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Abstract
Background: Microsatellites are frequently used genetic markers in a wide range of applications,
primarily due to their high length polymorphism levels that can easily be genotyped by fragment
length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the
role of interrupting motifs for the stability of microsatellites remains to be explored in more detail.
Here we present a sequence analysis of mutation events and a description of the structure of
repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows
(Hirundo rustica) and tree swallows (Tachycineta bicolor).

Results: In a large-scale parentage analysis in barn swallows and tree swallows, broods were
screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the
tree swallows, mutations corresponding to the loss or gain of one or two repeat units were
detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in
barn swallows and 7 in tree swallows). Replication slippage was considered the most likely
mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size
range, has an increased probability of introductions of interruptive motifs (IMs) with increasing
length of the repeated region. Indeed, the number and length of the IMs was strongly positively
correlated with the total length of the microsatellite. However, there was no significant correlation
with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the
maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The
combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%)
produced alleles that were size homoplasic to other alleles in the data set.

Conclusion: Our results give further insights into the mode of microsatellite evolution, and
support the assumption of increased slippage rate with increased microsatellite length and a
stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In
addition, the observed extent of size homoplasy may impose a general caution against using
hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment
length analysis only.
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Background
Microsatellites consist of tandemly repeated sequence
motifs, no more than 6 bases long. They are scattered
throughout most eukaryotic genomes and are extensively
used as tools for a wide range of applications, such as e.g.
molecular forensics, parentage testing, analysis of genetic
structure of populations and the assessment of phyloge-
netic relationships [1]. The major characteristic that
makes microsatellites a useful and powerful genetic tool is
the extensive length polymorphism that first of all reflects
allelic variation in the number of the tandemly arranged
perfect repeats [2]. However, "interrupting motifs" (IMs)
that deviate in sequence from the repeated motif and
mutations in the flanking regions may also contribute to
the observed length polymorphism [3].

The molecular mechanisms for the development of micro-
satellite variation are not completely understood. In gen-
eral, microsatellites have a high mutation rate (10-2–10-6)
as compared to point mutations in coding genes [4]. It is
accepted that the most common mutational mechanism
affecting microsatellites is replication slippage, a process
involving a gain or contraction of one or more repeat
units [5,6]. Other microsatellite mutations might be
caused by unequal crossing over, nucleotide substitutions,
or duplication events [7]. Many factors might be impor-
tant for the mutational processes in microsatellites, such
as e.g. allele size, motif size, gender, and G/C content [8-
15]. Mutation patterns may also depend on the genomic
context such as the particular location on a chromosome
and functional potential of the transcribed product [9,16-
18], as well as the effectiveness of mismatch repair
enzymes [19,20]. Moreover, mutation rates in microsatel-
lites are also affected by stabilization patterns and poten-
tial secondary structures [13,21].

Various models have been put forward to explain and pre-
dict the mutation processes that affect microsatellite evo-
lution (reviewed in [22]). The infinite allele model (IAM)
[23] assumes that microsatellite mutations may create an
infinite number of repeated units and allelic states not
present in the population. Under the stepwise mutation
model (SMM) [24] microsatellite mutations have the
same probability of gaining or contracting one repeat
unit. Thus, this model also takes into account back muta-
tions. The generalized stepwise model (GSM) or two
phase model (TPM) is an extension of the SMM and con-
siders the probability for a microsatellite mutation to
involve more than one unit [25]. According to the K-allele
model (KAM) [26] there are K allelic states and equal
probabilities to mutate towards any of the other (K-1)
alleles.

Most studies concerning mutational processes in micros-
atellites have focused on size variation among the alleles

(electromorphs), and not sequence variation. Genetic
approaches lacking sequence data may hide essential
information, e.g. substitutions, patterns of IMs and size
homoplasy [3]. Homoplasic microsatellite alleles are alle-
les similar in state (length), but different in descent.
Accordingly, one can divide microsatellite homoplasy
into two types: (1) microsatellite alleles identical in
length, but not in sequence (indistinguishable by frag-
ment length analyses), and (2) alleles identical in both
length and sequences, but with different evolutionary his-
tory (only detectable through mutations documented in
known pedigrees). Some theoretical studies have tried to
address the impact of homoplasy on genetic diversity
analyses. Navascues and Emerson [27] showed that
homoplasy affects various theoretical models differently.
Simulations with high mutation rates (≥10-4) for chloro-
plast microsatellites for example indicated an underesti-
mation of homoplasy. In contrast, Estoup et al. [22]
concluded that size homoplasy is not a substantial prob-
lem for population genetic studies, except for highly
mutable microsatellites with strong allele size constraints
in large populations.

