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Abstract
Background: The evolution of multicellularity is accompanied by the occurrence of differentiated tissues, of organismal
developmental programs, and of mechanisms keeping the balance between proliferation and differentiation. Initially, the
SET-domain proteins were associated exclusively with regulation of developmental genes in metazoa. However, finding
of SET-domain genes in the unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe suggested that SET-
domain proteins regulate a much broader variety of biological programs. Intuitively, it is expected that the numbers,
types, and biochemical specificity of SET-domain proteins of multicellular versus unicellular forms would reflect the
differences in their biology. However, comparisons across the unicellular and multicellular domains of life are complicated
by the lack of knowledge of the ancestral SET-domain genes. Even within the crown group, different biological systems
might use the epigenetic 'code' differently, adapting it to organism-specific needs. Simplifying the model, we undertook a
systematic phylogenetic analysis of one monophyletic fungal group (Ascomycetes) containing unicellular yeasts,
Saccharomycotina (hemiascomycetes), and a filamentous fungal group, Pezizomycotina (euascomycetes).

Results: Systematic analysis of the SET-domain genes across an entire eukaryotic phylum has outlined clear distinctions
in the SET-domain gene collections in the unicellular and in the multicellular (filamentous) relatives; diversification of SET-
domain gene families has increased further with the expansion and elaboration of multicellularity in animal and plant
systems. We found several ascomycota-specific SET-domain gene groups; each was unique to either Saccharomycotina
or Pezizomycotina fungi. Our analysis revealed that the numbers and types of SET-domain genes in the Saccharomycotina
did not reflect the habitats, pathogenicity, mechanisms of sexuality, or the ability to undergo morphogenic
transformations. However, novel genes have appeared for functions associated with the transition to multicellularity.
Descendents of most of the SET-domain gene families found in the filamentous fungi could be traced in the genomes of
extant animals and plants, albeit as more complex structural forms.

Conclusion: SET-domain genes found in the filamentous species but absent from the unicellular sister group reflect two
alternative evolutionary events: deletion from the yeast genomes or appearance of novel structures in filamentous fungal
groups. There were no Ascomycota-specific SET-domain gene families (i.e., absent from animal and plant genomes);
however, plants and animals share SET-domain gene subfamilies that do not exist in the fungi. Phylogenetic and gene-
structure analyses defined several animal and plant SET-domain genes as sister groups while those of fungal origin were
basal to them. Plants and animals also share SET-domain subfamilies that do not exist in fungi.
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Background
The genes encoding proteins that contain SET-domain
sequences (SET-domain genes) are ancient, existing in the
Bacterial Domain of life [1], but have proliferated and
evolved novel functions connected with the appearance of
eukaryotes. Because SET-domain proteins modify chro-
matin by methylating specific lysines on the histone tails
[2-4], it is not surprising that SET-domain genes are present
in eukaryotes from the simple unicellular organisms to
the multicellular animals and plants. The pattern and the
complexity of epigenetic marks 'written' by the SET-
domain proteins correlate with the increased require-
ments of multicellular organisms [5,6] including regula-
tion of proliferation, ontogenesis, adhesion-mediated
silencing, and disease [7-11].

The fungal division Ascomycota provides a unique model
to trace the fate of the SET-domain genes in connection to
multicellularity within one monophyletic group. It con-
tains the unicellular Saccharomycotina (hemiascomyc-
etes) and the multicellular filamentous fungi
Pezizomycotina (or euascomycetes) as sister-groups.
Schizosaccharomyces pombe (S. pombe), which belongs to
the Taphrinomycotina (or archiascomycete), is an out-
group [12,13]. The fungi selected from the Saccharomy-
cotina for this study include species existing as unicellular
yeasts [Saccharomyces cerevisiae (S. cerevisiae), Candida gla-
brata (C. glabrata), Debaryomyces hansenii (D. hansenii),
and Yarrowia lipolytica (Y. lipolytica)], as a permanently fil-
amentous yeast, Ashbya gossypii (A. gossypii), or as an
organism that changes morphology from the yeast to the
filamentous forms in response to environmental cues, the
dimorphic Candida albicans (C. albicans).

The Saccharomycotina has diverged from the filamentous
fungi around 400 million years ago and at estimated >1
billion years ago from animals and plants [13-15]. Sub-
stantial events might have taken place during such periods
of time; thereby, by comparing the SET-domain genes in
unicellular and filamentous Ascomycetes, it might be pos-
sible to identify families that have evolved in connection
with the appearance of the filamentous (multicellular)
forms. Neurospora crassa (N. crassa) is a standard model
for the Pezizomycotina (euascomycetes) group because it
is a generalist species, less specialized in its biology than
many pathogens, symbionts, and fungi of narrow habitat
[16,17]. N. crassa is a bearer of the ancestral characteris-
tics, allowing comparisons of SET-domain gene represen-
tation in the closely related pathogen Magnaporthe grisea
(M. grisea), in the slightly more distant Fusarium gramine-
arum (F. graminearum), and in the more distantly related
Aspergillus fumigatus (A. fumigatus). SET-domain genes
found in N. crassa and in the other filamentous fungi, but
not in their unicellular relatives, could illustrate evolution
of genes connected with transition to multicellular func-

tions; unshared SET-domain genes between nonpatho-
genic and pathogenic relatives might be related to
pathogenicity. Extended comparisons with SET-domain
types and families present in the metazoan and plant
genomes could outline evolutionary relationships
between plant, animal, and fungal kingdoms. A few mul-
ticellular genomes, including an invertebrate (Drosophila
melanogaster), a mammal (Mus musculus), and a plant
(Arabidopsis thaliana), are provided as a reference and are
not discussed in detail.

The main questions asked here were: first, whether the
type and the number of SET-domain genes in species from
the same phylum would correlate with their existence as
unicellular or multicellular (filamentous) forms; second,
whether the ability of some yeasts to acquire dimorphic
forms, to exist as a permanently filamentous yeast, or to
occupy a specific niche (i.e., to act in fermentation or as
pathogens) would be reflected by the SET-domain gene
collection within the genome; third, whether presence of
certain SET-domain genes in a fungal genome would sug-
gest occurrence of novel SET-domain genes or loss of exist-
ing SET-domain genes; and fourth, to examine the
phylogenetic relationships between the SET-domain gene
families of yeast, of higher filamentous fungi, of animals,
and of plants to see if their evolution would parallel the
transition steps from unicellular, to simple multicellular,
and to more complex multicellular systems.

