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Abstract
Background: Along the chromosome of the obligate intracellular bacteria Protochlamydia
amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely
involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila:
lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed
LGRs since encoded by "Large G+C-Rich" genes.

Results: No homologs to the whole protein sequence of LGRs were found in other organisms.
Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively
recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the
chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains
(LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic
(28-meric) LRRs of LGRs present all a predicted α-helix conformation. Their closest homologs
are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and
Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits
Pfam domains related to DNA metabolism.

Conclusion: Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario
of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial
LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins
and Toll-like receptors.

Background
Candidatus Protochlamydia amoebophila UWE25 (hereafter
named P. amoebophila) is an obligate intracellular symbi-
ont infecting free-living amoebae [1]. Presenting signifi-
cant gene sequence similarity with sequences of Chlamydia
spp, this related bacterium exhibits a Chlamydia-like

developmental cycle, which includes i) the proliferating
reticulate body observed only within amoebae, ii) the
infecting elementary body that may be found in amoebal
vacuoles early after internalization, and iii) the crescent
body considered as an additional infectious stage [2,3].
P. amoebophila belongs to the Parachlamydiaceae family,
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composed of, at least, two additional genera represented
by Parachlamydia acanthamoebae [4] and Neochlamydia
hartmannellae [5]. Parachlamydia was recently recognized
as a novel agent of pneumonia (reviewed in [6,7]). Sero-
logical and molecular evidences suggested its role as an
agent of community-acquired pneumonia [8-10] and
aspiration pneumonia [11]. Moreover, we demonstrated
that Parachlamydia may survive to human macrophages
[12], by remaining somehow unrecognized from these
major innate immune cells [13], by modulating the fate of
the Parachlamydia-containing vacuole [14], and by induc-
ing macrophage apoptosis [12].

The genome size of P. amoebophila is twice larger than the
published genome sequences of Chlamydiaceae [15]. Pre-
liminary genome analyses by Horn and coworkers
showed the presence of transposases and of a cluster of
high G+C content genes likely transferred horizontally
[15]. The latter genes encode a type IV secretion system,
supposed to be involved in the secretion of effector pro-
teins [15,16]. However, Horn and coworkers did not iden-
tify traA, traL, traK and traV, and misannotated as traF an
ORF similar to trsF carried by plasmid R391 of Proteus
rettgeri [15,17].

After reannotation, identification of the four supplemen-
tary tra genes, and additional phylogenetic analyses based
either on concatenated tra genes or on gene order compar-
ison, we proposed that this type IV secretion system can
play a role in conjugative DNA transfer and originated in
proteobacteria [17]. The presence of similar tra operons
on the pRF plasmid of Rickettsia felis [18] and on the cir-
cular chromosome of Rickettsia bellii [19], as well as the
observation of sexual pili by electron microscopy of these
two obligate intracellular bacteria [18,19] further sup-
ported that the gene products of the tra operon of P. amoe-
bophila UWE25 are involved in conjugative DNA transfer.
Furthermore, the concatenated tra genes of both rickettsia
and P. amoebophila clustered in the maximum likelihood
tree with a 95% bootstrap value [19].

In silico comparative genomics along this genome
sequence enabled us to identify for the first time the
genomic island Pam100G [17]. This inserted 100-kb
mobile element is delimited by the presence of two gly-
tRNA genes in tandem at its 5' end, and by direct repeats
located at both ends [17]. Pam100G present a modular
composition of its G+C content. The first module exhibits
a G+C content (36.4%) similar to that of the host (36.1%)
and contains a set of genes likely generated by chromo-
somal rearrangements. Then, three modules, which con-
tain low G+C content (33.3–34.1%) phage-related genes,
are intercalated with three high G+C content modules
(38.7%–41.8%) [17]. The first G+C-rich module carried
the type IV secretion system partially reported by Horn

et al. [15]. The putative mobility of Pam100G as a conju-
gative plasmid was strongly supported by the identifica-
tion of an episome carrying a similar tra unit during the
genome sequence analyses of strain ATCC VR1471 of Sim-
kania negevensis, a related bacterium (Myers G., oral pres-
entation at the Chlamydia Basic Research Society Meeting,
Indianapolis, 2005). The latter tra sequences are already
available for BLAST analyses [20]. Interestingly, the
genomic island of P. amoebophila also carries a huge 5.6-
kb gene (pc1455). This gene, now called lgrE, is located 10
kb after the 3'-end of the tra unit (see below). It corre-
sponds to the second high G+C content module (41.8%),
suggesting it may, like the tra operon, have emerged in a
common genomic environment similar to that of some
alpha-, gamma-, delta- or epsilon-proteobacteria. This
gene encodes one of the largest protein of P. amoebophila
(1866 amino acids) exhibiting some similarities with the
mammalian NOD3, a protein carrying LRR units [17].

The family of eucaryotic cytoplasmic proteins defined by
a Nucleotide-binding Oligomerization Domain (NOD)
[21] presents gene products exhibiting various functions
ranging from regulators of apoptosis (such as Apaf-1) to
proteins implicated in resistance against pathogens in
mammals (NOD1, NOD2) and plants (R genes, R for
resistance). Both R genes and mammalian NODs are com-
posed of effector domains such as the CAspase Recruit-
ment Domain (CARD) or the PYrin Domain (PYD,
protein module defined by Bertin et al. [22] found in pro-
teins that are thought to function in apoptotic and inflam-
matory signaling pathways), and of a carboxy-terminal
leucine-rich repeat domain (LRRs) used in pathogen rec-
ognition. The NODs proteins also exhibit a NOD domain,
which induces its self-oligomerization. LRR domains are
concatenated repeats of 20- to 29-residue motifs present
in all clades from viruses to eucaryotes. They have been
classified in seven different subfamilies (reviewed in
[23]). One of them, the ribonuclease inhibitor (RI)-like
subfamily (RI-like LRR) is present in intracellular proteins
of eucaryotes and exhibits the longest LRR motifs: 28–29
residues [23]. The LRRs of NOD proteins are the most
studied RI-like LRRs. This ligand recognition domain is
involved in the recognition of basic units of peptidogly-
can, i.e. a common bacterial component: NOD1 recog-
nizes the widely spread dipeptide γ-D-glutamyl-meso-
diaminopimelate, and NOD2 the universal muramyl-L-
alaninyl-D-glutamate, known as muramyl-dipeptide
(MDP). The function of the NOD3 protein still remains
unknown.

In this report, we described (i) the evolutionary history of
the lgrE gene and of five paralogs (lgrA-lgrD, lgrF) present
in the genome of P. amoebophila, (ii) the structure of the
corresponding gene products and, finally, (iii) the struc-
tural and phylogenetic relationships existing between
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their LRR domains. Since almost no tools are available for
molecular biology experiments on Chlamydiales, a puta-
tive regulation of these lgr genes and a possible role of
these large proteins are proposed, based on various in
silico analyses.