Gaining empirical evidence of mutational processes
affecting mutational diversity within natural populations
is a demanding task. This is especially true for non-model
organisms with comparatively few markers available and
long generation time. One promising approach to over-
come these difficulties is to genotype a large number of
individuals in a population with known pedigree, using
genetic markers with high mutation rates. One such
marker is the microsatellite locus HrU10 [28] in the Euro-
pean barn swallow (Hirundo rustica). This marker has
been mapped to chromosome 18 in the chicken (Gallus
gallus) genome [29], yet nothing is known about its func-
tional potential. By means of fragment length analysis,
Brohede et al. [30] estimated a mutation rate of 1.56%
(i.e. 15 mutations in 960 meiotic events) for this locus.
Currently there is only one HrU10 sequence retrievable
from GenBank (Accession nr: X97562). This sequence
consists of a long tandemly repeated pentanucleotide (5'-
TTCTC-3') stretch followed by an IM of two T's, two fur-
ther repeat units and a variable tail of other arrangements
of pyrimidines. Fragment length analysis in European
barn swallows revealed that the majority of the HrU10
alleles are approximately of similar length as the HrU10
sequence in GenBank [30]. However, some alleles were up
to three times as long. These longest HrU10 alleles corre-
spond to roughly 100 tandemly repeated pentanucleotide
units, a remarkably large size for a microsatellite [31].
Wierdl et al. [32] suggested microsatellite stability to be
related to the length of the stretch of tandem repeats, and
postulated that large microsatellites have an increased
probability to realign in a misaligned confirmation during
replication resulting in a higher mutation rate. Since then,
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increased instability of long microsatellites have been
confirmed for several microsatellite loci, including HrU10
[30]. One may assume that, in comparison to a microsat-
ellite with a shorter repeat motif, a pentanucleotide repeat
may establish a larger spatial conformation during loop
formation of a slippage event. Somewhat misaligned
nucleotides might occur and further increase the probabil-
ity for mutations. Thereby also IMs may be introduced.

The fragment length analysis by Brohede et al. [30] indi-
cated several size classes of the HrU10 alleles in European
barn swallow. Because of the high mutation rate, the
HrU10 microsatellite locus is well suited for testing the
hypotheses of longer microsatellites being more unstable
and more likely to gain IMs. Accordingly, one expects a
positive correlation between the number of IMs and allele
length and an upper size limit for the number of perfectly
repeated motifs. In the present study, we sequenced a sub-
set of HrU10 alleles of different size classes from North
American barn swallow and tree swallow (Tachycineta
bicolor) that could be related to mutations in pedigree
analyses [33]. This approach provides sequences from
both the parent and the mutant offspring, and allows to
investigate the formation of homoplasic alleles and to
estimate the order of magnitude of size homoplasy for the
HrU10 microsatellite locus.

Methods
Samples and Genetic Analyses
This study was based on samples previously collected for
the purpose of paternity testing in Canadian populations
of barn swallows and tree swallows. Both species are
socially monogamous passerine birds, but with high lev-
els of extrapair paternity [33,34]. The barn swallow sam-
ples consisted of those already reported by Kleven et al.
[33] and additional samples collected during 2003 and
2004. Barn swallows were genotyped with six to nine pol-
ymorphic microsatellite markers, including HrU10, and a
detailed description of the markers, their variability and
the paternity determination are presented elsewhere [33].

Tree swallows were genotyped with three polymorphic
microsatellite markers, including HrU10. In cases where
one of the three markers showed an allelic mismatch
between offspring and one of the putative parents, an
additional triplet of microsatellite markers were analyzed
to distinguish mutation events from extrapair paternity.
Details about the microsatellite markers, their polymor-
phism and the parentage determination of tree swallows
are provided as additional file [see Additional file 1].