Results
Overall genome representation, distribution, and 
phylogenetic analysis of the fungal SET-domain proteins
Current phylogenetic studies of the kingdom Fungi define
Ascomycota as a monophyletic group [12,13]. For an
insight into the evolution of fungal SET-domain genes and
their relationship with the genes of higher eukaryotes, we
reconstructed phylogenetic trees using the highly con-
served SET-domain region (~150 amino acids) [18]. First,
we performed a series of similarity searches including pro-
file hidden Markov models against fourteen genomes:
eleven fungal (Ascomycetes), two animal (one mammalian
and one invertebrate), and one plant (Arabidopsis)
genomes (see Additional file 1). One hundred and eighty
two SET-domain sequences were identified (see Addi-
tional file 2). Phylogenetic analyses were performed to
identify the SET-domain protein families and subfamilies.
Maximum likelihood phylogeny reconstructed from the
selected 113 representative sequences is shown in Fig. 1.
The phylogenetic clustering based on SET-domain
sequences reflected presence/absence of group-specific
architectural motifs (see Additional file 3). We also note
that the SET-domain based phylogeny does not seem to
support consistently any particular evolutionary relation-
ships among the three kingdoms: fungi, animals, and
plants (see also Fig. 2).
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Maximum likelihood phylogeny of 113 representative SET-domain sequencesFigure 1
Maximum likelihood phylogeny of 113 representative SET-domain sequences. Bootstrap values for the major SET-domain families that are higher than 60% by either 
of the maximum likelihood (ML) or the maximum parsimony (MP) methods are shown at the node (the two % values are ML/MP). Internal branches supporting the major SET-
domain families with higher than 80% ML bootstrap values are also indicated by thick lines. Within the major SET-domain protein groups, bootstrap values by the ML analysis 
greater than 60%, 70%, 80%, and 90% are indicated by stars (*), filled circles ( ), filled squares ( ), and filled triangles ( ), respectively. SET-domain protein subgroups discussed in 
the main text are indicated by numbers. Representative domain names are shown for the major SET-domain protein families (see Additional file 3 for the domain names). Spe-
cies abbreviations are given in Additional file 1. For this ML phylogeny, the gamma shape parameter and the proportion of invariant sites were estimated to be 0.779 and 0, 
respectively.
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The distribution of the SET-domain proteins across 14
genomes is summarized in Fig. 3. All 108 SET-domain
sequences retrieved from the fungal genomes that belong
to the group of the histone methyltransferases are
included. SET-domain containing proteins from the
RuBisCo, cytochrome C, and the recently discovered
ribosomal protein lysine methyltransferases [19] are
excluded. Among the SET-domain sequences of animal
and plant origin, included are only those that are used as
reference for the fungal proteins.

The sizes of the fourteen genomes and the total numbers
of ORFs are not linearly correlated; the genomes of the fil-
amentous fungi are approximately three times the size of
the yeasts (except Y. lipolytica) while the overall number of
identified ORFs is only 1.6-to-2 fold higher than in yeasts.
On the other hand, the numbers of SET-domain contain-
ing genes in the Pezizomycotina species (13–23) are
about 3-fold higher compared to those of the yeasts (5–6;
Fig. 3). Non-linear increasement in the number of SET-
domain genes is even more pronounced in the animal and
plant genomes: about 70 predicted SET-domain genes in

the human and mouse genomes, around 40 in D. mela-
nogaster [20], and around 40 in A. thaliana [21]. Increased
numbers and diversification of encoded SET-domain pro-
teins reflect, perhaps, increased diversity and complexity
of multicellular programs.

Despite the smaller number of ORFs than most Saccharo-
mycotina fungi [22], the single-living Taphrinomycotina
(archiascomycete), S. pombe, carries three SET-domain
genes (SET9, MYND-SET, and a Su(var)3-9 homologue).
These SET-domain genes are present in the Pezizomy-
cotina and in animals/plant, but remarkably absent from
the other yeasts (except Y. lipolytica, which carries a SET9
gene) (Fig. 3). Presence of these genes supports a conclu-
sion that S. pombe and Y. lipolytica share many common
features with the filamentous relatives [22,23]. Lastly, S.
pombe and Y. lipolytica carry one copy of a SET-domain gene
of unclear origins. These S. pombe-specific and the Y. lipol-
ytica-specific putative SET-domain proteins, unrelated to
each other or to any of the 182 sequences analyzed, are
annotated as 'unknown' (Fig. 3) and were excluded from
further analyses.

Distribution of SET-domain genes in the three kingdomsFigure 2
Distribution of SET-domain genes in the three kingdoms. Saccharomycotina and Pezizomycotina fungi are shown as "Sac" and 
"Pez", respectively, among the fungal kingdom. Species or group-specific duplication events of SET-domain genes are illustrated 
by dashed arrows. SET5/6 related filamentous fungi are shown as "SET-fil". Arrows marked with * indicate that such relation-
ship is not significant and inconclusive. SET-MYND and SUV3-9 are found in S. pombe as well as Pezizomycotina fungi, but miss-
ing from Saccharomycotina fungi. This is indicated by the arrows marked with "(-Sac)".
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Saccharomycotina genomes have been subjected to
expansions (whole-genome duplications) and deletions
(reductive evolution), which have shaped the genome
sizes of extant yeasts [23,24] varying between 9.2 Mb (A.
gossypii) to 20 Mb (Y. lipolytica) and overall putative gene
numbers between ~4,700 and ~7,000 (Fig. 3). However,
the total number of the SET-domain genes in all tested Sac-
charomycotina is remarkably constant: five or six. Most
yeast SET-domain genes are single-copy representatives of
distinct subgroups. The SET4 gene, an apparent duplica-
tion of SET3 (see below for further discussion) accounts
for the difference in the number of SET-domain genes of S.
cerevisiae and C. glabrata versus other yeasts; SET6 might
have been deleted from the genome of Y. lipolytica or,
alternatively, a duplication of SET5 to yield SET6 might
have taken place, after the separation of Y. lipolytica from
the other yeasts [23]. We note also that both SET5 and
SET6 are absent from S. pombe, indicating that these genes
encode functions limited to the specific needs of the Sac-
charomycotina group.

Distribution of each SET-domain group among fungi
Analyses of the distribution of the fungal SET-domain
types will be carried out in the context of the transition
from unicellular to multicellular filamentous, and to ani-
mal/plant multicellular systems. We shall follow genes
that are present in: all studied genomes, Saccharomy-
cotina-specific genes, families that are excluded from the
Saccharomycotina, and those that are found in specific
fungal groups.

1. SET-domain genes present in all studied genomes
Genes preserved in all tested genomes, across the king-
doms, suggest that they are involved in 'core' cell func-
tions rather than in functions associated with
multicellularity. Proteins that satisfy this criterion belong
to SET1, SET2, and SET3 subfamilies (Fig. 3). It is specifi-
cally noted that these subfamilies belong in larger families
containing groups that might have evolved later, possibly
in connection with multicellularity. Fungal SET-domain
proteins are analyzed in reference with the S. cerevisiae

Distribution of SET-domain families in fourteen genomesFigure 3
Distribution of SET-domain families in fourteen genomes. Shaded in yellow are genes found in all tested species; 
peach-colored genes were found only in the Saccharomycotina. Genes found in tested genomes except in the Saccharomy-
cotina are shaded in turquoise, while those found only in multicellular species are shown in pink. Genes specific for the filamen-
tous fungi are shown in grey. A related gene found in Arabidopsis is shaded in grey as well. Metazoa-specific genes are shaded in 
Bordeaux red. Footnotes: a genome size; b approximate numbers of predicted open reading frames; c the Su(var)3-9 gene in S. 
pombe is known as the Clr4; d one of the two copies is known as the DIM-5 gene in N. crassa and the second shows a weak sim-
ilarity to G9a; e filamentous fungal genes belonging to the large SET5/6 family; f "unknown" genes have no significant support to 
cluster with any SET-domain family identified in this study; g numbers in parentheses indicate numbers of total SET-domain 
genes found in these animal/plant genomes [20,21].
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families because they have been studied best and because
the SET-domain genes of this yeast have been a model and
a reference for histone lysine methyltransferase analysis in
multicellular systems.

The SET1/TRITHORAX family
The SET1 gene of S. cerevisiae encodes a member of the
large TRITHORAX family (named after the Drosophila
Trithorax protein). The SET domain and the adjacent
cysteine-rich motif (post-SET) are the two most highly
conserved sequences defining a protein's belonging to the
family (Fig. 4). Two subfamilies, the SET1 and the Tritho-
rax (TRX), are distinguished here. We note that in all fungi
examined (Saccharomycotina, Pezizomycotina, as well as
S. pombe), the family is represented by a single copy of the
SET1-type; by comparison, animal/plant genomes con-
tain several genes from this family, including the SET1-
and the TRX-subtypes. Distribution of SET1/TRX proteins
is summarized also in Fig. 2a.