Results and discussion
P. amoebophila proteins homologous to LgrE
Using BLASTP, five additional large proteins homologous
to the whole lgrE gene product were identified in the
genome of P. amoebophila (Table 1). We named the six
ORFs coded by large G+C rich genes lgrA to lgrF according
to their position on the published chromosome sequence,
starting from the putative origin of DNA replication indi-
cated by GC skew analyses. Figures 1A and 1E show that
these genes are scattered along the chromosome of the
bacterium. As revealed by cumulative GC skew analyses
(Figure 1A), lgrE is associated to the local inversion of the
signal that highlights Pam100G, an already described
genomic island [17].

With more than 4500 nucleotides, the six lgr genes are
among the 15 largest ORFs of the P. amoebophila genome.
The presence of these six very similar ORFs, which likely
originated by serial duplications from an unique ancestral
gene, and not found in other sequenced bacteria, suggests
that these proteins probably play an important role in the
particular biology of these bacteria.

The genomic G+C content analysis displayed on Figure 1B
shows that, with a G+C content ranging from 41.4 to
43.1%, the six lgrs present a G+C content higher than that
of the average of the rest of the genome, suggesting a for-
eign origin. Due to a similar G+C content, all lgrs proteins
might have a common origin with the tra operon, which
most probably originated in proteobacteria [17]. Among
the 2031 ORFs of P. amoebophila, 156 present a G+C con-

tent of more than 40%, including among others 28 ribos-
omal protein genes and all lgrs, the latters being the only
high G+C ORFs encoding proteins larger than one thou-
sand amino acids. As expected, all lgrs display a positive
steep slope in the residual cumulative G+C content curve,
due to their G+C content higher than the chromosome
counterpart (Figure 1C). Of note, no particular gene envi-
ronment of the lgrs could be highlighted by this analysis,
except the already described genomic island, Pam100G,
associated to lgrE [17].

All lgrs exhibit at the third codon position an enrichment
in Cs characteristic of genes anti-oriented to chromosome
replication [24], revealing that their common ancestor
was most probably unique and anti-oriented. However,
lgrB, lgrE and lgrF, are currently co-oriented (Figure 1D)
and seem to exhibit an adaptation to this new relative
position to chromosome replication, since their third
codon position is slightly enriched in Gs (Figure 1E). Con-
sequently, we may hypothesize that the currently co-ori-
ented lgrE probably duplicated recently from the anti-
oriented lgrA gene, and that lgrB, lgrE and lgrF, changed
their orientation about at the same time, suggesting
intense gene re-arrangements in a recent period during
P. amoebophila speciation. The source of such genes rear-
rangements could be similar to the intense genetic
exchanges revealed in Pam100G by the presence of the tra
unit and the phage-related genes, i.e conjugative DNA
transfer and/or transduction.

Furthermore, the six lgr genes show a very similar codon
usage, not significantly different from the codon usage of
most proteins of P. amoebophila. No particular relation-
ships could be found by this particular analysis between
lgrs and different kinds of genes: high G+C ORFs such as
ribosomal protein genes, large proteins encoding genes or
others (see Additional File 1(A)), and genes of the tra unit

Table 1: Characteristics of the six LGR proteins

Gene name Protein 
number

Position Strand GC content 
(%)

Length [bp] Length [aa] Length of 
LRR region 

[aa]

Number of 
LRR

Identities 
with LgrE 
(BLASTP)

lgrA pc0264 372491–
377908

- 41.4 5418 1805 446 16 1590/1805 
(88%)

lgrB pc0970 1164574–
1169391

- 42.6 4818 1605 239 8 1153/1600 
(72%)

lgrC pc1065 1267648–
1272165

+ 41.8 4518 1505 150 5 1104/1505 
(73%)

lgrD pc1341 1596253–
1601547

+ 43.1 5295 1764 411 15 1257/1776 
(71%)

lgrE pc1455 1726283–
1731883

- 41.8 5601 1866 505 18 1866/1866 
(100%)

lgrF pc1611 1924358–
1929142

- 40.9 4785 1594 225 8 1194/1597 
(75%)

aa = amino acids
bp = base pairs
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A: Position of the six lgr genes of P. amoebophila on the cumulative GC skewFigure 1
A: Position of the six lgr genes of P. amoebophila on the cumulative GC skew. B: on the G+C content curve (non-overlapping 
1-kb windows). C: on the residual cumulative G+C content curve (5-kb windows sliding by 1-kb step). D: Values of the intra-
genic GC skew at the third position of the codons (GC3) versus the location of all 2031 ORFs of P. amoebophila encoded either 
by the leading (black +) or by the lagging strand (grey x), both strands defined by the origin and terminus of replication deter-
mined by the minimum and the maximum of the cumulative GC skew curve from Figure 1A; open red circles/squares highlight 
the lgrs located on the leading/lagging strand. E: Chromosome map of P. amoebophila showing by red circles the six lgrs 
encoded on the leading- (black), or the lagging strand (grey). F: Histogram of the GC3 values of all 2031 ORFs of P. amoebophila 
located on the leading (1065 ORFs) or lagging strand (988 ORFs). The values of the lgrs encoded by the leading/lagging strand 
are indicated by black +/grey x, and the median M of the leading/lagging strand values is labelled in black/grey. Since all six lgrs 
present higher G+C content than the rest of the genome (34.7%), they all exhibit steep slopes in the residual cumulative G+C 
content curve. The lgrE is located in Pam100G, a 100-kb genomic island presenting a particular GC skew profile whose bound-
aries are indicated by dashed lines in panels A to E. The GC3 values of all six lgrs is similar to that of the anti-orientated genes 
of P. amoebophila, although three lgrs are encoded by the leading strand (lgrB, lgrE and lgrF). Since GC3 values of the three latters 
(-0.08057 for lgrB, -0.05634 for lgrE, and -0.05228 for lgrF) are significantly lower than the median minus the standard deviation 
(0.129 ± 0.167) of all genes encoded on the leading strand (p = 0.005) and close to the median of the genes encoded by the lag-
ging strand (median=-0.091 ± 0.171), it appears that an adaptation of the codon usage of these three lgrs is at work, due to a 
relatively recent re-orientation on the chromosome.
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or the other genes of the genomic island (see Additional
File 1(B)). Additional File 1(C) and its magnification
(Additional File 1(D)) show that the variation of the
codon usage is mainly due to the LRR domain (see below
for precise delimitation). It also reveals that lgrA and lgrE
present a very close codon usage suggesting that both
genes result from a duplication more recent than the other
lgr duplications. This hypothesis is confirmed by phyloge-
netic analyses performed on amino acids and nucleotides
sequences with various phylogenetic methods (Neighbor-
Joining [Figure 2A], Minimum Evolution and Maximum
Parsimony [data not shown], Maximum Likelihood vali-
dated by Bayesian analyses [Figure 2B]).