Mutations were detected by comparing the genotype of
the offspring with that of its biological parents. We only
included individuals for whom the genotypes of both bio-
logical parents were available. Furthermore, to avoid the

problem of non-amplifying alleles, we only included
mutations in parents that were heterozygous at the HrU10
locus. We assumed the smallest mutational change in
allele size to be most likely in cases where more than one
parental allele could be the progenitor allele. To verify
observed mutation events, we amplified microsatellite
fragments twice for the parents and offspring involved in
these cases.

Sequencing
The HrU10 locus was amplified according to the protocol
described in [33]. In addition, the reverse primer HrU10-
EXT-R2 (5'-GCTGCTGTTCGAGGAAATAA-3') was
designed to improve sequencing of tree swallow alleles.
To reduce time consumption and lab costs we optimized
a simple isolation strategy for HrU10 alleles that did not
require cloning. Alleles with size differences > 10 base
pairs (bp) were separated on MetaPhor® agarose gels
(Cambrex, East Rutherford, NJ) or on standard SeaKem®

LE Agarose (Cambrex) if the alleles differed > 50 bp in
size. The allele of interest was subsequently purified with
the Nucleospin® Extract II gel extraction Kit (Macherey-
Nagel, Düren, Germany), and sequenced directly in both
directions using the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA)
according to the manufacturer's recommendations on an
ABI 3100 Genetic Analyser (Applied Biosystems). As a fur-
ther control, the sequence lengths were compared to pre-
vious fragment length analysis of the microsatellite [33].

Results
Microsatellite Structure Uncovered by Sequence Analyses
Pedigree analysis based on 2076 meiotic events in barn
swallows and 496 meiotic events in tree swallows revealed
41 mutations for the microsatellite locus HrU10 in barn
swallows and 15 in tree swallows. According to fragment
length analyses all mutations involved a gain or loss of
five or ten bp, i.e. equivalent to one or two repeat units,
which is consistent with the assumption of replication
slippage. This represents a slippage rate of 1.97 × 10-2 in
barn swallows and 3.02 × 10-2 in tree swallows. No other
types of indels were observed. Sixty-six HrU10 alleles
involved in the observed germ line mutation were
sequenced, that is, 33 sets of the offspring and the donor
parent (GenBank accession numbers EU295565–
EU295630). There were no site (four colonies) or year
(two years) effects on mutation rates in barn swallows
(both P >0.1). The tree swallows were only sampled for
one year at one location.

Woodruff et al. [35] approached the issue of "clustered
mutations", which implies that related individuals may
inherit identical genetic changes, contrasting an assump-
tion that mutations are independent events. In this respect
six of the parental individuals gave rise to two mutations
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in the same family in the barn swallow population. In
these cases, identical lengths where observed only twice.
Only one of these two incidents of identical mutant
lengths gave adequate sequences of both mutants. Never-
theless, in the particular case (Mut12 and Mut18 [see
Additional file 2]) where sequences were obtained from
both mutants, the outcome of the two mutations was dis-
similar, verifying that the mutations represent independ-
ent events.

The nucleotide sequences confirmed that there was a gain
or a contraction of one or two pentanucleotide units in all
the 33 germ lines (26 in barn swallows and seven in tree
swallows [see Additional file 2]). No nucleotide substitu-
tions or other indels were detected. The sequence data
revealed several different IMs for the HrU10 alleles in both
species, all of which consisted of distinct rearrangements
of 1–30 pyrimidine bases (T and C). No purine bases were
detected in the pyrimidine rich strand of the HrU10 mic-
rosatellite. The subsequent statistical analyses were per-
formed on the barn swallow parental alleles only, as the
number of alleles that gave adequate sequences in tree
swallows was considered too low (n = 7) for statistical
testing.

First, we tested the hypothesis that longer microsatellites
are more unstable and will consequently contain more

IMs. If such a correlation occurred, then one would expect
an upper size limit for the length of perfect repeats, and,
accordingly there should be no correlation between the
length of the longest stretch of perfect repeats of a given
HrU10 allele and the number of IMs. Correlation tests
between total microsatellite length and (1) number of IMs
(Spearman: rs = 0.55, P = 0.003), and (2) total number of
nucleotides contributing to the IMs (rs = 0.54, P = 0.004)
were significant. No significant correlation was found
between the longest stretch of perfect tandemly repeated
units and (1) number of IMs (rs = 0.09, P = 0.66) or (2)
total number of nucleotides in the IMs (rs = 0.14, P = 0.5)
(Figure 1).

