in unpaired characters of both the 18S and
28S (P = 0.00 for both genes; 18S: 506 characters; 28S:

567 characters). Examination at paired positions also
rejected the null hypothesis H, (18S, 395 characters
included: P < 0.0003, 28S, 585 characters included: P =
0.00). Since non-stationary processes in all tests were
strongly indicated, we chose to apply time-heterogeneous
models to account for lineage-specific substitution pat-
terns. To fix the number of "free base frequency sub-mod-
els" in time-heterogeneous analyses, we identified the
minimal exclusive set of sequence groups. Based on y?2-
tests the dataset could be divided into three groups for
both rRNA genes. In both genes Diptera are characterized
by a high A/T content and Diplura by a low A/T content.
Exclusion of only one of the groups was not sufficient to
retain a homogeneous data set (18S: excluding Diptera: 32
= 97291, df = 423, P = 0.00, excluding Diplura: p2 =
532.13, df = 423, P < 0.0003; 28S: excluding Diptera: 2=
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986.72, df = 423, P = 0.00, excluding Diplura: 2= 813.8,
df = 423, P = 0.00). Simultaneous exclusion of both
groups led to acceptance of H, for 18S sequences (32 =
342.22,df =405, P = 0.99). For the 28S, after exclusion of
both groups, H, was still rejected (2= 524.98, df = 405, P
< 0.0001). After sorting taxa according to base frequencies
in ascending order, additional exclusion of Peripatus sp.
and Sinentomon erythranum resulted in a homogeneous
base composition for the 28S gene (H,: y2 = 434.99, df =
399, P = 0.1), likewise indicating that three sub-models
are suffucient to cover the taxon set. We repeated the
homogeneity-test for stem and loop regions of each gene
seperately. The exclusion of Diplura was sufficient to
obtain homogeneity in the loop regions for both genes
(18S: 474 characters, P = 0.9757; 28S: 541 characters, P =
0.0684). For stem regions in the 18S it likewise was suffi-
cient to exclude either Diptera (378 characters, P =
0.6635) or Diplura (385 characters, P = 0.99). These par-
titions would make two sub-models sufficient to cover the
data set. However, in the stem regions of the 28S homoge-
neity was received only after the exclusion of both Diptera
and Diplura (547 characters, P = 0.99). Since PHASE-2.0
does not allow to vary the number of chosen sub-models
among partitions, we applied and fitted three sub-models
to each data partition.

Phylogenetic reconstructions

Three combinations of mixed DNA/RNA models (REV + T"
& RNA16I + T, TN93 + ' & RNA16] + I and HKY85 + ' &
RNA16K + I') were compared to select the best model set.
Overall model In likelihoods converged for all tested
mixed models after a burn-in of 250,499 generations in
an initial pre-run of 500,000 generations. However, most
parameters did not converge for the combined REV + I' &
RNA16I + I' models, consequently, this set up was
excluded from further analyses. For each of the remaining
two sets a chain was initiated for 3 million generations,
with a burn-in set to 299,999 generations. The applied
Bayes Factor Test [[67,68], BFT], favored the TN93 + I' &
RNA16] + I' model combination (2inB,, = 425.39, har-
monic mean InL,(TN93 + I' & RNA16J + I') = 79791.08;
harmonic mean InL,(HKY85 + I' & RNA16K + I') =
80003.78). For each approach (Aditional file 3) all chains
which passed a threshold value in a BFT were assembled
to a metachain. Each resulting extended majority rule con-
sensus tree was rooted with Milnesium. Node support val-
ues for clades were deduced from 56,000 sampled trees
for the time-heterogeneous set (Figure 3) and from
18,000 sampled trees for the time-homogeneous set (Fig-
ure 4), detailed support values are shown in Additional
file 3. Harmonic means of the In likelihoods of included
time-heterogeneous chains were compared against all In
likelihoods of included time-homogeneous chains (burn-
in discarded) in a final BFT: the time-heterogeneous
model was strongly favored (2InB,,= 1362.13).

http://www.biomedcentral.com/1471-2148/9/119

Resulting topologies

Representatives of Symphyla and Pauropoda, already
identified in the neighbornet graph as taxa with conspicu-
ously long branches (Figure 2), assumed unorthodox
positions in both trees which are clearly incongruent with
morphological evidence and results obtained from other
genes. Symphyla formed the sister group of all remaining
arthropod clades, and Pauropoda clustered with Onycho-
phora. Consequently, myriapods always appeared
polyphyletic in both analyses. We consider these results as
highly unlikely, since they contradict all independent evi-
dence from morphology, development, and partly from
other genes. In the following, we focus on major clades
and point out differences between time-heterogeneous
tree (Figure 3) and time-homogeneous tree (Figure 4)
without considering the position of Symphyla and Pauro-
poda. Possible causes for the misplacement of these
groups, however, will be treated in the discussion. Both
analyses supported a monophyletic Chelicerata (pP 0.91
in the time-heterogeneous tree and maximal support in
the time-homogeneous tree) with Pycnogonida (sea spi-
ders) as sister group to remaining chelicerates. Pycnogon-
ida received maximal support in both analyses.
Euchelicerata received highest support in the time-homo-
geneous approach while this clade in the time-heteroge-
neous approach received a support of only pP 0.89.
Limulus polyphemus (horseshoe crab) clustered within
arachnids, but some internal relationships within Euchel-
icerata received only low support. Chilopoda always
formed the sister group of a monophyletic Diplopoda in
both analyses with high support. Within the latter the
most ancient split lied between Penicillata and
Helminthomorpha. This myriapod assemblage — Myriap-
oda partim - formed the sister group of Chelicerata, thus
giving support to the Myriochelata hypothesis, respec-
tively Myriochelata partim, when the long-branch clades
Symphyla and Pauropoda are disregarded.