Overall structure of LGRs
The alignment of the six LGRs showed that their 1350 first
amino acids are very similar (see Additional File 2). The
more variable C-terminal part of these proteins presents
gaps in the amino acid alignment, most of the latter meas-
uring multiples of 28 residues, thus revealing an octacos-
apeptidic structure of this protein domain. This less
conserved part of these proteins is characterized by the
presence of concatenated Leucine-Rich Repeats (LRRs).
The variation in the LRR number estimated after a precise
delimitation of each unit (see below) almost fully explain
the variable length of the six LGRs: the LRR domain varied

from 168 to 515 amino acids while the remaining part of
the proteins, designated by us as the non-LRR domain,
present a very conserved length ranging from 1353 to
1369 amino acids (1360.5 ± 6.2).

Analyses of the secondary structure of these proteins with
NNPREDICT (see Additional File 3(A)) showed a succes-
sion of α-helices (45.2–46.9%) and β-sheets (5.2–7.2%)
in the LRR domain (see Additional File 4) precisely delim-
ited by the cumulative alignment score (see below). In the
non-LRR region (ca. 1350 first amino-acids), the propor-
tion of α-helices and β-sheets are quite similar (42.0–
46.6% and 5.8–7.7%, respectively). With the exception of
LgrA and LgrE, the percentage of amino acids involved in
α-helices in the carboxy-terminal region of LGR proteins
defined as the LRR domain, is higher than in the rest of the
protein (see Additional File 4). The recent duplication of
LgrA and LgrE suggested by similarity in codon usage and
by phylogenetic analyses (see above) is further supported
by the very close secondary structure of these two proteins
(Additional File 3(B)). Analyses performed by TMHMM v.
2.0 on the six LGR proteins identified no transmembrane
domain. However, when looking for conserved Pfam
motifs (see below the paragraph on the putative role of
LGRs), we found a conserved domain present in myco-
plasmal lipoproteins in LgrA, LgrB, LgrE and LgrF,

Phylogeny of the six LGR proteins encoding genes (lgr) of P. amoebophilaFigure 2
Phylogeny of the six LGR proteins encoding genes (lgr) of P. amoebophila. A: Neighbor-Joining tree of the nucleotide sequences 
of the lgrs without the sequence corresponding to the LRR domain, using the Kimura 2-parameter distance and the complete 
deletion parameter with a bootstrap analysis of 1'000 samples. Bootstrap values are shown in percent. B: Bayesian tree per-
formed on the same non-LRR sequences was drawn after 100'000 generations, sampling 100 generations and 5 chains, respec-
tively. The general-time reversible model was used with gamma rates of among-site variation. C: UPGMA tree based on the 
comparison of the amino acids composition of the LRRs: same data as those used for Figure 6 to calculate the center of gravity. 
In all three analyses, lgrA and lgrE are very close. Except in A, in which all other lgrs seem to emerge from the same nod, the 
relationships between the four others is strikingly conserved in the dendrograms B and C.
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suggesting that these LGRs exhibit a prokaryotic mem-
brane attachment site probably acting as a membrane
anchor [25].

Finally, we also analyzed the distribution of leucine
within all six LGRs (see Additional File 5). While the leu-
cine content of LGRs is higher (13.3 to 14.1%) than that
of the other proteins encoded by P. amoebophila chromo-
some (11.7%), the leucine content of LGRs is not signifi-
cantly different within the LRR- and non-LRR domains
(13.2 to 17.3% and 13.1 to 13.5%). As expected, repeti-
tions of the leucine pattern occur in the LRR domain at a
periodic 28-residue interval.

Other proteins of P. amoebophila exhibiting LRR 
domains: 23-, 25-, and 28-meres
LRR domains are defined as concatenated leucine-rich
repeats units of 20–29 residues that generally fold into an
arc or horseshoe shape [23]. BLASTP searches in the
genome of P. amoebophila of proteins homologous to the
LGRs highlights the presence of other LRRs proteins: (i)
pc1145, a putative small protein exhibiting two repeats of
28 amino acids similar to the LRRs of the LGRs proteins,
(ii) pc0038 containing 23-meric LRRs, and (iii) four addi-
tional proteins (pc1032, pc1462, pc1616 and pc0992)
presenting 25-residue repeats. Further analyses based on
the four latters detected 66 other proteins exhibiting rela-
tively significant similarity to the four 25-meres. Our
results describing 78 LRR-carrying proteins encoded on
the chromosome of P. amoebophila UWE25 and the length
of their LRRs extend the recently published preliminary
analyses performed independently that identified 56 LRRs
proteins in the genome of this strain [16].

Common frame of the 28-meric LRRs determined by the 
Cumulative Alignment Score
Similarity analyses performed by BLAST allow rapid deter-
mination of LRR polypeptides in LGRs. Unfortunately, a
common 28-meric frame shared by the six LGRs could not
be proposed by this technique. Although the LRRs are
abundantly discussed in the literature, there is no consen-
sus on where each repeat precisely begins and ends. There-
fore, we developed the Cumulative Alignment Score
(CAS), a non a priori approach designed to unambigously
define (i) the start of the LRR domain and (ii) the precise
limits of the common unit frame of all LGRs and of other
LRR-containing proteins of bacteria, animals and plants.

The representation of the protein sequences of the LGRs
versus the CAS scores determined by preliminary com-
mon LRR sequences enabled us to precisely define the LRR
domain of the six LGR proteins (see Additional File 6).
Although the CAS of the six LGRs does not determine an
entire number of repeats in the LRR domains, four of the
six proteins present a LRR domain varying in length in

LRR units by no more than three residues: LgrA, LgrD,
LgrE and LgrF (Table 1, Figure 3). However, the final
repeat LRR15

LgrD has a degenerated end and thus exhibits a
lower similarity with the others. Therefore, the latter unit
was not taken into account by the identity analysis of the
CAS (Figure 3). All further analyses on the LRRs are based
on repeats defined by the CAS by at least two thirds of the
consensual residues.

The LRR domain of the LGR proteins are thus composed
of 5 to 18 well conserved units of 28 amino acids compos-
ing 70 different LRRs (Figure 3, see Additional File 2). Fur-
thermore, pc1145 also presents two 28-residue LRRs.
Interestingly, only one out of these 72 LRRs differs in
length: LRR1

LgrE, the first LRR of LgrE, is a 30-residue unit,
due to a tandem duplication of two codons (GAA-GTT-
GAA-GTT) encoding the dipeptide Glu-Val present in the
first LRR of all other LGRs, except LgrD. We confirmed the
existence of this small duplication in LRR1

LgrE by rese-
quencing this region, as previously described [26], but
using the following primers: 5'CGGCTCCCTATAT-
CAAAGGA and 5'GTTACCACCAAGGTAGAGTG.