We further determined roughly in which part of the
HrU10 allele a slippage event had taken place. The 16
shortest alleles showed one long (17–29 units) and one or
two short (1–2 units) stretches of perfectly repeated units
that are separated by IMs. The 10 longest alleles showed
two long (14–55 units) and up to three short (0–5 units)
stretches of perfectly repeated units. All replication
induced mutations could be attributed to the long (≥14
units) stretches of perfect repeats. In 21 of 26 alleles
(81%), the slippage mutation affected the longest stretch
of perfectly repeated units. It is noteworthy that the other
5 mutations that did not occur in the longest stretch of

Correlation of array length of perfect repeats and HrU10 microsatellite lengthFigure 1
Correlation of array length of perfect repeats and HrU10 microsatellite length. Plot of the longest stretch of per-
fectly repeated units and the corresponding total HrU10 microsatellite length in sequenced mutant barn swallow alleles.
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perfect repeats, all affected the alleles that were among the
10 longest.

In the barn swallow, 15 of the 26 (58%) observed muta-
tions resulted in mutant alleles that were homoplasic to
another sequenced allele in the data set. Nine (35%) of
these mutations resulted in homoplasic alleles with
respect to length, and six (23%), mutant alleles were also
identical in sequence to another allele. No incidents of
homoplasy due to mutations were detected in the tree
swallows, but the number of sequences was significantly
lower.

Features of the Mutations Revealed by the Fragment 
Length Analyses
The genotyped adult population consisted of 376 and 144
individuals in the barn and tree swallow populations,
respectively. The allele size frequencies for the HrU10
locus in the two species are illustrated in Figure 2 (note:
95 bp in the flanking regions of the microsatellite are not
included in the presented sequences but in the fragment
analyses). Due to seven non-amplifying alleles, only 745
barn swallow alleles were included. The median allele size
of the HrU10 microsatellite in the adult barn swallow
population was 231 bp (± 2.0 SE, range = 175–581 bp, n
= 704 alleles). Median size of the microsatellite of the
mutant barn swallow alleles was 241 bp (± 13.8, range =
193–586, n = 41), i.e. significantly longer than for the
entire population (Mann-Whitney U test: Z = -2.4, P =
0.02). The median allele size for the HrU10 locus in the
tree swallow population was 280 bp (± 4.6, range = 186–
605, n = 272 alleles), and the median microsatellite length
of the mutant tree swallow alleles was 323 bp (± 24.5,
range = 222–518, n = 15). The mutation rates showed a
tendency to be positively correlated with allele sizes for
both barn swallows (GLM with binominal error distribu-
tion and logit link: χ2

1 = 9.26, P = 0.002) and tree swal-
lows (GLM with binominal error distribution and logit
link: χ2

1 = 3.35, P = 0.067). Estimations of mutation rates
in relation to allele sizes are illustrated in Figure 3.

There were 26 (65%) expanding and 14 (35%) contract-
ing mutations in the barn swallow population, which was
not significantly different from equity (binominal test
(two-tailed): P = 0.08), but may indicate a bias toward
expansion. Directionality of the mutation was impossible
to determine in one case because of a 5 bp difference to
both possible parental alleles. No indication of direc-
tional bias for HrU10 mutations was found in tree swal-
lows with 7 (47%) expansions and 8 (53%) contractions
(binominal test: P = 1.0). Directionality of mutations
were not significantly affected by allele size neither in
barn swallows (GLZ with binomial error distribution; χ2 =
0.2, P = 0.7) nor in tree swallows (χ2 = 0.1, P = 0.78). Fur-
thermore, there was no positive correlation between

length of the longest perfectly repeated core microsatellite
unit and the directionality of the mutations in barn swal-
lows (GLZ with binomial error distribution; χ2 = 0.1, P =
0.81).

In both species, there was a tendency for mutations to be
maternally transmitted, as 66% (27/41) of the barn swal-
low mutations were observed in the female germ line
(binominal test: P = 0.06) and 80% (12/15) in tree swal-
lows (binominal test: P = 0.035).