Pancrustacea showed always maximal support. The
monophyly of Malacostraca and Branchiopoda received
highest support in both approaches while their position
varied. Branchiopoda was the sister group of the clade
consisting of Copepoda + Hexapoda in the homogeneous
tree (Figure 4), however the cephalocarid Hutchinsoniella
nested within hexapods. Among hexapods, monophyly
was unambiguously supported for Protura, Diplura, Col-
lembola, Archaeognatha, Odonata, Ephemeroptera, Phas-
matodea, Mantophasmatodea, Mantodea, Plecoptera,
Hemiptera, Coleoptera, Hymenoptera, Lepidoptera and
Diptera. Diplura clustered with Protura, and gave support
to a monophyletic Nonoculata. Pterygota occurred in
both topologies, well supported in the non-stationary tree
(pP 0.97) and with moderate support (pP 0.94) in station-
ary tree. Within the winged insects, both analyses resolved
Odonata as the sister group to a well supported mono-
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phyletic clade Ephemeroptera + Neoptera (heterogene-
ous: pP 0.96; homogeneous: pP 0.97), known as the
"Chiastomyaria" clade [32,34,35,69]. Blattodea were
always paraphyletic with respect to the isopteran repre-
sentative. This assemblage formed a sister group relation-
ship with Mantodea, thus giving support to a
monophyletic Blattopteroidea or Dictyoptera while the
position of Dictyoptera among hemimetabolan insects
differed. Dermaptera always clustered with Plecoptera.
Hemiptera (Heteroptera + Homoptera) in both
approaches formed a clade with the remaining orthopter-
ans + ((Acheta + Mantophamsmatodea)Phasmatodea)
with low statistical support. Caused by Acheta orthopteran
insects appeared always polyphyletic. Within the mono-
phyletic Holometabola (pP 1.0), Hymenoptera formed
the sister group of the remaining taxa.

While the time-heterogeneous and time-homogeneous
trees corresponded in overall topologies, they differed in
a number of remarkable details.

1) Hexapoda, Entognatha, Ectognatha and Dicondylia
were only reconstructed in the time-heterogeneous
approach. 2) The cephalocarid Hutchinsoniella clustered
among crustaceans as sister group to the Branchiopoda
only in the heterogeneous approach, this clade formed the
sister group to (Copepoda + Hexapoda) although with
low support. 3) The time-homogeneous runs revealed
highly supported (Malacostraca + Ostracoda) as the sister
group to a clade ((Mystacocarida + Pentastomida) +
(Branchiura + Cirripedia)). In contrast, in the time-heter-
ogeneous analysis more terminal positioned Malacostraca
are the sister group of a clade (Pentastomida((Cephalo-
carida + Branchiopoda) + (Copepoda + Hexapoda))). The
altered postition of Pentastomida was only low supported
in this tree. 4) In the homogeneous tree Hutchinsoniella
emerged as sister taxon to Lepisma with low support (pP
0.72), and this cluster was positioned within the remain-
ing hexapods (Figure 4). Hexapoda were monophyletic
only in the time-heterogeneous approach, well supported
(pP 0.96, Figure 3), with Copepoda as sister group, latter
with low support (pP 0.69). 5) In the time-homogeneous
tree (Figure 4), Copepoda emerged as sister group, again
with a low support value (pP 0.70) of ((Lepisma + Hutch-
insoniella) + "Hexapoda"). 6) Entognatha (pP 0.98), and
Ectognatha (pP 1.0) and Dicondylia (pP 0.99) were
monophyletic only in the time-heterogeneous tree. 7) The
time-heterogeneous tree showed the expected paraphyly
of primarily wing-less insects with Archaeognatha as sister
group to Zygentoma + Pterygota. 8) Within pterygote
insects (Dermaptera + Plecoptera) emerged as sister group
of Dictyoptera in the non-stationary tree, contrary as sister
group of Holometabola in the stationary tree, both sce-
narios with negligible support.
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Discussion

Among arthropods 18S and 28S rRNA genes have the
densest coverage of known sequences. Apart of some
exceptions most studies on phylogenetic relationships at
least partly rely on rRNA data. Often, however, only one
of the genes was used, sometimes even just fragments of a
gene [23,32,34,40,42,44,70-72], while only few studies
used nearly complete 18S and 28S rRNA sequences
[1,11,73]. Despite this wide usage, the reliability of recon-
structions based on rRNA markers is still debated (for con-
tradicting views see [34,74,75]. A major cause of concern
is the pronounced site heterogeneity of evolutionary rates,
the non-stationarity of base composition among taxa and
rate variation in time. All three phenomena quickly lead
to the erosion of phylogenetic signal [76]. On the one
hand, our understanding of the molecular structure of
other markers and about taxon-dependent processes of
molecular evolution remains poor. On the other hand,
our vast background knowledge regarding rRNA mole-
cules offers a unique opportunity to study the effects of
selection and application of substitution models in
greater detail.