The determination of the limits of the repeats of the LGRs
performed by the CAS is unambiguously confirmed by
the determination of a common frame for the six LGRs
and by the presence of a conserved secondary structure
within each repeat and no standard secondary structure at
the LRR boundaries (Figure 4, see Additional Files 3 and
7). In several LRRs, amino acids present at the C-terminal
part of the repeat were also predicted to be involved in a
small β-sheet made of Leu19, Leu22, and Leu24. No other
putative β-sheet was found elsewhere. Glycyl residues
that could be part of a turn of the peptide backbone due
to their non-stereospecific nature brought by the pres-
ence of the hydrogen atom as lateral chain, are always the
5th amino acid of the repeats, except in LRR1 of all LGRs
except LgrC, and in LRR6 and LRR16 of LgrA, and are often
present at the 25th or 26th position (Figures 3 and 4).
Interestingly, these glycyl residues are located at the
boundaries of the consensual alpha-helix, thus not alter-
ating the predominant secondary structure of the 28-res-
idue unit, showing that structural constrains are imposed
on the secondary structure of the LRRs. Moreover, only
two prolyl residues are present in the 72 LRRs of the LGRs
and of pc1145: one is the last residue of LRR5

LgrC and the
other is the 15th residue of LRR5

LgrF (Figure 4). The two
prolines are located at positions of low α-helix signal.
A definition of the protochlamydial 28-meric LRRs could
thus be given: the secondary structure of these leucine-
rich repeat motifs consists mainly of an α-helix located at
the middle of each unit, and in some repeats, amino acids
present at the distal part of the repeat were also predicted
to be involved in a small β-sheet containing Leu19, Leu22,
and Leu24.
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Evolutionary history of the LRR
To determine how the LRRs were propagated within the
LGR proteins, we inferred phylogenetic trees on nucle-
otide sequences of the 70 repeats of all LGRs and of the 2
repeats of pc1145 using the Neighbor-Joining method,
the Kimura corrected p-distance (Figure 5) and a Bayesian
method (Additional File 8(A)). We also drew phylogenic
trees with an identity distance calculated from the propor-
tion of conserved amino acids in pairs of repeats (see
Additional File 8(B)). This comparison was also repre-
sented by a principal coordinate analysis (Figure 6).

These analyses showed that the first repeats of all LGRs
except LgrA cluster together. On the Neighbor-joining

(Figure 5), Bayesian (Additional File 8(A)) and UPGMA
(Additional File 8(B)) phylogenetic trees, only three last
LRRs of LGRs for which the CAS determined an almost
entire last unit (LgrA, LgrE and LgrF) clustered together.
This suggests that (i) the LRRs were probably multimer-
ized after serial duplications of the LGR protein genes, (ii)
that the repeats propagated independently in the six lgr
genes by rearrangement/recombination of a few ancestral
LRRs repeats within the LRR domains defined by the LRR
units present at both ends, and (iii) all LGRs probably
originated from an ancestral protein exhibiting a few
ancestral LRR units able to produce a functional LRR
domain.

The 72 Leucine-Rich Repeats (LRRs) of pc1145 and of the six LGR proteins of P. amoebophilaFigure 3
The 72 Leucine-Rich Repeats (LRRs) of pc1145 and of the six LGR proteins of P. amoebophila. The 28-residue motifs are 
aligned. The end of the protein is displayed for each LGR protein, starting from the four non-LRR 28-meres preceding the LRR 
domain. Leucine (L) and the related-isoleucine (I) are indicated in bold. While the common start of the LRR domain as defined 
by the CAS (Additional File 6) is indicated by the position of the first residue belonging to the LRR domain, the last residue is 
labeled by an arrow. Only LRR1

LgrE is larger (30 residues) than the 71 other 28-meric LRRs: also found in the first LRR of LgrA, 
LgrB, LgrC and LgrF, a dipeptide EV, underlined in LgrE, is duplicated in LRR1

LgrE. All further analyses of the LGRs on the LRRs 
defined by the CAS are almost exclusively based on homologous 28-meric units and on repeats presenting similarities along at 
least two thirds in length of the 28-mere.

LgrC
PLTPTYLQFAKLQELQLTRCETLVSIQL
DAPLLHTLKADKNPQLKMLFFKAFAPYV
RGNFTKCPALDLETIKKEVVSKTLREIK
TLEIDHIRLFKLYMNNSNLTILNFFDKR

01 ISDEGTEVIANGLAFNTALNILDLRNNQ
02 ISDKGAKAIAQAFAFNTALWHLHLGNNQ
03 ISDEGAEAIAQALASNTALKTIDLSNNQ
04 ISNSGAEALAQALTSNTALRILYLENNQ
05 ISDSGAEALAQALTSNTTLSTFYFYGNP

LNKRGRLALAELGHEVIFDGSYRVLRFN

LgrD
PLTSTYLQFAKLEELQLKRCVALASIQL
DAPLLHTLKADKNPHLKTLSFTTSDPYV
RGSFTSCLALNLKTVREVGVRRILKEIK
NPKIDHSRLFQLYMNDSGTIALGFSRVG

01 INDKEAEIIANALALNTALRSLRLQNNQ
02 ISDRGAEAFARALASNATLKALWLDNNQ
03 ISNEGAEAIAQALASNTALRELYLGNNQ
04 ISDKGTEAIAQALASNTTLETLWLDNNQ
05 ISFKGVKALVQSLAFNTTLKVIHLNSNK
06 ISDEGAEAIAQALASNTTLKILDLGNNQ
07 ISDKGGKEIGKALAFNTVLRRLYLRNNQ
08 ISDEGAEAIAQALASNTTLETLWLDNNQ
09 ISFKGVKALVQSLASNTVLENLSLNGNQ
10 ISNKGMEALAQALASNRKLREISLNGNQ
11 ISDEGMEAFARALTSNTALKVLHLGSNQ
12 ISDKGAGALAQALASNTALRELYLGDNQ
13 INDKGAETIAQAFASNTKLETLSLKGNQ
14 ISDEGAKAIAQAFASNTKLETLSLRGNL
15 ISDEGAKAIAQAFASNTNLKTIYFNNNR

YRR

1342

1338

1354

1352

1352

1352

LgrE
PFASTYLQFARLEELQLRRCKALVSIQL
DAPLLHTLKADKNPHLKMLFFKTTAPYI
KGSFTRCPALDLETAKKERVQKILKEIK
TSEIDHTQLFQLYMNDSELTSFGLNRKG

01 ISDKEMEVIANGLACNTALKSFWLKGNQ
02 ISDRGAEAFAQALASNTTLKSLYLGGNQ
03 ISDKGMEAFAQALASNTTLESLSFNENQ
04 ISDKGMEAFAQALASNTTLESLYLGGNQ
05 ISDKGMEAFAQALASNTTLKSLYLDDNQ
06 ISDKGMEAFAQALASNTTLKSLSFNENQ
07 ISDKGMEAFAQALASNTTFKSLYLGGNQ
08 ISDKGMEAFAQALASNTTLKSLYLDDNQ
09 ISNKGAQALAQALASNTILKSLSFNENQ
10 ISDKGAQALAQALASNTTLKSLYLDDSQ
11 ISDKGAQALAQALASNKALKSLCLGSNQ
12 ISDKGAQALAQALASNTTLKSLSLNGKQ
13 ISDKGMEAIAQALASNTTLKSLSLNGKQ
14 ISDKGMEAFAQTLASNTTLESLDLRNNQ
15 ISDKGMQAFAQTLASNTTLESLDLRNNQ
16 INDKGMEAIAQALASNTALKSLYLDGNQ
17 INDKGMEAIAQALASNTALKSLYLDGNQ
18 INDKGMEAITQAVASNTALKKFWLNGNL