Size distribution of mutant and parental HrU10 allele sizesFigure 2
Size distribution of mutant and parental HrU10 allele 
sizes. Size distribution of the HrU10 locus in the adult popu-
lation (white bars) and the mutant alleles (black bars) in a) 
barn swallows (n = 375) and b) tree swallows (n = 144). Each 
bar represents the alleles from the corresponding size class, 
which has been organized in groups of 50 and 50 bp.
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Discussion
The sequence analyses presented in this study document
two major features of the HrU10 locus: (1) Frequent intro-
ductions of IMs which were strongly positively correlated
with allele size and (2), frequent generation of homopla-
sic alleles (>50% of the mutations in the sequenced data
set).

Evolution of HrU10 – Introductions of IMs and 
Mutational Patterns
All IMs consisted of different arrangements of Cs and Ts.
No introduction of purines on the pyrimidine-rich strand
was observed. The repeated motif of the HrU10 locus is a
pentanucleotide, and its spatial conformation during a
slippage event may involve a larger loop compared to a
smaller repeat unit. This may indicate that all the HrU10
IMs are results of uncompleted replication slippage. If so,
one needs to assume that the loop on the nascent or tem-
plate strand will not include an entire unit before it rea-
ligns. This hypothesis is in line with all the IMs detected
for HrU10, except for the (TTCCC)6-repeat in Mut5 and
Mut6 [see Additional file 2], which happened to be the
longest HrU10 alleles sequenced in the barn swallows.
These two mutants have originated from the same paren-
tal allele that is 3.5 times longer than the median allele
length.

An interesting feature related to the IMs, is the relatively
constant maximal length of stretches of perfectly repeated
core units, indicating a threshold length for stable arrays
of perfectly repeated microsatellite units (Figure 1). One
explanation for such a threshold level may be a selection
pressure to retain stabile conformations. Such a selection
pressure has been suggested to be important for preserv-
ing folding potential in repeated di-nucleotides [21,36]
and tri-nucleotides [37]. In this respect, nothing is cur-
rently known for pentanucleotides.

Because the longest stretch of perfectly repeated units con-
tributes most to the total microsatellite length in the
HrU10 alleles with only one long stretch of perfect tan-
dem repeats, it is not surprising that the slippage events
were restricted to this region of the microsatellite. Further-
more, theoretical and experimental approaches have sug-
gested that slippage rates are approximately zero in very
short repeated regions [38-41], supporting a low proba-
bility for slippages to occur in the short stretches in the
HrU10 alleles. Nevertheless, if length of perfectly repeated
tandem units is more crucial for microsatellite instability
than total microsatellite length, one would predict a con-
sistent bias for slippage to affect the longest stretch of alle-
les comprising at least two long (>14 units) stretches of
perfect core units. However, only 50% (5/10) of the muta-
tions were introduced in the longer of the two stretches.
This result is in agreement with a theory of total length of
entire microsatellite being a more important factor for
microsatellite stability than longest motif of perfect tan-
demly units. The observed threshold level for length of
perfectly repeated units before introductions of IMs might
then be explained by incomplete slippage (described
above) being an increasingly more important mutational
mechanism as the allele is destabilized due to growth.
However, the statistical power for such a conclusion is rel-

Correlation between mutation rate and HrU10 allele sizesFigure 3
Correlation between mutation rate and HrU10 allele 
sizes. Relationship between mutation rate and length of gen-
otyped alleles in the population of biological parents in a) 
barn swallows and b) tree swallows. The alleles were lumped 
into 4 size classes (barn swallows: class 1 = 100–199 bp, class 
2 = 200–299 bp, class 3 = 300–399 bp, class 4 = 400+ bp; 
tree swallows: class 1 = 200–299 bp, class 2 = 300–399 bp, 
class 3 = 400–499 bp, class 4 = 500+ bp). n refers to number 
of alleles in the particular size class.
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atively poor. It is noteworthy that an opposite pattern was
detected in an in vitro system of mono- and dinucleotides
in a mutation study of human cell lineages [38]. Selection
pressure for the maintenance of IMs has also been pro-
posed important for tri-nucleotide repeat stability in
genes related to various types of spinocerebellar ataxia
[16,37,42].