The SET1 subfamily
The ancestral gene encoding SET1 in S. cerevisiae has been
conserved throughout the evolution and is present in all
species examined in this study (Fig. 3). The SET-post-SET
sequences (located at the C-terminus) are highly con-
served in all examined SET1 proteins (Fig. 4a, see also
Additional file 3). In the Saccharomycotina, the upstream
regions are highly conserved as well: C. glabrata and A. gos-
sippi are 56% similar (37% identical) and 54% similar
(34% identical) to the upstream S. cerevisiae sequence,
respectively; the region is more diverged between the Sac-
charomycotina, S. pombe, and the Pezizomycotina fungi,
the similarity with S. cerevisiae ranging from 41 to 39%,
respectively. The upstream regions contain an RRM (RNA-
recognition motif) [25,26], which may affect the level of
K4 methylation [27,28]. Most likely, it does not bind RNA
but may interact with protein, instead [29,30]. Congruent
with the domain architecture, the fungal SET1 proteins
form a well-supported group (SET1 group 3 in Fig. 1) with
the S. pombe SET1 as the most outgroup. SET1-related pro-
teins, with conserved RRM upstream of the SET domain,

Domain architecture of the SET1/TRX family (a: the SET1 subfamily, b: the TRX subfamily)Figure 4
Domain architecture of the SET1/TRX family (a: the SET1 subfamily, b: the TRX subfamily). The divergent RNA 
recognition motifs (RRM) found in Arabidopsis and yeast (not identified in domain databases) are indicated by the pale color in 
the figure. Domains are not drawn to scale. For the TRX subfamily, representatives of two major animal subgroups differing by 
the positioning of the FYRN-FYRC (DAST) domains are shown. Note the presence of conserved domains between the animal 
and the plant representatives. For more structures see Additional file 3.
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are present also in the animal and plant genomes suggest-
ing preservation of the SET1-encoded function in the evo-
lution from fungi to metazoa/plants. One gene copy in
Drosophila encodes a SET1 homologue (EAL24599, identi-
fied by the Heterochromatin Genome Project, which was
recently released and not included in the sequence set we
analyzed), whereas in mouse, as well as in human, the
gene has undergone duplication (see Additional file 2); in
Arabidopsis, the ATXR7 gene (At5g42400) encodes a SET1
counterpart (BAB10481). SET1-homologues of animal
and plant origin cluster in SET1 group 2 with bootstrap
supporting values between 60% and 70% (Fig. 1).

Thereby, if the conserved SET1-related genes from the
genomes of unicellular fungi, of filamentous fungi, and of
metazoa/plant were orthologues, they would play 'core'
cellular roles not connected with the occurrence of multi-
cellularity. This does not preclude involvement of SET1-
related genes in regulation of development in multicellu-
lar organisms.

The Trithorax (TRX) subfamily
This group, shown as SET1 groups 1 and 4 in Fig. 1, con-
tains no gene of fungal origin and will not be discussed in
detail. However, we emphasize that in animal/plant
genomes, an ancestral SET1-related gene has multiplied
and diversified its structure and, most likely, function. The
PHD (plant homeodomain) and the FYRN- and FYRC-
domains (collectively called Domain associated with SET
in Trithorax, DAST, in [31]) are considered to be signature
motifs for the members of the Trithorax subfamily (Fig.
4b). It is noted that the two subgroups of animal Trithorax
proteins differ by the position of the FYRN- and FYRC-
domains (juxtaposed or separated), while the plant
Trithorax homologues, ATX3, ATX4, and ATX5, do not
carry DAST motifs [31]. Hallmark of the SET1/Trithorax
family proteins is their biochemical activity methylating
histone H3-lysine4 (H3K4). SET1 is responsible for the
overall chromatin mono-, di-, and tri-methylation of
H3K4 in S. cerevisiae, while known animal and plant
Trithorax enzymes modify only a limited fraction of target
nucleosomes [32-34]. The roles of the additional motifs
are largely unknown but acquisition of new building
blocks reflects the evolution of the proteins in parallel
with the requirements for novel functions emerging in
animals and plants.

The SET2/ASH1 family
All proteins from this family carry a SET domain (suffi-
ciently different from that of SET1 family) preceded by a
signature cysteine-rich peptide called AWS (associated
with SET) (Fig. 5, see also Additional file 3). A single SET2
gene is present in the Saccharomycotina fungi and in S.
pombe, two SET2-related genes are found in the filamen-
tous fungi, and multiple copies are present in animal/

plant genomes. Conserved in all examined species, the
SET2/ASH1 proteins form a monophyletic group divided
further into two major subfamilies as summarized in Fig.
2b.

The SET2 subfamily
Apparently, these genes are of an ancient origin existing
before the divergence of the three kingdoms. They are
present in all examined genomes (Fig. 3, SET2 group 2 in
Fig. 1). In addition to the AWS-SET domains, all fungal
members as well as animal (both vertebrate and inverte-
brate) members of the SET2-subgroup 2 carry a down-
stream WW-peptide participating, most likely, in protein-
protein interactions and the SRI motif mediating RNA
polymerase II interaction (Fig. 5a) [35,36]. It is conceiva-
ble, then, that SET2 subtype genes have been conserved
for RNase polymerase II-interaction as a core cellular func-
tion and, thus, unlinked with multicellularity. We note
also that the sole S. pombe SET2 copy (NP_594980) does
not carry the WW motif. The Arabidopsis SET2 homologue
candidates either cluster with animal SET2 proteins
(AAC34358) or are located as the outgroup (AAF04434,
as well as CAA18207 and AAC23419) (Fig. 1). The SET2
subfamily also includes metazoa-specific groups: NSD
(nuclear receptor binding SET domain protein) and
WHSC (Wolf-Hirschhorn syndrome candidate) (repre-
sented by NP_001001735 in Fig. 1; see also Fig. 2b).

The ASH1 subfamily
The second SET2 gene from the filamentous fungi was
defined as an ASH1-family member by phylogenetic anal-
ysis (SET2 group 1 in Fig. 1). The family is named after the
ASH1 protein of Drosophila. Notably, the fungal ASH1-
members do not carry recognizable structural motifs other
than SET, post-SET, and AWS, while animal and plant
members contain additional domains (Fig. 5b, see also
Additional file 3).

The SET2 family cluster is well supported (91% bootstrap
value by maximum likelihood phylogeny) indicating that
the SET2-ASH1 paralogues are phylogenetically and struc-
turally closely related. It is noteworthy then, that the pro-
teins from the two subfamilies have histone
methyltransferase activities with different substrate specif-
icities. The SET2 methyltransferases of S. cerevisiae and S.
pombe are responsible for mono-, di-, and tri-methylation
of H3K36 [35,36]; the SET2 orthologue in N. crassa,
required for normal growth and expression of genes in the
asexual and sexual differentiation pathways, also methyl-
ates H3K36 [37]. However, the epigenetic activator ASH1
of Drosophila is a multi-catalytic histone methyl-trans-
ferase (HMTase) methylating H3K4, H3K9, and H4K20
[38], while the activity of an ASH1-related protein has not
been reported for any orthologue of fungal origin.
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The SET3 family
SET3-related genes are found as single copies across the
genomes of yeasts, multicellular fungi and animal
genomes suggesting that a SET3 gene has existed in the
common ancestor before the separation of the animal and
fungal domains of life (summarized also in Fig. 2c). The
fungal SET3 proteins form a well-supported cluster with
subgroups, each carrying proteins from the Saccharomy-
cotina fungi, the Pezizomycotina (filamentous) fungi, or
animals. Amino acid substitutions in the catalytic site by
arginine (R) residues are a hallmark of SET3-type proteins.
The unusual SET domain (RRSCQPN, see Additional file
4) divergent from the motif critically involved in the
HMTase enzyme function (NHSCDPN) accounts for the
lack of histone methyltransferase activity of the S. cerevi-
siae SET3. However, it is a component of a histone
deacetylase complex involved in the meiosis-specific
repression of sporulation genes [39]. In this context, it is
difficult to predict the role of metazoan SET3 counterparts
but their conservation implies biological significance.