IKQEGVINN

LgrF
PFASTYLQFAKLEELQLMRCEVLASIQL
DAPFLHILKADKNPHLKTLFFKTMAPYV
KGSFTSCSALDLETIKKEKVSKILREIK
TSEIDRTQLFQLYMNDSRLTSLDLSYRG

01 ISDKEAEVIANGLTFNTALSFLRLNNNQ
02 ISDRGVEALARALTFNTTIKQLWLESNQ
03 ISDRGAEALTRVLASNTALMTLSLRENL
04 ISNKGVEAFAQALASNTALRKLYLNGNQ
05 ISDKGMETLARALTPNTTLESLDLDRNQ
06 ISDRGVEALAIALVSNTALRTIYLNRNL
07 ISDKGMEALARALASNTALTTLSLNGNL
08 ISDKGMKALAKVLASNTALKKFWLNGDL

IKQ

pc1145
MEIDLSYNQ

01 IRDKRAEAIAYYLISNATIESLYLNRNH
02 ISDKGMEAFAQALASNTVLETLYLINNQ

IGERGKKALYGLGLRYGCKIRR

LgrA
RFASTYLQFAKLEELQIRRCKALVSIQL
DAPLLHTLKADKNPHLKMLFFKTTAPYV
KGSFTRCPALDLKKAKEEGVRRVLKEIK
NLEIDSGILLQLYMNDPKFASVNLSNQK

01 ISDRGAEVLAHSLASNTTLKSLDLDRNQ
02 ISDKGAEAIAQALASNAALETLWLNGNQ
03 ISDKGAEAIAQSLASNAALWKLSLNGNQ
04 ISDQGMEAFAQALASNTILMDLSLNGNQ
05 ISDQGMKAFAQALASNTSIRVLSLNENQ
06 ISDKEMEAFAQALASNTSIGVLSLNGNQ
07 ISDKGMEAFAQALASNTTLRTLRLDNNQ
08 ISDKGMEAFAQALASNTSIGVLSLNGNQ
09 ISDKGIVALAQALASNTILSELSLNENQ
10 ISDQGMEAFAQALASNTALRALRLDNNQ
11 ISDKGMEAFAQALASNTILSELSLNGNQ
12 ISDQGMEAFAQALASNITLRALRLDNNQ
13 ISDQGMEAFAQTLASNTTLRALRLDNNQ
14 ISDKGMEAFAQTMASNTSIRVLSLNGNQ
15 ISDQGMKAFAQTLVSNTILMDLSLNGNQ
16 ISDKRMKAFAQTLASNTAVGWFRLNGQV

IINKRL

LgrB
PLAPTYLQFAKLEELQLKRCVALASIQL
DAPLLHILKADKNPHLKTLFFTTFAPYF
KGSFIRCPTLDLETVKKERISKILREIK
TSEIDRIELFQLYRNDSWLNSLSFSYRI

01 ISDKKAEVIANGLAFNTALSFLRLNSNQ
02 ITDRGVEALAHALAYNTAIKQFWLDRNQ
03 ISDEGAKAISKALTSNNTFETISLEYNQ
04 ISDEGAEAIAQALASNTTLRELFLNGNQ
05 ISDKGAKAIFKALAYNTVLKKLALSYNQ
06 ISDEGAKAIAQALASNNTLETLSLEYNQ
07 ISDEGMEALAQALASNTALRELSLNGNQ
08 ISDEGMEALAQALASNTTLRELSLNGNQ

ISDRGMEALARTLASHKYFRVKGNLIKH

10
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The distance between all six barycenters (centers of grav-
ity) on the two first dimensions of the PCO analysis was
represented by an UPGMA tree (Figure 2C). Based on the
LRRs domain, this tree was congruent with those inferred
with the non-LRR part of LGR proteins (Figures 2A and
2B) and also confirmed that LgrA and LgrE duplicated
recently.

Close inspection of the sequence of the LRRs of LgrE (Fig-
ure 3) showed that the variations between the repeats are
locally distributed, suggesting that the multimerization of
the LRRs occurred by serial adjacent duplications (Figure
7A). In order to determine if the repeats result from serial
adjacent duplications, the identity scores between peptide
sequences were calculated between each LRR of LgrE and
i) its two closest repeats or ii) all other repeats of the pro-
tein. For all 18 repeats except LRR2

LgrE and LRR8
LgrE, the

average of the identity scores calculated on close neigh-
bors is higher than the counterpart estimated between
each of the 18 LRRs and all 17 others, showing that most
LRRs are significantly more similar to their two closest
LRRs than to all other repeats of the protein taken together
(see panel A of Additional File 9(A)). This kind of analysis
performed on the nucleotide sequences showed results
very similar to those conducted on the amino acid
sequences (panel B of Additional File 9(B)).

This identity analysis of the immediate LRR neighbor-
hood was also performed by comparing the 28-meric
units separated by 0 to 7 intercalary LRRs (Additional File
9(C)C). We observe on Additional File 9(C)C that imme-
diate neighbors are the most similar. The observation per-
formed with no intercalary sequence corresponds to those
posted on additional Files 9AA and 9BB. This graph also

Common secondary structure of the LRRs of P. amoebophila defined by the CAS approachFigure 4
Common secondary structure of the LRRs of P. amoebophila defined by the CAS approach. On each position of the consensus 
of the 28-residue LRRs the proportion of amino acids of the 70 LRRs of the six LGR proteins predicted by NNPREDICT to 
belong to either an α-helix or a β-sheet is plotted. Perturbating amino acids present in some LRR, i.e. Glycyl (G) and Prolyl (P) 
residues are posted as they are located on the LRR unit. This figure clearly shows that while secondary structures are present 
within the LRR units, no particular structural configuration could be observed at the boundaries of the units.
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Neighbor-Joining tree inferred from the nucleotide sequence of the 72 LRRs related to LGRs of P. amoebophila and of three repeats of the human NOD3 proteinFigure 5
Neighbor-Joining tree inferred from the nucleotide sequence of the 72 LRRs related to LGRs of P. amoebophila and of three 
repeats of the human NOD3 protein. The p-distance model and the complete deletion parameter were performed with a 500-
replicate bootstrap analysis. Only bootstrap values higher than 50% are shown.
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shows that after immediate neighbors, the more similar
are those separated by two units. In summary, the latter
results suggest that LRR duplication occurred in the LRR
domain of LgrE by inserting identical LRR units composed
of one or three LRRs.