The results from the fragment length analyses also support
the prediction of long HrU10 alleles to be more unstable,
as the probability of a slippage event was positively
related to allele sizes. The mutation rates were estimated
to be more than three-fold higher in the longest compared
with the smallest allele classes in the two swallow popula-
tions (Figure 3). Higher mutation rates for longer repeated
regions have been reported in a number of previous stud-
ies [5,10,11,30,32,36,38,39,43-46]. The higher mutability
in longer alleles can be explained by stabilization patterns
concerning the mismatch-repair system, which may be
less effective and as a result generate a relatively large
probability for insertion of slippage events if the repeated
region is sufficiently long, as suggested by Wierdl et al.
[32]. The logic in this theory is that the number of possi-
ble conformations increases proportionally with the
increase of repeated microsatellite units. However, if this
hypothesis was correct, the microsatellite could, in theory,
obtain uncontrolled growth and finally strike a large
region on the chromosome. Nevertheless, microsatellites
seems to have an upper size limit that rarely exceed 50
repeated units [31]. Still, some of the HrU10 alleles
uncovered in our study include almost 100 pentanucle-
otide units.

It has been suggested that short microsatellites tend to
gain additional units whereas long microsatellites are
more likely to lose units during a mutation event [39,47].
However, the support for this hypothesis is ambiguous.
Primmer et al. [11], Eckert et al. [13] and Vigouroux et al.
[48] have reported an overall directionality bias of slip-
page leading to expansion. Our data showed a similar ten-
dency for barn swallow, though not statistically
significant. Xu et al. [49] showed a constant slippage rate
for expansion and an increasing slippage rate for contrac-
tion with increasing allele size, which is consistent with a
general observation of an upper size limit for repeated
regions. However, our data on the HrU10 locus do not
support that slippage directionality is length dependent,
neither for total length of perfectly repeated core units nor
for the total length of the entire microsatellite region. This
result is in agreement with earlier studies for the HrU10
locus [30].

Weber and Wong [50]; Garza et al. [51]; and Primmer et
al. [52] have put forward hypotheses for the upper size
limit for microsatellites. They postulate that the contrac-

tion of microsatellites is caused by large deletions that
occur when a microsatellite reaches its maximal length
potential. An example of such large deletion has been
reported by Colson and Goldstein [53] who reported one
incidence of an absent microsatellite in one allele of the
U1951 locus in Drosophila melanogaster. Other examples
include a 27 units contraction of a dinucleotide microsat-
ellite in Ranunculus carpaticola [46], and a 18 units con-
traction in a tetranucleotid repeat in superb fairy-wrens
(Malurus cyaneus) [43]. It has also been suggested that if
the balance between slippage and point mutations
favours point mutations within the repeated region, the
mutations may interrupt the feature of the microsatellite
without enhancing large contractions [54], and eventually
give rise to new diversity. Kruglyak et al. [55] developed a
Markov chain model which confirmed that infinite micro-
satellite growth can be disabled by introductions of point
mutations. In the sequence data presented here, all
sequences contain IMs. These must have been introduced
by other mutation mechanisms than regular slippage of
entire units.

Because of the higher number of mitotic cell divisions in
male than in female germ lines, it is plausible to expect
that evolution of microsatellites, to some extent, is male-
driven [14,15]. However, we observed a bias for muta-
tions at the HrU10 locus to be maternally transmitted in
both barn swallows and tree swallows. Similar results
have been reported by Brohede et al. [30] who observed a
2.5–5 fold increase in slippage rates in several hypermut-
able markers in females barn swallows compared to
males, including the HrU10 microsatellite. Beck et al. [43]
also uncovered a bias favouring maternally transmitted
slippages for one locus in the superb fairy-wren (Malurus
cyaneus).