Two Arabidopsis proteins, ATXR5 and ATXR6 (NP_196541
and NP_197821, respectively), were reported earlier to be
clustering with the S. cerevisiae SET3 and SET4 proteins

[40]. However, in our analysis, the Arabidopsis proteins
did not segregate with the yeast SET3/4 (see the draft phy-
logeny in Additional file 2). Furthermore, a detailed com-
parative analysis with the yeast sequences did not reveal
significant conservation. Most importantly, the Arabidop-
sis SET domain sequences do not carry the hallmark
amino acid substitutions. ATXR5 and ATXR6 interact with
the proliferating cell nuclear antigen (PCNA) and are crit-
ically involved in DNA replication, DNA repair, mainte-
nance and heterochromatin formation [41].

The SET4 family
The SET4 proteins are phylogenetically related to SET3,
clustering together with 95% bootstrap value (Fig. 1).
However, SET4 proteins are found only in S. cerevisiae and
its closest relatives. A whole-genome duplication event in
the history of Saccharomyces has generated 'twin genes'
found in the genomes of extant species [42] and it is plau-
sible that SET3 and SET4 genes are a consequence of this
event. To elucidate the timing of the putative SET3/4
duplication, we performed additional similarity searches
in S. cerevisiae and nine other Saccharomycotina species.
SET4 proteins were found in S. bayanus, S. castelli, in addi-
tion to S. cerevisiae and C. glabrata. The result is consistent

Domain architecture of the SET2/ASH1 family (a: the SET2 subfamilies, b: the ASH-1 subfamily)Figure 5
Domain architecture of the SET2/ASH1 family (a: the SET2 subfamilies, b: the ASH-1 subfamily). Domains are 
not drawn to scale. For more structures see Additional file 3.
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with reports placing the whole genome duplication after
the divergence of related species: A. gossypii, K. lactis, and
K. waltii [24,42]. The maximum likelihood phylogenetic
tree is also consistent with a SET 3/4 duplication occurring
in the ancestral lineage leading to Saccharomyces species
and C. glabrata (the shaded cluster in Fig. 6). Furthermore,
the SET3 and SET4 sequences are more highly conserved
between the S. cerevisiae and S. bayanus compared to S.
castelli suggesting that SET3 gene duplication could place
the whole-genome duplication event before the diver-
gence of C. glabrata and the Saccharomyces species.

The JmjC family
Although JmjC-SET/SET3 cluster is not supported by
bootstrap analysis (Fig. 1), the structural relationship
between the SET domains of JmjC-SET and the yeast
SET3/4 families is reflected by the characteristic R-substi-
tutions in the catalytically relevant sequences (see Addi-
tional files 4 and 5). In contrast to SET3/4 families, this
family is found only in filamentous fungi. It is represented
by a single gene in N. crassa and in A. fumigatus, by a dupli-
cation in M. grisea, but has not been identified in F.
graminearum. Therefore, the activity encoded by JmjC-SET
plays subphylum-specific role but may be species-specific
as well.

None of the known JmjC proteins appears together with a
SET-domain outside the filamentous fungi. The striking
feature of this combination is that the JmjC domain is a
catalytic module for histone lysine-demethylation
[43,44]. Although their activity is evolutionarily con-
served from human to yeast, as shown recently for seven
JmjC proteins from S. pombe [45], none of these proteins
appears together with a SET. It re-enforces the conclusion
that the combination of the two motifs is a feature
uniquely occurring only in the filamentous fungal pro-
teins. Whether the SET domain of JmjC has a methyltrans-
ferase activity has not been demonstrated. However, its
possible relatedness with the SET domain from the SET3/
4 families suggests that it might not be active as a histone
methyltransferase.

2. The SET5, SET6, and related families
Based on our phylogenetic analysis (Fig. 1), the distribu-
tion of SET5, SET6, and related families is summarized
also in Fig. 2d. The yeasts' SET5 and SET6 families belong
in a larger cluster that includes families represented across
the kingdoms (SET-MYND), as well as families specific for
the filamentous fungi (SET-TPR), and species-specific
groups (SET-Mg and SET-Dm). Apparently, the cluster has
originated from an ancestral gene that has undertaken dif-

Maximum likelihood phylogeny of the SET3/4 families among ten Saccharomycotina speciesFigure 6
Maximum likelihood phylogeny of the SET3/4 families among ten Saccharomycotina species. Bootstrap values 
greater than 60% are shown. The genomic position is indicated with accession numbers for the sequences from unannotated 
genomes. The gamma-shape parameter and the proportion of invariant sites were estimated to be 0.879 and 0, respectively.
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ferent evolutionary paths at the separation of the fungi
from the other kingdoms and at the separation of the
Ascomycetal sister groups.

The SET5 and SET6 families
SET5 and SET6, each segregating into a well-supported
cluster, are yeast-specific genes absent from the genome of
S. pombe. SET6, implicated in ergosterol biosynthesis [46],
is absent from the more distant Y. lipolytica suggesting that
the gene encodes a narrow Saccharomycotina-specific
function. SET5 and SET6 encode related ~500 amino acid
proteins containing the SET domain as the only recogniz-
able conserved structural motif. A signature feature is the
long SET-I (insertion region of ~125 a.a.) producing a
split SET domain. No role has been established for SET5
yet but, apparently, it is yeast-specific.

Filamentous fungal genes related to the SET5/SET6 families
Several copies of genes encoding SET-domain proteins
similar to the SET5/6 protein group were retrieved from
the genomes of the filamentous fungi (shown in the draft
phylogeny in Additional file 2). These genes encode rela-
tively short (300–500 a.a.) proteins containing only SET
domains. They were not included in Fig. 1 because their
sequences could not be aligned with confidence. No func-
tion is known for any of these proteins, but absence of
apparent orthologues from yeast, as well as from animal/
plant genomes, illustrates a highly specific evolution of
these genes in the filamentous fungal genomes. In addi-
tion, a highly supported (99% bootstrap value) cluster of
five SET-domain genes was found in M. grisea, encoding
species-specific (SET-Mg) proteins. It is interesting to note
also the D. melanogaster specific cluster (SET-Dm) in this
group suggesting an intriguing property of the SET5/6-
related genes towards proliferation and adaptation for
species-specific needs by diverse organisms.

The TPR-SET family
Found only in the filamentous fungi, this family is a com-
bination of a SET 5/6-related domain with an upstream
tetratrico- peptide repeats (TPR, involved in protein-pro-
tein interactions) [47]; two members of the family are
present in M. grisea and F. graminearum genomes. We note
that one Arabidopsis gene (At1g26760) encodes a SET-
domain protein combined with TPR (AAF87042), which
clusters with the fungal TPR-SET cluster (Fig. 1). However,
this relationship is not strongly supported, making their
evolutionary relationship unresolved.