Quality check and character choice in alignments
Phylogenetic signal in sequence data can get noisy due to
(i) multiple substitution processes (saturation) and (ii)
erroneous homology hypotheses caused by ambiguous
sequence alignment. Both effects correspond in that they
result in random similarity of alignment regions. Such
noisy sections potentially bias tree reconstructions in sev-
eral ways which have been appreciated for years but only
recently been applied, that allow to account for these
problems [25,54,77,78]. Exclusion of these ambiguously
aligned or saturated regions can help to reduce noise, see
e.g. [65]. If this topic is addressed at all, the majority of
studies include a manual alignment check for untrustwor-
thy regions [1,4,22,32,34,39,44,71-73]. Only some recent
publications addressing arthropod relationships have
used automated tools, e.g. [14,79,80].

To identify alignment sections of random similarity prior
to tree reconstructions, we used ALISCORE, which, com-
pared to the commonly used Gblocks [81], is not depend-
ent on the specification of an arbitrary threshold [65]. To
improve the signal-to-noise ratio we restricted our charac-
ter choice to alignment sections which contained nucle-
otide patterns that differ from randomized patterns.

Phylogenetic reconstruction methods

Arthropod phylogenies have been inferred with recon-
struction methods like Maximum Parsimony, Maximum
Likelihood and Bayesian approaches. We tried to imple-
ment knowledge about the evolution of rRNA in two
ways: (i) the use of mixed DNA/RNA models is meant to
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account for known instances of character dependence due
to compensatory mutations in stem regions, (ii) the appli-
cation of time-heterogeneous models accounts for non-
stationary processes that occurred in arthropod lineages.
The consensus secondary structure of our dataset, gener-
ated with RNAsalsa, can be understood as a model param-
eter that defines site interactions and thus character
dependence due to compensatory mutations [34,82,83].
Neglect of character dependence surely results in unrealis-
tic support values. In single low supported nodes, where
the signal-to-noise ratio is at the edge of resolution, such
a neglect theoretically can even turn the balance between
two competing hypotheses. Additionally a consensus sec-
ondary structure is necessary to apply a mixed model
approach, since it determines whether the evolution of a
given site is modeled by the DNA-model, or as part of a
base-pair by the RNA-model. Within the mixed model
approach, we opted for DNA-corresponding 16-state RNA
models [63]. It can certainly be argued that the choice of
16-state models is problematic because it is difficult to fit
these models to real data due to their parameter richness
and heavy computational costs. However, even the best
choice of a consensus secondary structure can only cap-
ture the predominantly conserved structural features
among the sequences. This implies that the applied RNA
models must be able to cope with mismatches in base-
pairing. Less complex RNA models like those of the 6 and
7-state families either ignore mismatches completely or
pool these mismatches into a single character state which
produces artificial synapomorphies. Additionally, accord-
ing to Schoninger and v. Haeseler [84], it is more likely
that co-variation is a multiple step process which allows
for the intermediate existence of instable (non Watson-
Crick) pairs. These intermediate states are only described
in 16-state RNA models.

Concerning rRNA-genes of arthropods, shifts in base com-
position are mentioned for Diptera, Diplura, Protura and
Symphyla [1,23,34,44,73,85]. Since base compositional
heterogeneity within a dataset can mislead phylogenetic
reconstruction [61,86,87] and [60], some of these studies
discussed observed but not incorporated non-stationary
processes as possible explanations for misplacements of
some taxa [11,23,24,44,73]. The selective exclusion of
these taxa to test for misleading effects on the remaining
topology, however, is not appropriate to test whether
non-stationarity really fits as the causal explanation of the
placement incongruent with other analyses. LogDet meth-
ods have been applied to compensate for variations of
base frequencies [1,11,44], which leads to some inde-
pendence of non-stationarity, but among site rate varia-
tion (ASRV) cannot be handled efficiently. After detecting
compositional base frequency heterogeneity in our data,
we chose a non-stationary approach implemented in
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PHASE-2.0. Because no previous study of arthropod phy-
logeny has used a time-heterogeneous approach includ-
ing mixed DNA/RNA models, we compared this approach
with a "classical" time-homogeneous setup. Our results
prove that the time-heterogeneous approach produces
improved likelihood values with improved branch
lengths estimates and more realistic, though not perfect
(see below), topology estimates. Since modeling of gen-
eral time-heterogeneous processes is in its infancy and
since its behavioural effect on real data is relatively
unknown [60,61], we favored a set up accounting for the
three different "submodels" corresponding to three base
frequency categories in our dataset (Additional file 4). The
application of the three submodels to individual branches
in a tree by the MCMC process was not further con-
strained. This scheme allowed for a maximum of flexibil-
ity without losing the proper mix of parameters.

Conflicting phylogenetic hypotheses and non-stationary
processes of rRNA evolution

The comparison of our time-homogeneous approach to
our time-heterogeneous one was not only meant to show
improvements in the application of more realistic models,
but also to indicate which incongruities of analyses of
rRNA genes may be causally explained by non-stationary
processes during the evolution of these genes.