Cases of Size Homoplasy
More than 50% of the HrU10 mutations sequenced in this
study resulted in a mutant allele size homoplasic to
another sequenced allele in the dataset, and 23% of the
mutations resulted in alleles homoplasic in both allele
length and sequence (identical alleles). Such homoplasy
is only detectable through sequencing of observed muta-
tions in known pedigrees and has to our knowledge not
earlier been confirmed by empirical data. Size homoplasy
may be problematic according to Estoup et al. [22] in
instances with "(1) high mutation rates and (2) large pop-
ulation sizes together with (3) strong allele size con-
straints". The mutation rates observed in this study (1.97
× 10-2 per meiosis in barn swallow, 3.02 × 10-2 per meiosis
in tree swallow) are among the highest ever reported for
microsatellites, and our estimate is also concordant with
that provided by Brohede et al. [30] for the same locus. A
total number of 2070 meiotic events for the barn swallow
population presented here is the largest data set ever
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reported for an avian pentanucleotide microsatellite.
Although it seems unlikely that there is a strong allele size
constraint for the HrU10 locus, our empirical results con-
firm that most of the observed mutations resulted in an
electromorph already present among the 66 sequenced
alleles. In consequence, homozygous individuals in terms
of fragment length analyses are indeed not necessarily
homozygous in terms of nucleotide sequences. Discrep-
ancies between allelic variation detectable through frag-
ment length analyses and sequence analyses have also
been reported in other microsatellite studies [3,53,56].
Estoup et al. [22] approached the issue of size homoplasy
theoretically based on frequently applied mutations mod-
els such as e.g. the SMM and the KAM. The proposed index
of size homoplasy can be explained as the probability of
two electromorphic alleles not being of common descent.
However, these indexes have certain limitations when
applied to the data on the HrU10 locus provided here.
First, the proposed homoplasy estimates relates to length
and not sequence. Accordingly, there is no parameter that
distinguishes between the two types of homoplasy. Sec-
ond, the homoplasy index for the SMM does not include
a parameter for the number of allelic states in a popula-
tion, which is certainly crucial for homoplasy estimates.
Third, the KAM accounts for allelic states, but assumes
equal probability to mutate towards any of the other K-1
alleles. This is certainly not the case for the HrU10 locus
in barn swallows.

Many studies have focused on the occurrence of microsat-
ellite size homoplasy within different taxa (e.g: humans
(Homo sapiens) and chimpanzees (Pan troglodytes) [57],
mammalian carnivores [58,59], birds [60,61], salmonids
[3], pipefish (Syngnathus typhle) [62], crabs (Limulus
polyphemus) [63], two bee species and the fresh water snail
Bulinus truncates [64] and fruit flies (Drosophila) [65]).
These examples support the notion that caution must be
taken when microsatellite data are collected by electro-
morphic genotyping only. The high rate of mutations
leading to size homoplasy in the present study provides
support for alleles of identical size being attributed to
common descent and hence causing bias in population
genetic estimates.

Estoup et al[66] and Estoup and Cournet [67] suggested
that the amount of size homoplasy is more important in
interspecific than in intraspecific comparisons. Neverthe-
less, our results for HrU10 provide evidence that homo-
plasy may play an important role also within populations.
This conclusion is in agreement with the results published
by van Oppen et al. [68], who found equally high
amounts of homoplasy when comparing individuals
among closely related taxa and among more distantly
related species. HrU10 is a frequently used marker for dif-
ferent genetic analyses of bird populations, especially par-

entage studies [33,69-72] because of the high allelic
diversity enabling a powerful marker for parentage test-
ing. However, our study indicates that HrU10 should be
used with caution whenever homoplasy may cause biased
estimates of relatedness and genetic diversity.

Conclusion
Sequencing of 33 mutated and 66 parental HrU10 alleles
was consistent with the hypotheses that longer alleles
tend to be more instable due to increased slippage rate.
The observed positive correlation between the number of
IMs and allele size supported the assumption of a thresh-
old level for the maximal length of stable perfect repeats.
Nonetheless, the particular location of the slippage posi-
tions in the mutated microsatellite alleles indicated that
total microsatellite length is more important for microsat-
ellite stability than the length of the longest stretch of per-
fect repeats. Mainly because of the high slippage rate,
there is also a high level of homoplasy at the HrU10 locus,
i.e. 58% of the characterized mutations yielded an electro-
morph already present in the sequenced data set, includ-
ing both type 1 and type 2 size homoplasy. The problem
of size homoplasy imposes a general caution of using such
hypermutable markers in fragment analyses assuming
unique alleles by size only.
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