The MYND-SET family
This family is noteworthy because it contains genes found
in S. pombe, in the filamentous group, in metazoa, and in
Arabidopsis, but not in the Saccharomycotina fungi. The
SET domains of the MYND-SET family form a well-sup-
ported cluster within the larger SET5/SET6 family (Fig. 1),

suggesting shared ancestry. MYND-SET proteins carry a
Zn-binding domain called the MYND-finger (myeloid,
nervy, and DEAF-1 factor) involved in H3K36- and in
H3K4-specific methylation [48,49]. The metazoan sub-
family, SMYD, is critically involved in suppressing cell
proliferation and carcinogenesis [48,49]. No role is
known for any MYND-SET protein of either plant or fun-
gal origin.

3. Gene families conserved in all genomes, except in the 
Saccharomycotina
The SUV3-9 and SET9 (SUV4-20) families are represented
in the genomes of the unicellular S. pombe, in the Pezizo-
mycotina, as well as in the animal and plant genomes, but
are not found in the Saccharomycotina. Absence from the
entire Saccharomycotina group suggests that these genes
are unlikely to be involved in 'core' functions but, rather,
in mechanisms used by the fission, filamentous, and mul-
ticellular eukaryotes; alternatively, these orthologous
genes might be used differently and, consequently, be
involved in different cellular processes in the fungi than in
animals and plants (discussed below).

The SUV3-9 family
Genes of this family have undergone extensive prolifera-
tion in animal and plant genomes, particularly in Arabi-
dopsis (Fig. 3) [21]. The family is divided into multiple
subgroups illustrating its internal heterogeneity (Fig. 1)
[34,50]. Here, analysis will be limited to the two subtypes,
Su(var)3-9 and G9a, because they are relevant for Asco-
mycota (summarized also in Fig. 2e).

The Su(var)3-9 subfamily
The defining feature of the proteins (group 3 in the SUV3-
9 cluster in Fig. 1) is the Su(var)3-9-type of SET domain
and the pre- SET (PRS) motif located immediately
upstream of the SET domain (Fig. 7a, see also Additional
file 3). PRS contains nine invariant cysteine residues,
coordinating three zinc ions, involved in the structural
stability of the SET domain [51]. The Su(var)3-9 protein
discovered initially in D. melanogaster (NP_524357) is the
founding member of the family. It belongs in a subgroup
that carries an additional CHROMO domain. It is impor-
tant to point out that the proteins of filamentous fungal
origin (group 4), as well as the Arabidopsis family mem-
bers (group 1; or the SUVR subgroup in [21]), do not have
the CHROMO domain but, nonetheless, belong in the
Su(var)3-9 subfamily based on the SET-domain phylog-
eny (Fig. 1) and the pre-SET domain (Fig. 7a). A notable
exception among the fungi is the S. pombe protein, which
contains a chromodomain.

The Su(var)3-9 subfamily proteins catalyze methylation
of K9 of histone H3 [2] essential for heterochromatin for-
mation in metazoa [52] and in S. pombe [53], and link his-
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tone H3K9 methylation with DNA methylation in N.
crassa [54-56]. Absence of Su(var)3-9 genes from the Sac-
charomycotina fungi has had enormous consequences for
the evolution of heterochromatin-like gene-silencing
mechanisms in yeast (see Discussion).

The G9a subfamily
Discovered initially in the human major histocompatibil-
ity complex locus, the G9a genes are ubiquitously
expressed. It is represented by a M. musculus sequence
(NP_766133) in the SUV3-9 group 3 in Fig. 1 (it forms a
small cluster including D. melanogaster sequence in Addi-
tional file 2). The mammalian G9a proteins contain pre-
SET and SET domains of the Su(var)3-9-type, plus ankyrin
(ANK) repeats (Fig. 7b, see also Additional file 3) with a
strong HMTase activity towards H3K9. In contrast to its
paralogue Su(var)3-9, G9a plays a role as a transcriptional
suppressor of genes in euchromatic regions but not in het-
erochromatin [56]. Arabidopsis G9a proteins (group 2 in
the SUV3-9 cluster in Fig. 1) carry SRA (SET and RING fin-
ger associated domain) instead of the ANK repeats. These
Arabidopsis genes have proliferated (at least 10 genes

belong to the this subfamily [21]) and are involved in
mediating DNA methylation [57-59]. Among the exam-
ined fungi, an N. crassa protein (EAA30745) showed weak
similarities against mammalian G9a SET-domain
sequences (~30% identities). This fungal protein has only
the SET domain (Fig. 7b). The phylogenetic relationship
of the N. crassa sequence (EAA30745) has not been
resolved (see the draft phylogeny in Additional file 2).

The SET9 (SUV4-20) family
The fungal SET9 genes belong to the SUV4-20 family char-
acterized in metazoa [60,61]. Due to the lack of confi-
dence in alignment, this family is not included in Fig. 1.
In the draft phylogeny (see Additional file 2), these
sequences are clustered and indicated in blue. Putative
SET9 homologues are present in S. pombe (NP_588078) as
well as in the filamentous fungi. Members of the family
are absent from yeasts, except Y. lipolytica (XP_504243).
SET9/Su(var)4-20 genes have not beenfound in Arabidop-
sis (nor in rice nor maize).

Domain architecture of the SUV39/G9a family (a: the SUV39 subfamily, b: the G9a subfamily)Figure 7
Domain architecture of the SUV39/G9a family (a: the SUV39 subfamily, b: the G9a subfamily). Domains are not 
drawn to scale. For more structures see Additional file 3.
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Proteins from the SUV4-20 family carry only a SET
domain located at the N-terminal half (see Additional file
3). These genes encode histone methyl transferases, spe-
cifically tri-methylating H4K20, an evolutionarily con-
served epigenetic mark for heterochromatin [61].
Remarkably, in the fission yeast, SET9 generates methyl-
ated H4K20 but it is used as a sign for DNA repair mech-
anisms, not for heterochromatin [62].

4. The Enhancer of zeste (E(Z)) family: a SET-domain family found 
only in the filamentous fungi and in higher multicellular organisms
In our analysis, E(z)-type genes were not found in the Sac-
charomycotina nor in the S. pombe genome. It is tempting
to suggest that the ancestral E(z) gene has appeared as a
novel SET-domain function inherited by extant filamen-
tous fungi, animals, and plants (see also Fig. 2g). The
structure of the E(z)-SET domain and its biochemical
activity (see Discussion) are consistent with the idea that
the gene has appeared later in the evolution.

Three proteins found in the filamentous fungi
(XP_381075, EAA35807, and XP_369092) cluster with
the animal/plant E(z) family but with low bootstrap val-
ues (51% by the maximum likelihood and 79% by the
maximum parsimony). No E(z)-related gene was identi-
fied in A. fumigatus, possibly representing gene-loss
(incomplete genome sequence is also possible). The fun-
gal proteins do not carry additional structural domains,
which are uniquely conserved in the E(z) proteins of ani-
mal and plant origin (see Additional file 3) and belonging
of the fungal genes to the E(z)-type group is inconclusive
(marked with a star in Fig. 2g). E(z) methylates specifi-
cally H3K27 within Polycomb PRC2 complexes, a land-
mark for gene silencing mechanisms [63,64]. Absence of
E(z)-related genes in the unicellular yeasts indicates that
Polycomb mechanisms do not operate in these systems.