The average difference for the 18 LRRs of LgrE between the
scores calculated on the immediate neighboring repeats
and that estimated with all other repeats (1.6) was also
calculated for the LRRs of the five other proteins, i.e. LgrA,
LgrB, LgrC, LgrD and LgrF. It appeared that these values,
although clearly lower, were all positive except for LgrF:
0.50, 0.14, 0.30, 0.10 and -0.21 respectively, thus con-
firming that for most LGRs the immediate neighbors of all
LRRs are more similar than the others of the same LGR
taken together.

Evolution of LRRs by adjacent multimerization
As the LRRs of the LGRs are concatenates with no inter-
vening sequences, we observed in LgrE that the LRR mul-
timerization probably mainly results from adjacent
duplications of DNA stretches of a multiple of 84 nucle-
otides encoding unique or multiple 28-residue LRRs
sequences. These LRR multiplications produced by rear-
rangements/recombination are favored by the repetition
of homologous sequences. Deletion could also appeared
during rearrangement. Since a recA gene is present on the
genome of Protochlamydia amoebophila UWE25 (pc1995),
the RecA protein, which role in homologous recombina-
tion is abundantly documented [27,28], might be
involved in these internal gene rearrangements. In first
analysis, these recombination are independent of a partic-
ular 28-residue frame. This hypothesis was suggested by

Three main dimensions of a principal coordinate analysis of the 72 LRRs related to LGRs of P. amoebophilaFigure 6
Three main dimensions of a principal coordinate analysis of the 72 LRRs related to LGRs of P. amoebophila. The distance is 
based on the identity of the amino acids of the repeats (Manhattan distance matrix). Filled symbols correspond to the center of 
mass of the repeats of the protein with the similar empty symbols. The barycenters of the six first repeats (α) and the six last 
repeats (ω) are indicated by + and the corresponding abbreviation. The first and the last repeats of the LGRs labelled in black 
tend to cluster together.

07

-12 -8 -4 0 4 8

x

4 0 -4

-4

0

4

z

LgrA

LgrB

LgrC

LgrD

LgrE

LgrF

pc1145

LgrA

LgrB

LgrC

LgrD

LgrE
LgrF

first repeats 

last repeats 

?

?

barycenter

-4

0

4

01

0203

05

16

02

01

01

03 06

08

04
03

02

0604

02

01

05
14

13

01

18

08
09

01

15
05

05

07

01

03

06

02

11 10 12

15

14

10
05

06
08

04
1103

0609 07

04

12

09

11

15
03

12
13

02 02

13

07

05-08

04

10

14

07

04

07

08?

?

01

03

05

16

02

01

01

01

07

?
01

01

02

18

15

05

0503
06

?
08

01

14

13

02

09

05

09

15
04

06

10

16-17

02

11

14

05

11

03
02

09

03 03

04

07

08

05-08

04
07

11

02

13

13

12

15

10

06

14

10
07

06

02

03
16-17

07

12 12

04

06

08

04

08 04

06

08

03

03

02

06

02

14

0401

02

01

13

12

05

01

01

?

1002

10

15

07 01

04

14

05-08

10

09

09

07

07

03

08
04

1118

05
03

06

13

08

04

? 08

09

12
06
03
05

03

13

12

15

04
04

11

05

02

07
0216-17

01
07

14

15
05

06

16 08

z

02

01



BMC Evolutionary Biology 2007, 7:231 http://www.biomedcentral.com/1471-2148/7/231

Page 11 of 19
(page number not for citation purposes)

the initial alignments (see Additional File 2) showing that
the LRRs of the six LGRs share no obvious common 28-
residues frame. However, our non a priori approach CAS
highlighting a common LRR frame clearly reveal that this
common frame was generally respected by the recombina-
tion process during the lrr duplication.

These phylogenies and the detailed analysis of the
sequence of the LRRs of LgrE enabled us to propose a par-
simonious evolutionary scenario for a multimerization
mechanism of these LRR domains. The LRRs of P. amoe-
bophila seem to have originated from adjacent duplica-

tions and deletions of DNA stretches of a multiple of 84
nucleotides (Figure 7B).

Evolutionary history of LGR neigbourhood of P. 
amoebophila
The six LGR proteins are very similar, particularly in the
non-LRR domain and seem to result from relatively
recent duplications in the history of these genes in the
parachlamydial genome. To further investigate the evolu-
tionary history of the six lgrs, BLAST searches of sequence
homologous to the genes and intergenic sequences that
flanked the lgrs were performed against the genome of

A: Sequence of the LRR domain of LgrEFigure 7
A: Sequence of the LRR domain of LgrE. The different motifs conserved in LRRs are highlighted in colour. Probable events of 
multimerization and deletion of repeats are indicated by E1 to E7 whose numbering is not chronological. A parcimonous sce-
nario is proposed for the multimerization of the LRRs of LgrE. In the first part of the LRR domain: formation of a unit of three 
different LRRs (E1) that was later triplicated (E2) by two independent duplications in tandem. Finally, a deletion occurred (E3). 
On the second part of the LRR domain, a triplicate was build (E7), each member of it were duplicated (E4, E5 and E6). Our 
model shows that multimerization by adjacent concatenation occurred in LgrE. It also shows that LRR1

lgrE, LRR11
lgrE, and 

LRR18
lgrE were not involved directly during this process, suggesting more constrains on their sequences. Furthermore, it points 

out that the common frame is respected during all duplication events (E1, E2, E3, E5, E6, and E7) except one (E4). Finally, the 
later event (E4) associated to the deletion (E3) were certainly imposed by structural constrains acting on LRR11

lgrE. B: General 
scheme of the mechanism of the multimerization of the LRRs of the LGRs.

01 ISDKEMEVIANGLACNTALKSFWLKGNQ

02 ISDRGAEAFAQALASNTTLKSLYLGGNQ
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P. amoebophila. Results are shown in Additional File 10.
The narrow boxes of various sizes and colors represent
the homologous regions present in the close environ-
ment of the six lgr genes. Interestingly, a homologous
sequence of 633 bp is present on both sides of lgrA as an
inverted repeat. This sequence belongs to a region that is
also present downstream from lgrC, lgrE and lgrF.
Another 360 bp inverted homologous sequence flanks
lgrB on both side. Moreover, a shorter homologous
region is present immediately upstream of the six lgr
genes, that likely corresponds to promoter motifs.