In our time-homogeneous approach, the crustacean
Hutchinsoniella (Cephalocarida) clustered with Lepisma
(Zygentoma, Hexapoda) within enthognathans as sister
group to Nonoculata (Protura + Diplura), (see Figure 4).
This led to the polyphyly or paraphyly of several major
groups (e.g. Hexapoda, Entognatha, Ectognatha,
Dicondylia). In our time-heterogeneous analysis, Cepha-
locarida clustered as sister group to Branchiopoda. This
result, although marginal supported, is congruent, at least,
with some morphological data [88]. Most recent molecu-
lar studies have not included Cephalocarida, e.g. [1,11].
Regier et al. [12] reconstructed a sister group relationship
of Remipedia and Cephalocarida (likewise represented by
Hutchinsoniella), but his result also received only moder-
ate bootstrap support. The same clade was presented in
Giribet et al. [9] based on morphological and molecular
data.

Independent of the sister group relationship of Cephalo-
carida within crustaceans, the correction of the misplace-
ment of Hutchinsoniella, by allowing for non-stationary
processes, has a major effect on the heuristic value of our
analyses. Not only is the monophyletic status of Hexap-
oda, Entognatha, Ectognatha, Dicondylia supported after
the correction, but likewise a causal explanation is given
for the misplacement in the time-homogeneous
approach, which cannot be accomplished by alternatively
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excluding the taxon. Our time-heterogeneous analyses
resulted in a sister group relationship of Diplura and Pro-
tura, which lends support to a monophyletic Nonoculata
within a monophyletic Entognatha. This result is congru-
ent with trees published by Kjer [32], Luan et al. [44], Mal-
lat and Giribet [1], and Dell'Ampio et al. [23]. Following
Luan et al. [44] Dell'Ampio et al. [23] cautioned that Non-
oculata may be an artificial cluster caused by a shared
nucleotide bias and long branch attraction. Since this
node is recovered with high support by our non-station-
ary approach, Nonoculata cannot be suspected of being
an artificial group based on shared compositional biases
alone. However, one must keep in mind that Protura and
Diplura have longer branches than Ectognatha and Colle-
mbola (Figure 3 and 4), and long-branch effects may still
be present. Thus monophyly of a clade Nonoculata still
awaits support from a data set independent from rRNA
sequences.

Clades not affected by non-stationary processes

Symphyla and Pauropoda

Although we tried to break down long branches by a
dense taxon sampling, some long-branch problems per-
sisted. We cannot clearly address the reason but, due to
the symptoms, assume that saturation by multiple substi-
tution caused signal erosion (class II effect, [25]). To eval-
uate the impact on the topology of the very likely incorrect
positions of Symphyla and Pauropoda, we repeated the
time-heterogeneous analysis using a reduced dataset
excluding these taxa. We limited the analysis to ten chains
with 7, 000, 000 generations each (2, 000, 000 burn-in).
Differences occurring in the inferred consensus topology
(not shown) of the final three chains (15, 000, 000 gener-
ations) show that some nodes are still sensitive to taxon
sampling, since e.g. Pycnogonida clustered with (Chilop-
oda + Diplopoda) after exclusion of pauropod and sym-
phylan sequences. Also the crustacean topology changed,
remaining long branch taxa Hutchinsoniella and Speleo-
nectes clustered together in the reduced dataset, forming a
clade with (Branchiura + Cirripedia).

Mandibulata versus Myriochelata

Analyses of rRNA sequences up till now were held to favor
Myriochelata (Myriapoda + Chelicerata) over Mandibu-
lata [1,4,11]. Our analyses provide no final conclusion
with respect to this conflict, since the position of Paurop-
oda and Symphyla is unusual, it results in polyphyletic
myriapods. The exact reconstruction of the position of
myriapods within the Euarthropoda thus demands e.g.
the application of new markers and suitable phylogenetic
strategies.

Phylogenetic position of Malacostraca and Pentastomida
The position of Malacostraca differs among molecular
studies. Often, Malacostraca emerge as nested within the
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remaining crustacean groups, e.g. [5,89]. Complete mito-
chondrial genomes place Malacostraca close to insects
[90,91]. However, studies of rRNA sequences recover this
group as the sister group to all remaining crustaceans
[1,11,92]. Since in our stationary tree monophyletic Mala-
costraca branched off at a more basal split within crusta-
ceans [88,93], forming a sister group relationship to
Ostracoda and contrary they branched off at a more termi-
nal split in the non-stationary tree we cannot draw a final
conclusion about the placement of Malacostraca. Unfor-
tunately the position of the Pentastomida remains ambig-
uous in our analyses, we argue that low pP values might
be induced by conflicting phylogenetic signal.

Sister group of Hexapoda

The sister group of Hexapoda is still disputed. Most
molecular studies support paraphyly of crustaceans with
respect to hexapods. A sister group relationship between
Branchiopoda and Hexapoda was proposed for the first
time by Regier and Shultz [94], yet with low support.
Shultz and Regier [5] and Regier et al. [12] corroborated
this relationship, which is likewise favored by authors of
rRNA-based studies [1,11], despite their result that
Cyclopidae (Copepoda) is the sister group of Hexapoda.
Our denser taxon sampling further supports Copepoda
as the sister group to Hexapoda, but the low support
value might indicate conflicting signal. This clade up till
now, however, lacks any support from morphological
studies.

Ancient splits within pterygote insects

We find that the rRNA data cannot robustly resolve the
most ancient splits within Pterygota. Nonetheless, IRNA
data, when analyzed under more realistic models favour
Chiastomyaria as the most likely hypothesis. Since all
three possible arrangements of Odonata, Ephemeroptera
and Neoptera likewise receive morphological support, we
agree with Whitfield and Kjer [35] that the ambiguity can
best be explained by early 'explosive radiation' within
Pterygota.