Discussion
Correlations between genome evolution, overall gene
content, and organismal complexity, revealed in whole-
genome comparative analyses, have outlined evolution-
ary trends associated with the occurrence of multicellular-
ity [17,65]. It was suggested that core biological functions,
common for both unicellular and multicellular organ-
isms, would be carried out by a comparable number of
orthologous proteins, while specialized processes unique
to multicellulars would use novel proteins [66]. Our anal-
yses support a positive correlation between the numbers
and types of SET-domain genes found in multicellular ver-
sus unicellular fungi; a similar tendency was observed
when the simpler multicellular (filamentous) fungi were
compared with multicellular animal and plant genomes.
Analysis of the distribution of individual SET-domain fun-
gal genes, however, revealed some unexpected trends, par-
ticularly within the Saccharomycotina group.

Morphology, habitats, mating mechanisms and 
pathogenicity of yeasts and their SET-domain gene 
contents
Despite a broad range of lifestyles, life cycles, and mating
mechanisms [67], the numbers of SET-domain genes in
the respective yeast species is remarkably constant and the
gene structure is highly conserved. Neither the large Y.
lipolytica genome size nor the extensive gene-loss in C. gla-
brata is reflected by the numbers of the SET-domain genes
suggesting that in yeasts, the collection of SET-domain
genes has been selectively maintained. The permanently
filamentous yeast A. gossypii displays high genomic syn-
teny with S. cerevisiae but has a very different morphology
and occupies a specific niche: a plant pathogen. A. gossypii
grows as multinucleated hyphae in the subtropics, while
S. cerevisiae proliferates as single cells associated with
sugar-containing fruits [23,67-69]. C. glabrata, closely
related to S. cerevisiae, is a pathogen living on mucosal
human tissues, while the more distant pathogenic C. albi-
cans grows as yeast but may switch to hyphal growth when
exposed to host serum. Genes from pathogenic species
that differ from S. cerevisiae might have a role in the viru-
lence [23,70]. Despite the strikingly different biology of
thee yeasts, their SET-domain genes are fully shared sug-
gesting orthologous functions. In such a context, the yeast
SET-domain genes cannot be considered critical for the
dimorphic transitions, for hyphae formation, for long-
range nuclear dynamics, or as factors contributing to the
pathogenicity.

SET-domain genes do not seem to be underlying differ-
ences in the life cycles and sexual mechanisms adopted by
the individual species, either. D. hansenii is homothallic
with essentially haplontic life cycle and Y. lipolytica is het-
erothallic (self-sterile) with a haplo-diplontic cycle, while
sexual cycles are unknown for C. glabrata [23,67] and,
until recently, for C. albicans [71]. Although C. albicans has
mating-type-like (MTL) genes that resemble the mating-
type genes of S. cerevisiae, C. albicans is able to mate under
anaerobic conditions reflecting its adaptation as an anaer-
obic parasite [72]. Finally, D. hansenii and Y. lipolytica
have one mating type-locus, whereas C. glabrata possesses
three mating type-like loci with configurations similar to
that of S. cerevisiae [73]. Given the importance of the
diversity of sexual mechanisms for the evolution of the
species, it is remarkable that these mechanisms are, most
likely, not connected with the evolution of the yeast SET-
domain genes. We emphasize, however, that this conclu-
sion does not preclude participation of SET-domain genes
in these processes; rather, it suggests that the different
biology of the species is not connected to specific diversi-
fications of the SET-domain genes per se. It agrees with
observations from whole-genome analyses that almost
identical gene sets control diverse cellular functions in
yeasts suggesting that orthologous genes might not play
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identical cellular roles in different yeast systems
[23,67,69]. Differences, like the presence of SET4 in S. cer-
evisiae and C. glabrata and the absence of SET6 from Y.
lipolytica are, most likely, connected to the fermentative
lifestyle [74] and to metabolic specificities of organisms,
rather than with differences in the morphology, in sexual
mechanisms, or in pathogenicity.

Evolution of the activating and repressive marks in the 
fungi; Consequences of lost SET-domain genes in 
Saccharomycotina
The SET9 (SUV4-20), SET-MYND, and Su(var)3-9 genes,
found in S. pombe, in filamentous fungi, in animals, and
in plants, but absent from the Saccharomycotina, suggest
that the encoded activities are not involved in 'core' func-
tions. They are involved in generating marks for silencing
mechanisms implying that these silencing mechanisms
do not exist in the Saccharomycotina. SET9 (SUV4-20) tri-
methylates H4K20, a mark for pericentric heterochroma-
tin [61] and MYND-SET family members (studied only in
animals so far) generate H3K36 marks involved in sup-
pression of cell proliferation [48,49], while SUV39 meth-
ylates H3K9 critical for heterochromatin formation [52].
Recent findings have suggested that epigenetic 'ON' marks
are reduced in evolution, while the 'OFF' signs have signif-
icantly increased; unicellular organisms contain more
marks associated with transcriptional activation, whereas
mammals contain more modifications associated with
repression [5,6]. Indeed, the only known histone methyl-
ation marks in S. cerevisiae (H3K4, H3K36 and H3K79)
and the enzymes generating them (SET1, SET2, and
DOT1, an unrelated to SET domain that methylases K79)
are associated with gene-activation [75]. Absence of SET9,
MYND- SET, and Su(var)3-9 genes from the Saccharomy-
cotina is consistent with this evolutionary trend. How-
ever, their presence in S. pombe (and of SET9 in Y.
lipolytica) suggests that the 'silencing' marks established by
the encoded activities are not signature features of multi-
cellular genomes; moreover, the epigenetic marks might
be 'read' differently. For example, SET9 of S. pombe meth-
ylates H4K20 but it is a sign for DNA damage response in
S. pombe [62] rather than for heterochromatin [60,61].
Absence of genes encoding silencing marks in the Saccha-
romycotina, thereby, raises an important question
described next.

How do yeasts silence genes and genomic regions?
Answers may be found in the remarkable ability of yeasts
to adopt available means to achieve ends that are func-
tionally similar but molecularly different from mecha-
nisms employed by other systems. The most striking
example is the loss of the Su(var)3-9 gene from the Sac-
charomycotina because loss of SUVR39 protein entailed
loss of the epigenetic H3K9me mark, and of the entire
machinery involved in making heterochromatin [56].

Nonetheless, silencing processes involving the MAT cas-
settes, the ribosomal loci, and the telomeric regions are
achieved through mechanisms similar to the assembly of
heterochromatin [76]. Even more surprising is that close
S. cerevisiae relatives do not use the same tools but have
evolved species-tailored mechanisms for achieving effects
functionally similar to heterochromatin. There is no Sir1
(Silent information regulator 1) in C. glabrata, no Sir1 and
Sir3 in A. gossypii; neither Sir nor the RNAi-pathways are
conserved in D. hansenii and none of the S. cerevisiae het-
erochromatin factors was found in Y. lipolytica [67]. Col-
lectively, the data illustrate the great evolutionary
divergence of 'invented' mechanisms producing silencing
effects in systems that have lost the epigenetic H3K9me
mark.

Furthermore, loss of SET9 and MYND-SET related genes
encoding gene-silencing functions has resulted in evolv-
ing mechanisms that take advantage of the degree (mono-
, di-, or tri-) methylation of the lysine NH2- groups to
achieve different transcriptional outcomes for pertinent
genes. In S. cerevisiae, di- (H3K4me2) or tri- (H3K4me3)
methylated lysines are associated with non-active, or
actively transcribed sequences, respectively [77,78]; in
Arabidopsis, H3K4me2 marks are found at genes, inde-
pendently of whether they were transcribed or not, while
the H3K4me3 marks were enriched at active loci [79]. In
metazoa, both modifications are associated with actively
transcribed genes but are differentially distributed along
the gene sequence with the H3K4me3 marks accumulated
at the transcription start-sites [20,33].