Prediction of promoter and terminator motifs
To find the promoter motifs of the six LGR proteins, we
screened the 500 bp upstream of the translation start site
for the presence of the so-called -35 and -10 conserved ele-
ments of the Escherichia coli canonical s70 promoter,
which is also used by Chlamydia spp. [29,30]: the motifs
TTG and TANNNT (the underlined nucleotides in the
Table S2 are located at the position -35 and -12 of the
translation start site), respectively, separated in P. amoe-
bophila by 19 to 21 bp. We found 16 putative promoter
motifs. Among them, five are very similar (all lgrs except
lgrC) and are separated by 35–38 bp to the start codon of
the five LGR encoding genes (see Additional File 11). A
similar sequence is present before lgrC but its -35 motif
differs from a single nucleotide (TTA instead of the con-
sensual TTG). Calculated on the 50 last bp preceding the
putative transcription start site, the G+C content of these
six sequences ranges from 16.0 to 24.0%, confirming a
putative regulatory nature. Moreover, the dinucleotide TG
characteristic of promoter sequences [31] is starting at the
-15 position. Other similar sequences of lgrB, lgrC, lgrE
and lgrF are located at a distance of 152 to 157 bp of the
start codon. Their G+C content on their last 50 bp range
from 32.0 to 42.0%. The remaining seven sequences are
not located at similar places before the different LGR
encoding genes. The presence of two putative promoter
motifs can reveal a complex regulation present in P. amoe-
bophila to differentially regulate the expression of the lgr
genes during different developmental stages. The presence
of these promoter motifs strongly indicate that all lgrs are
expressed genes. In addition, a putative terminator
sequence was found in the 500 bp downstream of lgrB,
using the FindTerm software.

Proteins homologous to LGRs in other organisms
Using BLASTP and PSI-BLAST, proteins homologous to
the LGR proteins of P. amoebophila were systematically
searched in the non-redundant database (nr) maintained
on the NCBI website [32]. A large number of proteins
present in the genome of different organisms are signifi-
cantly similar to the C-terminal part of the LGRs proteins
corresponding to the last 150 to 505 amino-acids. This
region of the LGRs exhibits 28-residue motifs very similar

(178/418 = 41%) to the LRRs of the ribonuclease inhibi-
tor (RI)-like subfamily, e.g. mammalian NOD3. The LRRs
domain of LGRs also presents significant sequence simi-
larity with DeliriumA (DlrA) of Oryza sativa and of Dicty-
ostelium discoideum involved in the apoptosis [33,34] and
with the LRRs of related genes of Ralstonia solanacearum
and Legionella pneumophila (Additional File 12). BLASTN
searches in the non-redundant database did not reveal any
sequence homologous to LGRs.

Since a large number of proteins presented similarity in
the LRR regions, we then performed additional BLASTN
and BLASTP searches using the remaining parts of each
LGR proteins. No proteins of other organisms is homolo-
gous to the non-LRR region of the LGRs excepted nine
proteins of D. discoideum (E-value ranging from 2·10-13 to
5·10-2). The latter matches found with the D. discoideum
proteins corresponded to parts not characterized as cata-
lytic sites or effector domains.

No additional hint was observed during other BLAST
investigations (BLASTP and BLASTN) performed against
all prokaryotic genomes as well as against those of D. dis-
coideum and Arabidopsis thaliana. Since the chromosome
sequence of Simkania negevensis, another intracellular
amoebal chlamydia, is now available for similarity analy-
ses, we were also interested to determine whether similar
proteins were encoded in this genome by BLASTN,
TBLASTN and TBLASTX analyses performed at the TIGR
website [20]. No sequence larger than 300 nucleotides
was identified showing significant similarities to LGRs.
The smaller fragments that have been identified by
BLASTN were similar to polypeptides located either in the
LRR domain or in the remaining part of the LGRs.

Relationship between LRRs domains of LGRs and of other 
organisms
We also applied the CAS method to delimit the LRR
domains of other LRR proteins homologous to LGR iden-
tified by BLAST (Additional File 12). The same motif is
conserved among all these LRR domains. The LRRs of
mammals, plants and D. discoideum is composed of 28
amino acids, the LRR of R. solanacearum and L. pneu-
mophila of 24 residues and those of Tetrahymena ther-
mophila of 30-meric units. Determination of consensus
LRR sequences for each protein showed that the repeats
are well conserved in the LGRs of P. amoebophila, while
they are more divergent within the LRR proteins of ani-
mals and plants (Additional File 12), indicating that the
latters have a longer evolutionary history than the LGRs.

Phylogenetic analyses were performed on the LRR
domains of the six LGR proteins and some of the LRR
domain of the proteins found by BLAST. All proteins
showing similarity (E-value < 10-50) with at least one of
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Phylogenetic analyses of the LRR domain of all the proteins presenting a similarity with an expect value < 10–50 with at least one of the six LGR proteinsFigure 8
Phylogenetic analyses of the LRR domain of all the proteins presenting a similarity with an expect value < 10–50 with at least 
one of the six LGR proteins. A: Neighbor-Joining tree comparing the amino acids sequences by the corrected p-distance. 
Bootstraps of 1000 samples are shown in percent. B: UPGMA tree comparing the LRR consensus established on the same set 
of proteins. This analysis, which measures the identity of the amino acids, was performed only on the LRR consensus estab-
lished on relatively well conserved repeats: 50% or more relative positions of the 28-mere presenting an identical amino acid in 
50% or more of the LRRs of a given protein. Both analyses show that the closest relative of LRRs of LGRs are the bacterial 24-
meric LRRs of Legionella pneumophila and related bacteria and the 28-meres of eucaryotes.
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the six LGR proteins were included in the analyses
(Figure 8A, see Additional File 13). Consequently, the
LRRs domains of Toll and Toll-like proteins exhibiting not
enough similarity with LGRs were not included in these
analyses. Another phylogenetic tree was inferred on the
LRR consensus established on each of these proteins pre-
senting a high degree of similarity (Figure 8B). This anal-
ysis compared the consensual amino acids at each
position and was performed only on the LRR domains
that exhibit relatively well conserved repeats (at least 50%
of consensual amino acids).

Both analyses indicated that the closest homologs of
the 28-meric units of the LGRs seem to be carried by the
24-meres of the GALA protein 1 (a type III secretion sys-
tem effector containing a LRR domain and a F-box
domain, and considered essential for the virulence of the
R. solanacearum in some plants [35]), of a LRR-protein of
Ralstonia solanacearum, and of a hypothetical protein of
Legionella pneumophila.

The next closest homologous LRRs to LRRs of the LGR
were NOD proteins of mammals. The NODs of mammals
exhibited the best matches in the BLAST searches. Moreo-
ver, analysis of the structure of the LRR domain of the LGR
proteins showed that they probably belong to the same
subfamily, LRR-RI. Like the motifs of LRRs of the LGR pro-
teins, LRR-RI of mammals present 28-amino acid motifs.

Putative roles of LGRs
We hypothesize that like LRR-RI of mammals, the proto-
chlamydial LRR domain might be involved in bacterial
recognition and that each LGR protein might present
either slightly different effector domains or be able to rec-
ognize different bacterial motifs including nucleic acids.
Since by BLAST analyses, we did not find any known effec-
tor domain in the non-LRR part of the six LGRs proteins,
we searched for a putative effector domain by using the
Pfam collection of multiple alignments of sequences
determined by hidden Markov models (Additional File
14). All six LGRs exhibited three to four matches with the
LRR_1 domain and one match with PetN (a small hydro-
phobic protein). LgrA, LgrB, LgrE and lgrF exhibited also a
match with the lipoprotein_3 domain, present on a Myco-
plasma protein and acting as an anchor, suggesting that
these LGRs might be associated to membranes, despite the
absence of transmembrane domain (see above). Interest-
ingly, LgrA, LgrC, LgrD and lgrE present all a match with
the DUF2027 domain, putatively involved in DNA mis-
match repair. In addition, each LGRs proteins exhibited a
few additional matches (see Additional File 14) that were
mainly domains related with DNA metabolism. These
putative active domains might thus be involved in the
recombination necessary for the concatenation of the

LRRs or might be essential in the recognition of foreign
DNA.