Conclusion

We conclude that the implementation of biologically
realistic model parameters, such as site interaction
(mixed DNA/RNA models) and compositional heteroge-
neity of base frequency, is fundamental to robustly
reconstruct phylogenies. The most conspicuous exam-
ples comparing our tress are a) the position of Hutchin-
soniella (Crustacea), although a low pP value of 0.59 in
the non-stationary tree prohibits conclusions about its
internal crustacean relationship and b) the well sup-
ported position of Ctenolepisma and Lepisma (Zygen-
toma). As a consequence, the monophyly of Hexapoda,
Entognatha and Ectognatha and Dicondylia received
support only in the time-heterogeneous approach. Sev-

Page 11 of 19

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:119

eral artificial clades remain in our analyses which cannot
be causally explained unambiguously. However, the
examples given here clearly demonstrate that the proba-
bility to causally explain some incongruities between dif-
ferent data sets, as well as the correction of certain
obvious misplacements, is enhanced by using more
complex but realistic models. The present study aimed to
incorporate background knowledge on the evolution of
molecular sequences in general and ribosomal RNA-
genes in special into various steps of data processing. For
all steps fully automated methods were used, including
an automated secondary structure guided alignment
approach, a software that enables to distinguish random
similarity from putative phylogenetic signal, mixed
models that avoid artefacts due to co-variation among
sites, and analyses that account for variation of evolu-
tionary rates among lineages. The resolution of many
relationships among arthropods, and the minimization
of obvious misplacements demonstrate that the
increased computational effort pays off.

Methods

Taxon Sampling

Our taxon sampling was designed to represent a taxonom-
ically even collection of specimens across arthropod
groups. In particular, we took care to include taxa which
do not differ too widely from the hypothetical morpho-
logical ground-pattern of the represented group, when
possible [53,78]. In total we included 148 concatenated
18S and 28S rRNA sequences in the analysis (Additional
file 1). Of these, we contributed 103 new sequences, 41
for the 18S and 62 for the 28S rRNA gene, respectively.
Only sequences which span at least 1500 bp for the 18S
and 3000 bp for the 28S were included. For 29 taxa we
had to construct chimeran concatenated sequences of 18S
and 28S rRNA sequences of different species, marked with
an asterisk. Details are listed in Additional file 5, we chose
species as closely related as possible depending on it's
availability in GenBank. The outgroup included the con-
catenated 18S and 28S rRNA sequences of Milnesium sp.
(Tardigrada).

Laboratory work

Collected material was preserved in 94 - 99% ethanol or
liquid nitrogen. Samples were stored at temperatures
ranging from -20°C to -80°C. DNA extraction of com-
plete specimens or tissue followed different standard pro-
tocols. We used phenol-chloroform isoamyl extraction
[95], standard column DNA extraction kits DNeasy Blood
& Tissue Kit (Qiagen) and NucleoSpin Tissue Kit (Mach-
ery-Nagel) following the manual. Single specimens were
macerated for extraction, only specimens of Ctenocephali-
des felis were pooled. Manufacturer protocols were modi-
fied for all crustaceans, some apterygote hexapods and
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myriapods (overnight incubation and adding 8 ¢l RNAse
[10 mg/ml] after lysis). Extracted genomic DNA was
amplified with the Illustra GenomiPhi V2 DNA Amplifi-
cation Kit (GE Healthcare) for tiny, rare or hard to collect
specimens.

Partly published rRNA primer sets were used, they were
designed in part for specific groups (Additional file 6 and
7). The 18S of crustaceans was amplified in one PCR prod-
uct and sequenced using four primer combinations. The
18S of apterygotes was amplified in three or four frag-
ments (Additional file 8). The 28S of crustaceans and
basal hexapods was amplified in nine overlapping frag-
ments starting approximately in the middle of the rRNA
5.8S to the nearly end of the D12 of 28S rRNA (Additional
file 9). The 28S of odonats was amplified in seven or eight,
the 28S of ephemeropterans and neopterans in eight over-
lapping fragments (Additional file 10). Primers were
ordered from Metabion, Biomers or Sigma-Genosys. PCR
products were purified using following kits: NucleoSpin
Extractionll (Machery-Nagel), QIAquick PCR purification
kit (Qiagen), peqGOLD Gel Extraction Kit (peqLab Bio-
technologie GmbH), MultiScreen PCR Plate (Millipore)
and Exol (Biolabs Inc.)/SAP (Promega). Some samples
were purified using a NHAc [4 mol] based ethanol precip-
itation. In case of multiple bands fragments with the
expected size were cut from 1% - 1.5% agarose gel and
purified according to manufacturer protocols.

Cycle sequencing and sequence analyses took place on
different thermocyclers and sequencers. Cycle sequencing
products were purified and sequenced double stranded.
Several amplified and purified PCR products were
sequenced by Macrogen (Inc.), Korea. Sequencing of the
28S fragment 28V — D10b.PAUR of the Pauropodidae sp.
(Myriapoda) was only successful via cloning. Fragments
of the 28S rRNA of the diplopod Monographis sp. (Myr-
iapoda) were processed following Mallatt et al. [11] and
Luan et al. [44]. Please refer to the electronic supplement
(Additional file 11) for detailed information about PCR-
conditions, applied temperature profiles (Additional file
12), primer combinations, used chemicals (Additional
file 13) and settings to amplify DNA fragments. Sequence
electropherograms were analyzed and assembled to con-
sensus sequences applying the software SeqMan (DNAS-
tar Lasergene) or BioEdit 7.0 [96]. All sequences or
composed fragments were blasted in NCBI using BLASTN,
mega BLAST or "BLAST 2 SEQUENCES" [97] to exclude
contaminations.