Thereby, the amount of methyl tags on the same lysine
residue may function as repressive or activating signs in S.
cerevisiae, while the fission, filamentous, and higher mul-
ticellular systems use additional signs carried by a larger
number and diversity of methylation marks.

SET-domain genes specific for the filamentous fungi
Consistent with their greater morphological and develop-
mental complexity, the filamentous fungi have a greater
number of genes than their unicellular relatives. Con-
served proteins among the filamentous fungi may be
implicated in their morphogenesis, while non-conserved,
species-specific genes might be associated with patho-
genic capabilities [16,17,80-85]. According to these crite-
ria, the different types and numbers of SET-domain genes
in the Pezizomycotina compared to the yeasts (Fig. 3)
might encode functions linked with hyphal growth, myc-
elia development, or other processes underlying cellular
morphogenesis and virulence. Furthermore, the genes
from the JmjC-SET, TPR-SET, and SET5/6 related filamen-
tous fungal genes encode fungal functions specific for the
entire filamentous group, while the cluster of five-related
genes present in M. grisea, but not in N. crassa, might be
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associated with life as a pathogen. Whether the M. grisea-
specific SET-domain cluster is related to its pathogenicity
is unknown. Variations in the JmjC-SET and the TPR-SET
gene numbers in particular genomes (Fig. 3) are, most
likely, due to species-specific deletion/duplication events.
Whether these differences in copy numbers are linked
with the pathogenicity of the species has not been demon-
strated.

We note also the phylogenetic relationship between the
filamentous fungi-specific TPR-SET and SET5/6 related
proteins, and the Saccharomycotina-specific SET5 and
SET6 proteins (Fig. 1). It illustrates the divergent evolu-
tionary paths of a common ancestor at the separation of
the two Ascomycota subgroups. Similarly, the phyloge-
netically related SET domains of the JmjC-SET and SET3/
SET4 subgroups suggest that they result from subphylum-
specific divergence of a shared ancestor. The SET3-lineages
has been conserved throughout the evolution and its
duplication in S. cerevisiae and C. glabrata has produced
SET4, while duplication in the filamentous group has pro-
duced the JmjC-SET cluster (Fig. 2c).

SET-domain genes found exclusively in multicellular 
organisms
SET-domain genes of multicellular organisms not found in
any unicellular fungi may be involved in multicellular,
rather than in 'core' functions. Members of the ASH1, the
G9A subfamilies, and of the E(z) family are such candi-
dates.

In contrast to the 'core' function encoded by SET2, the
ASH1-related copy found in the filamentous fungi has rel-
atives only in multicellular organisms. The descendants of
the ancestral ASH1 lineage in extant animal and plant
genomes has evolved further by acquiring additional
structural motifs. This process could be linked with the
evolution of more complex morphology and communica-
tion systems operating in the higher multicellular systems.

No paralogues of the E(z) genes have been recognized in
the genomes of unicellular yeasts suggesting a later occur-
rence in the evolution. The structure of the E(z)-type SET-
domain peptide may illustrate a discrete step in the evolu-
tion of the SET-domain protein structure/function. A Zn-
finger involved in substrate specificity of histone methyl-
transferases [86] is formed by the Cys in the consensus
NHXC sequence and the post-SET domain motif
(CxCxxxxC) conserved in a subset of SET-domain pro-
teins. Loss of this structure is, most likely, a secondary
event triggered by a single substitution of the C in the
NHXC box leading to the loss of the post-SET domain and
subsequent divergence of the biochemical specificity.

Occurrence of E(z) might be linked with the transition to
multicellularity, as suggested by the lack of K27 marks and
E(z) genes from the unicellular yeasts, Dictyostelium, and
Chlamydomonas. However, abundant H3K27me marks
were found in Tetrahymena [5], suggesting that H3K27me
marks have evolved for species-specific needs as well. It
will be very informative to establish the roles of the E(z)
genes in Tetrahymena, particularly in view of the ability of
animals and plant E(z) paralogues to assemble specific
Polycomb-group complexes [87-90]. Furthermore,
H3K27me and H3K4me marks establish a bivalent chro-
matin state at the nucleosomes of developmentally regu-
lated genes in animal stem cells [91] and in Arabidopsis
[92], defining them as histone marks for differentiation
processes.

Particularly important is the presence of conserved pep-
tide domains related to the SANT-domain family, present
in the E(z) proteins of animal and plant origins. Further-
more, in the reconstructed phylogeny based solely on
SET-domain sequences, the E(z) animal and plant pro-
teins cluster together with very high bootstrap values
(99%). The conserved structure suggests that the last
shared ancestor for the E(z)-lineage carrying these
domains has existed before the divergence of the animal
and plant genes. This putative ancestor has either origi-
nated after the separation of the fungal lineage, or has
been deleted in the fungal ancestor. A similar pattern was
noted for the evolution of the TRX genes, suggesting that
the PcG/TrxG mechanism has been evolutionarily con-
served in the animal and plant kingdoms but not in the
fungal kingdom.

Origin of the 'orphan' SET-domain genes in the 
filamentous fungi
Recent large-scale comparison of sequence data has found
over 40 N. crassa genes with no identifiable S. cerevisiae
homologues [16]. It was suggested that these "orphan"
genes might have resulted from either loss of related genes
from the S. cerevisiae lineage, from horizontal gene trans-
fer into the N. crassa lineage, from newly generated 'inno-
vative' genes, or from exceptional gene-divergence in S.
cerevisiae [16]. Our analysis is congruent with processes of
deletion from the Saccharomycotina genomes and with
the assembly of novel genes in the filamentous fungi, as
credible fates for the evolution of orphan SET-domain
genes.

The SET9, SET-MYND, and Su(ver)3-9 genes appear to
have been lost from the Saccharomycotina genomes or
from the lineage leading to the Saccharomycotina. Sup-
porting evidence comes from the finding of highly con-
served sequences for each of these three genes in Rhizopus
orizae, which is an outgroup to Ascomycota and a member
of the basal group, Zygomycetes. Existence of the ortholo-
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gous protein candidates in the R. orizae genome
(RO3G_14129: 48% identical and 66% similar to S.
pombe's SET9, RO3G_13695: 25% identical and 41% sim-
ilar to S. pombe's MYND-SET, and RO3G_16553: 43%
identical and 59% similar to S. pombe's Su(ver)3-9) sug-
gests that ancestors of these genes have existed before the
divergence of the Ascomycetes, and subsequently have
been lost from the Saccharomycotina. The yeast SET9-
gene lineage has been lost even later, after the divergence
from Y. lipolytica.

An interesting feature in the evolution of the Su(var)3-9
gene is the presence of the chromodomain in animal and
S. pombe proteins. Because a chromodomain is absent
from the proteins of the filamentous fungi and plants, it
was suggested that the ancestral form, before the diver-
gence of animal and fungal lineages, has carried the com-
bination of the two motifs but the chromodomain has
been lost from the filamentous fungi after their separation
from the fission yeast [50]. However, absence of a chro-
modomain in the Su(var)3-9 orthologue in R. orizae and
in Ustillago (a member of the sister group Basidomycetes)
suggests an alternative scenario: the ancient fungal
Su(var)3-9 lineage did not have a chromodomain and
acquisition of chromodomain encoding sequences by the
S. pombe and animal Su(var)3-9 genes were two independ-
ent events. Su(var)3-9-related genes have remarkably pro-
liferated in Arabidopsis, but no plant homologue carries a
chromodomain.