Alignments and alignment evaluation

Secondary structures of rRNA genes were considered (as
advocated in [98-101] to improve sequence alignment.
Structural features are the targets of natural selection, thus
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the primary sequence may vary, as long as the functional
domains are structurally retained. Alignments and their
preparation for analyses were executed for each gene sep-
arately. We prealigned sequences using MUSCLE v3.6
[102]. Sequences of 24 taxa of Pterygota were additionally
added applying a profile-profile alignment [103]. The 28S
sequences of Hutchinsoniella macracantha (Cephalocar-
ida), Speleonectes tulumensis (Remipedia), Raillietiella sp.
(Pentastomida), Eosentomon sp. (Protura) and Lepisma sac-
charina (Zygentoma) were incomplete. Apart from L. sac-
charina, prealignments of these taxa had to be corrected
manually. We used the "BLAST 2 SEQUENCES" tool to
identify the correct position of sequence fragments in the
multiple sequence alignment (MSA) for these incomplete
sequences.

The software RNAsalsa [56] is a new approach to align
structural RNA sequences based on existing knowledge
about structure patterns, adapted constraint directed ther-
modynamic folding algorithms and comparative evidence
methods. It automatically and simultaneously generates
both individual secondary structure predictions within a
set of homologous RNA genes and a consensus structure
for the data set. Successively sequence and structure infor-
mation is taken into account as part of the alignment's
scoring function. Thus, functional properties of the inves-
tigated molecule are incorporated and corroborate
homology hypotheses for individual sequence positions.
The program employs a progressive multiple alignment
method which includes dynamic programming and affine
gap penalties, a description of the exact algorithm of RNA-
salsa will be presented elsewhere.

As a constraint, we used the 28S + 5.8S (U53879) and 18S
(V01335) sequences and the corresponding secondary
structures of Saccharomyces cerevisae extracted from the
European Ribosomal Database [104-106]. Structure
strings were converted into dot-bracket-format using Perl-
scripts. Folding interactions between 28S and 5.8S
[74,107,108] required the inclusion of the 5.8S in the
constraint to avoid artificial stems. Alignment sections
presumably involved in the formation of pseudoknots
were locked from folding to avoid artifacts. Pseudoknots
in Saccharomyces cerevisae are known for the 18S (stem 1
and stem 20, V4-region: stem E23 9, E23 10, E23 11 and
E23 13) while they are lacking in the 28S secondary struc-
ture. Prealignments and constraints served as input, and
RNAsalsa was run with default parameters. We con-
structed manually chimeran 18S sequences of Speleonectes
tulumensis (EU370431, present study and L81936) and
28S sequences of Raillietiella sp. (EU370448, present
study and AY744894). Concerning the 18S of Speleonectes
tulumensis we combined positions 1-1644 of L81936 and
positions 1645-3436 of sequence EU370043. Regarding
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the 28S of Raillietiella we combined positions 1-3331 of
AY744894 with positions 3332-7838 of sequence
EU370448. Position numbers refer to aligned positions.

RNAsalsa alignments were checked with ALISCORE[65].
ALISCORE generates profiles of randomness using a sliding
window approach. Sequences within this window are
assumed to be unrelated if the observed score does not
exceed 95% of scores of random sequences of similar win-
dow size and character composition generated by a Monte
Carlo resampling process. ALISCORE generates a list of all
putative randomly similar sections. No distinction is
made between random similarity caused by mutational
saturation and alignment ambiguity. A sliding window
size (w = 6) was used, and gaps were treated as ambiguities
(- N option).

The maximum number of possible random pairwise com-
parisons (- r: 10,878) was analyzed. After the exclusion of
putative random sections and uninformative positions
using PAUP 4.0b10, alignments were checked for compo-
sitional base heterogeneity using the y2-test. Additionally,
for each sequence the heterogeneity-test was performed
for paired and unpaired sites separately. Further heteroge-
neity-tests were applied to determine the minimal
number of base frequency groups.

RNAsalsa generated consensus structure strings for 18S
and 28S rRNA sequences, subsequently implemented in
the MSA. Randomly similar sections identified by ALIS-
CORE were excluded using a Perl-script. ALISCORE currently
ignores base pairings. If ambiguously aligned positions
within stems are discarded the corresponding positions
will be handled as an unpaired character in the tree recon-
struction. The cleaned 18S and 28S alignments were con-
catenated.

To analyze information content of raw data SplitsTree4
was used to calculate phylogenetic networks (see Huson
and Bryant [109] for a review of applications). We com-
pared the network structure based on the neighbornet
algorithm [110] and applying the LogDet transformation,
e.g. [111,112]. LogDet is a distance transformation that
corrects for biases in base composition. The network
graph gives a first indication of signal-like patterns and
conflict present in the alignments. We used the alignment
after filtering of random-like patterns with ALISCORE.

Phylogenetic reconstruction

Mixed DNA/RNA substitution models were chosen, in
which sequence partitions corresponding to loop regions
were governed by DNA models and partitions corre-
sponding to stem regions by RNA models that consider
co-variation. Among site rate variation [113] was imple-
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mented in both types of substitution models. Base fre-
quency tests indicated that base composition was
inhomogeneous among taxa (see results), suggesting non-
stationary processes of sequence evolution. To take such
processes into account the analyses were performed in
PHASE-2.0 [63] to accommodate this compositional het-
erogeneity to minimize bias in tree reconstruction. Base
compositional heterogeneity is implemented in PHASE-
2.0 according to the ideas developed by Foster [87].

We limited the number of candidate models to the REV +
[, TN93 + T and the HKY85 + I models for loop regions
and the corresponding RNA16I + I, RNA16J + I' and
RNA16K + ' models for stem regions. Site heterogeneity
was modeled by a discrete gamma distribution [114] with
six categories. The extent of invariant characters was not
estimated since it was shown to correlate strongly with the
estimation of the shape parameter of the gamma distribu-
tion [113,115-117]. The data was partitioned into four
units representing loop and stem regions of 18S rRNA and
loop and stem regions of 28S rRNA. DNA and RNA sub-
stitution model parameters were independently estimated
for each partition. Substitution models were selected
based on results of time-homogeneous setups. We tested
three different combinations of substitution models, REV
+ ' & RNA16I + I, TN93 + I & RNA16] + I' and HKYS85 +
I' & RNA16K + I'. We used Dirichlet distribution for pri-
ors, proposal distribution and Dirichlet priors and pro-
posals for a set of exchangeability parameters (Additional
file 14) described in Gowri-Shankar and Rattray [60].

Appropriate visiting of the parameter space according to
the posterior density function [118] was checked by plot-
ting values of each parameter and monitoring their con-
vergence. This was calculated for all combinations after
500,000 generations (sampling period: 150 generations).
We discarded models in which values of several parame-
ters did not converge. For models which displayed conver-
gence of nearly all parameter values, we re-run MCMC
processes with 3,000,000 generations and a sampling
period of 150 generations. Prior to comparison of the har-
monic means of InL values, 299,999 generations were dis-
carded as burn-in. After a second check for convergence
the model with the best fitness was selected applying a
Bayes Factor Test (BFT) to the positive values of the har-
monic means calculated from InL values [67,68]. The
favored model (2InB,,> 10) was used for final phyloge-
netic reconstructions.

To compare results of time-homogeneous and time-heter-
ogeneous models, 14 independent chains of 7,000,000
generations and two chains of 10 million generations for
both setups were run on Linux clusters (Pentium 4, 3.0
GHz, 2 Gb RAM, and AMD Opteron Dual Core, 64 bit sys-
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tems, 32 Gb RAM). For each chain the first two million
generations were discarded as burn-in (sampling period
of 1000). The setup for the time-homogeneous approach
was identical to the pre-run except for number of genera-
tions, sampling period and burn-in. The setting for the
time-heterogeneous approach differed (Additional file 4).
We followed the method of Foster [87] and Gowri-
Shankar and Rattray [60] in the non-homogeneous setup
whereby only a limited number of composition vectors
can be shared by different branches in the tree. Exchange-
ability parameters (average substitution rate ratio values,
rate ratios and alpha shape parameter) were fixed as input
values. Values for these parameters were computed from
results of the preliminary time-homogeneous pre-run
(3,000,000 generations). A consensus tree was inferred in
PHASE mcmcsummarize using the output of the pre-run.
This consensus tree topology and the model file of this
run served as input for a ML estimation of parameters in
PHASE optimizer. Estimated values of exchangeability
parameters from the resulting optimizer output file and
estimated start values for base frequencies were fed into
mcmcphase for the time-heterogeneous analysis. Values of
exchangeability parameters remained fixed during the
analysis. The number of allowed base frequency catego-
ries (models) along the tree was also fixed. The number of
base frequency groups was set to three "submodels"),
reflecting base frequency heterogeneity.

Harmonic means of InL values of these 16 independent
chains were again compared with a BFT to identify possi-
ble local optima in which a single chain might have been
trapped. We only merged sample data of chains with a
2InB,,-value < 10 [67] using a Perl-script to construct a
"metachain" [119]. Finally we included ten time-hetero-
geneous chains and three time-homogeneous chains. The
assembled meta-chains included 56 million generations
for the non-stationary approach (Additional file 15) and
18 million generations for the time-homogeneous
approach (Additional file 16), burn-ins were discarded.
Consensus trees and posterior probability values were
inferred using mcmcsummarize. Branch lengths of the time-
homogeneous and time-heterogeneous consensus tree
were estimated using three mcmcphase chains (4 million
generations, sampling period 500, topology changes
turned off, starting tree = consensus tree, burn-in: 1 mil-
lion generations) from different initial states with a
Gowri-Shankar modified PHASE version. To infer mean
branch lengths we combined data with the described
branch lengths and mcmcsummarize. These mean branch
lengths were used to redraw the consensus tree (Addi-
tional file 4).