Homologues of E(z), SET2(ASH1)-like, G9a-like, JmjC-
SET, and TPR-SET genes were not found in the R. orizae
genome. It is plausible that these genes have occurred in
the Pezizomycotina, required by multicellularity-related
functions. The mechanism of genetic innovation in the fil-
amentous lineage is unclear. Predicted trends underlying
the occurrence of novel proteins may include evolution of
new protein architecture from preexisting domains
(including reshuffling of existing domains) and/or expan-
sion of particular domain families by series of duplica-
tions, followed by specialization, to meet the specific
needs of a species. It is clear that the JmjC-SET and TPR-
SET genes have been retained in the Pezizomycetes for
uniquely fungal processes, while the E(z), SET2 (ASH1),
and G9a-lineages have been inherited in the animal and
plant ancestors, where they have evolved further (Fig. 2).

The limited number of animal and plant SET-domain
genes included here represent descendants of lineages
found in the unicellular fungal group (SET1, SET2, SET3,
Su(var)4-20, Su(var)3-9, and MYND-SET) and of lineages
found in the filamentous group (ASH1, G9a, and E(z)).
Distinct subgroups, shared by animals and plants, have
evolved within the larger families existing in the fungi
(i.e., Trithorax, E(z)), as well as plant- or animal-kingdom

specific lineages [21,93-95]. Furthermore, some animal-
specific SET-domain families (SET8) are distributed
throughout metazoan genomes, while others (SET7) are
found only in vertebrates.

In Summary
The phylogenetic analysis allowed us to trace clear distinc-
tions between species-, subphylum-, and kingdom-spe-
cific SET domains, as well as to recognize factors involved
in core-cellular roles versus those likely to be associated
with multicellular requirements. Surprisingly, the collec-
tion of SET-domain genes within yeast did not appear crit-
ical for differences in lifestyles, abilities to morph, sexual
mechanisms, and pathogenicity of hemiascomycetes.
However, SET4, SET5, and SET6 encode Saccharomy-
cotina-specific functions and appearance of SET4 parallels
the genome duplication of Saccharomycetes believed to be
important for their fermentative abilities [42]. SET-domain
genes found in the filamentous species, but absent from
the unicellular sister group, reflect two evolutionary
events: deletion from the yeasts genomes (SET9, MYND-
SET, and Su(var)3-9) and appearance of novel structures.
The latter group involves genes (JmjC-SET and TPR-SET)
originating for the subphylum Pezizomycetes-specific
roles and genes apparently connected with the occurrence
of multicellularity; descendants of these genes are found
also in animal and plant genomes (E(z), SET2(ASH1),
and G9a). There is no Ascomycota-specific SET-domain
family or gene (present in fungal genomes but absent
from animals and plants), while there are families found
exclusively in plant and animal genomes, as well as plant-
specific or animal-specific subgroups. Animal and plant
SET-domain genes are ancestrally related with complex
fungal proteins with diverse modular elements. A combi-
natorial assembly of various peptide domains generates
enormous possibilities for variation and precision
required for functioning and adaptation of multicellular
organisms.

Methods
Sequences used
The SET-domain sequences were searched from fourteen
complete genomes listed in Additional file 1. Twenty-four
SET-domain sequences used as queries were collected
from various sources, as listed in Additional file 6.

SET-domain protein mining
Four search methods were used to mine new SET-domain
proteins from the fourteen genomes: BLAST protein simi-
larity searches were conducted by BLASTP [96] using the
24 SET-domain sequences as the queries against the non-
redundant database available at National Center for Bio-
technology Information (NCBI) with the default settings.
To find similar protein regions from unannotated
genomic regions, TBLASTN [96] was used to perform sim-
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ilarity searches against nucleotide sequences of the four-
teen genomes translated in all six frames. More sensitive
searches were performed using the position specific itera-
tion BLAST (PSI-BLAST) [97]. Each query was used against
individual genomes with the inclusion E-value threshold
of 0.001 and four search iterations.

Profile hidden Markov model searches
Profile hidden Markov models (HMMs), probabilistic
models of multiple sequence alignments, were built and
used to search for sequences with remote similarities [98].
Using the sequences obtained from the BLAST searches
and the query sequences, we selected 27 well-aligned
sequences (see Additional file 7). A profile HMM was
built using these sequences with the Sequence Alignment
and Modeling System (SAM) [99,100]. Two programs of
the SAM package were used: buildmodel for building the
profile HMMs and hmmscore (with -sw 2 and-calibrate 1
options) for searching similar protein sequences from the
genomes. The searches were conducted in each genome
individually. The resulting hits from each organism were
analyzed for the presence of the SET-domain and previ-
ously unidentified sequences were collected. We did not
use a strict E-value threshold. Rather each hit within the
default E-value threshold (10) was examined one by one
for the existence of the SET-domain.

After these similarity searches, 214 non-redundant hits
were compiled from the twelve genomes (data not
shown). Each of these 214 sequences was examined to
confirm the presence of the SET domain by searching the
Conserved Domain Database (CDD) available from NCBI
[101], as well as the Simple Modular Architecture
Research Tool (SMART) database [102,103]. Some dubi-
ous hits including too highly diverged sequences and
those with very short SET-domain-like sequences were
removed. Three fungal SET-MYND sequences (EAA36113,
XP_381344, and XP_360530; see Additional file 2) were
further used to search more SET-MYND sequences from
fungal genomes using BLAST. After these analyses, we
obtained 182 non-redundant SET-domain sequences.
These sequences were used in our further analyses.

Multiple alignments of SET-domain sequences
CLUSTALX (version 1.83) [104] was used to generate
multiple alignments of SET-domain sequences (with the
GONNET series protein weight matrices and gap opening
penalty = 10 and gap extension penalty = .20). Due to the
highly variable length of the SET-I region, poorly con-
served sites across the sequences were removed. Some
other highly variable positions were also removed and the
alignments were adjusted manually (see Additional file
8).

Phylogenetic analyses
A draft phylogeny was reconstructed using all of the 182
SET-domain sequences found in this study using the max-
imum likelihood method implemented in PHYML (ver-
sion 2.4.4) [105]. This draft phylogeny (see Additional file
2) was used in the further analyses. Protein domain archi-
tectures for each protein group are shown in Additional
file 3. In order to produce a more reliable multiple align-
ment and phylogenies, we reduced the number of
sequences by choosing representative SET-domain
sequences using the draft phylogeny as a guide tree.
Poorly aligned sequences and those not clustering clearly
with any known major SET-domain families were
removed. All fungal sequences were retained, while only
one each representative hit from plants and animals was
chosen from each SET-domain cluster of SET1, SET2,
Su(var)3-9, and E(z). The selected representative
sequences are indicated in the phylogeny in red in Addi-
tional file 2. The final multiple alignment including 113
sequences is shown in Additional file 5. Phylogenetic
reconstruction was done using the maximum likelihood
method (implemented in PHYML version 2.4.4) and the
maximum parsimony method (implemented in PHYLIP
version 3.65). The neighbor-joining method was not used
because the estimated distance matrix using the JTT sub-
stitution model (implemented in PHYLIP 3.65 [106])
generated estimation errors due to too many substitu-
tions. For the maximum likelihood method, two sets of
trees were reconstructed: one with no invariable site and a
constant substitution rate among sites, and the other with
the proportion of invariable sites and the gamma shape
parameter estimated from the data. Reconstructed phylog-
enies were largely consistent. In our further analysis, we
used the maximum likelihood phylogeny using the esti-
mated proportion of invariable sites and gamma shape
parameter. For the maximum parsimony method, the
input sequence order was jumbled 10 times (see Addi-
tional file 9). Phylogenetic confidence was estimated by
the bootstrap analysis [107] with 500 pseudoreplicates for
all phylogenetic analysis.
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