Localities of sampled specimen used for amplication are
listed in Additional file 17.
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List of abbreviations

rRNA: ribosomal RNA; PCR: polymerase chain reaction;
RNA: ribonucleic acid; DNA: deoxyribonucleic acid; df:
degree of freedom; P: probability; pP: posterior probabil-
ity; sp.: species epithet not known; In: natural logarithm or
log,; BFT: Bayes Factor Test.
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Additional material

Additional file 1

Taxa list. Taxa list of sampled sequences. * indicates concatenated 18S
and 28S rRNA sequences from different species. For combinations of
genes to construct concatenated sequences of chimeran taxa, see Table S1.
** contributed sequences in the present study (author of sequences).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S1.xls]

Additional file 2

LogDet corrected network of concatenated 18S and 28S rRNA align-
ment. LogDet corrected network plus invariant site models (30.79%
invariant sites) using SplitsTree4 based on the concatenated 18S and 28S
TRNA alignment after exclusion of randomly similar sections evaluated
with ALISCORE.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-82.pdf]

Additional file 3

Bayesian support values for selected clades. List of Baysian support val-
ues (posterior probability, pP) for selected clades of the time-heterogeneous
and time-homogeneous tree.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S3.xls]

http://www.biomedcentral.com/1471-2148/9/119

Additional file 4

Detailed flow of the analysis procedure in the software package
PHASE-2.0. Options used in PHASE-2.0 are italicized above the arrows
and are followed by input files. Black arrows represent general flows of the
analysis procedure, green arrows show that results or parameter values
after single steps were inserted or accessed in a further process. Red block-
arrows mark the final run of the time-heterogeneous and time-homogene-
ous approach with 16 chains each (2 x 118,000,000 generations). First
row: I.) We prepared 3 control files (control.mcmc) for mcmcphase
using three different mixed models. This "pre-run" was used for a first
model selection (500,000 generations for each setting). We excluded
model (C) based on non-convergence of parameter values. I1.) We
repeated step one (1.) with 3,000,000 generations using similar control
files (different number of generations and random seeds) of the two
remaining model settings. Calculated In likelihoods values of both chains
were compared in a BFT resulting in the exclusion of mixed model (A).
Parameter values of the remaining model (B) were implemented in the
time-heterogeneous setting. I11.) We started the final analysis (final run)
using sixteen chains for both the time-homogeneous and the time-hetero-
geneous approach. In the final time-homogeneous approach, the control
files were similar to step 11.) except for a different number of generations
and random seeds. Second row: Additional steps were necessary prior to
the computation of the final time-heterogeneous chains. We applied
mcmcsummarize for the selected mixed model (B) to calculate a consen-
sus tree. Optimizer was executed to conduct a ML estimation for each
parameter value (opt.mod) based on the inferred consensus tree and opti-
mized parameter-values (mcmc-best.mod), a data file delivered by mcm-
cphase. Estimated values were implemented in an initial.mod file. The
initial. mod file and its parameter values were accessed by the control files
of the final time-heterogeneous chains (only topology and base frequencies
estimated). Third row: Trees were reconstructed separately for the time-
homogeneous and time-heterogeneous setting. All chains of each approach
were tested in a BFT against the chain with the best InL. We only included
chains with a 2InB -value > 10. From these chains we constructed a met-
achain for each setting using Perl and applied mcmcsummarize to infer
the consensus topology. To estimate branch lengths properly we ran mcm-
cphase, resulting branch lengths were implemented in the consensus
trees. Finally, both trees were optimized using graphic programs (Dendro-
scope, Adobe Illustrator CS II).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-54.pdf]

Additional file 5

List of chimeran species for concatenated 18S and 28S rRNA
sequences

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S5 xls]

Additional file 6

Primer list 18S rRNA

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S6.xls]

Additional file 7

Primer list 28S rRNA

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S7 xls]
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Additional file 8

Primercard of the 18S rRNA gene for hexapods, myriapods and crus-
taceans. Primers used for hexapods or myriapods are shown in the upper
part, primers for crustaceans in the lower part. Positions of forward prim-
ers are marked with green arrows, those of reverse primers with red
arrows. When different primers with identical position were used, all
primer labels are given at the single arrow for the specific position. Primers
and their combinations are given in Additional file 6 and 11.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-8.pdf]

Additional file 9

Primercard of the 28S rRNA gene for crustaceans, hexapods and myr-
iapods. Positions of forward primers are tagged with green arrows, those
of reverse primers with red arrows. When different primers with identical
position were used, all primer labels are given at the single arrow for the
specific position. Primers and their combinations are given in Additional
file 7 and 11.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-589.pdf]

Additional file 10

Primercard of the 28S rRNA gene for pterygots. Positions of forward
primers are assigned by green arrows, those of reverse primers with red
arrows. When different primers with identical position were used, all
primer labels are given at the single arrow for the specific position. Primers
and their combinations are given in Additional file 7 and 11.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S10.pdf]

Additional file 11

Supplementary Information. Supplementary information for lab work
(amplificaion, purification and sequencing of PCR products).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S11.pdf]

Additional file 12

PCR temperature-profiles

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S12.xls]

Additional file 13

PCR chemicals

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S13.xls]

Additional file 14

Setting of exchangeability parameters used in pre-runs. Listed settings
of exchangeability parameters used in pre-runs in PHASE-2.0.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S14 xls]

Additional file 15

Included chains to infer the time-heterogeneous consensus tree.
Number of chains, generations per chain, harmonic means (InL) and
2InB, y-values included to infer the time-heterogeneous consensus tree.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S15.xls]

Additional file 16

Included chains to infer the time-homogeneous consensus tree.
Number of chains, generations per chain, harmonic means (InL) and
2InB, y-values included to infer the time-homogeneous consensus tree.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S16.xls]

Additional file 17

Localities of sampled taxa

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-9-119-S17 xls]
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