It should be pointed out that lgrE is located near a tra
operon likely involved in conjugative DNA transfer [17],
which suggests that the LRR-RI motifs of LgrE might be
involved in the recognition of a conjugative bacterial part-
ner or in interactions with DNA/RNA molecules since
eucaryotic LRR domains were shown to bind double helix
of nucleotides [36].

Little is known on the biology of P. amoebophila UWE25.
However, another related symbiont of amoebae, Parach-
lamydia acanthamoebae, was shown to resist destruction by
macrophages, eliciting no oxidative burst and inducing
nearly no secretion of proinflammatory cytokines [13].
Thus, LGR protein might alter the recognition of bacteria
by the host cell by saturating recognition sites of the
parachlamydial proteins secreted in the amoebal vacuoles
containing these bacteria. However, the absence of genetic
tools devoted to the study of the obligate intracellular
Chlamydiae prevent further genetical investigations of the
biological functions of these paralogous proteins. Since
Legionella are facultative intracellular bacteria amenable to
genetic manipulation and, like the Parachlamydiaceae, able
to resist to both free-living amoebae and macrophages, it
may be relevant to investigate the role of the Legionella
LRR protein to understand the role of LGRs.

Conclusion
In this work, we describe the evolutionary relationships
existing between six large proteins encoded by homolo-
gous large G+C rich genes (lgrA-lgrF) of P. amoebophila. By
analyzing the LRRs of these six homologous proteins of
Protochlamydia amoebophila, we show that these repeats
evolved by adjacent multimerization. Our model estab-
lished on the bacterial 28-meric LRRs of the LGRs can now
be challenged in related eucaryotic proteins composed of
less conserved LRRs, such as NOD proteins and Toll-like
receptors.

Methods
Genomic data
The complete genome sequence and the annotation file of
P. amoebophila UWE25 (accession number: NC_005861)
are available on the NCBI website [37]. The unfinished
genome of strain ATCC VR1471 of Simkania negevensis
was available for BLAST analyses at the TIGR website [20].

BLAST analyses
Similarity analyses using BLASTP (BLOSUM62 matrix),
iterative PSI-BLAST and BLASTN searches were performed
by selecting default parameters against all available
sequences in the non-redundant database available on the
NCBI website [32,38]. Other BLASTP searches against all
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the prokaryote genomes, D. discoideum and A. thaliana
were also conducted on the NCBI website [32] using the
BLOSUM62 matrix. Moreover, BLASTN 2.2.13 without fil-
ter [38] and MegaBlast of coding and non-coding homol-
ogous sequence were performed along the genome of
P. amoebophila UWE25 [37]. The unfinished genome of
S. negevensis was also analyzed by BLASTN, TBLASTN and
TBLASTX at the TIGR website [20] using default parame-
ters. For all BLAST analyses, only matches presenting an
expect value lower than 0.05 were considered significant.

Pfam analysis
Unlike BLAST, hidden-Markov-models based proteins
profile use a much intense probabilistic approach. Conse-
quently, to search for conserved Pfam domains encoded
by the lgrs genes, we performed the analyses using the
Pfam 21.0 software against the database available on the
Sanger website [39] using defaults parameter.

Cumulative GC skew and intragenic GC skew at the third 
codon position
As initially inspired by Grigoriev et al. [40] and then
applied by Roten et al. [41], a cumulative GC skew non-
ponderated to the G+C content is a function CmGC(i),
measuring at each chromosome position i the excess of Gs
by calculating the difference of the number of Gs and Cs,
present from the first to the i-th nucleotide position:

CmGC(i) = [Gi]- [Ci] (1)

where Cm stands for cumulative. This cumulative GC
skew analysis was performed on the complete genome
sequence on non-overlapping 1-kb windows.

For each of the 2031 ORFs of P. amoebophila, the GC skew
at the third codon position of a gene j SkGC3(gj) was meas-
ured by calculating the difference between the frequency
of Gs and Cs at the third codon position of the gene j, i.e.
[Gg3j] and [Cg3j], normalized to the content of both
nucleotides [24]:

SkGC3(gj) = ([Gg3j] - [Cg3j])/([Gg3j] + [Cg3j]) (2)

G+C content and residual cumulative G+C content 
analyses
The G+C content was calculated with 5-kb sliding win-
dows moving in 1-kb steps. Derived from the GC profile
approach [42], residual cumulative G+C content analysis
reveals minor local variations of G+C content at the nucle-
otide level without being affected by windows of arbitrary
size [17]. First, a cumulative G+C content curve is drawn
by plotting at each chromosome position i the number of
Cs and Gs from the first to the i-th position. Next, a linear
regression is calculated, and finally a bidimensional graph
is drawn on which chromosome positions on the hori-

zontal axis are plotted versus the residues, i.e. the dis-
tances from each data to the linear regression, on the
vertical axis. As already pointed out [17], while a flat seg-
ment on this curve reveals a DNA stretch locally exhibiting
a G+C content similar to the chromosome counterpart, a
segment presenting a positive or a negative slope indicates
a region enriched or depleted in Cs and Gs, respectively.

Alignment and phylogenetic analyses
The alignment of the six proteins encoded by Large G+C-
Rich genes (lgr) was performed with ClustalW [43] in
MEGA 3.1 [44] using default parameters. Neighbor-Join-
ing, Minimum Evolution and Maximum Parsimony phyl-
ogenetic analyses were performed on amino-acid and
nucleotide sequences of various datasets (six LGR proteins
with or without related proteins identified by BLAST;
either whole proteins or their LRR or non-LRR domains)
with the same software using p-distance and the complete
deletion option.

On the same datasets, we performed Bayesian analyses
using MrBayes version 3.0b4, a program inferring Baye-
sian phylogenies [45,46]. The posterior probability vali-
dating the final tree is estimated using a Monte Carlo
Markov Chain algorithm establishing a chain of possible
dendrograms, which randomly wanders the tree space by
sampling dendrograms until an equilibrium distribution
is reached.

Secondary structure prediction and transmembrane 
helices prediction
Prediction of the secondary structure of the LRRs were per-
formed using two different softwares on the whole LGR
sequences: i) NNPREDICT with the tertiary structure class
option not selected [47,48], and ii) PREDATOR able to
PREDict protein secondary structure- from a single
sequence or a set of sequences [49,50].

Furthermore, the presence of putative transmembrane
protein segments in the six LGRs were challenged by the
TMHMM Server v. 2.0 designed for the prediction of
TransMembrane helices based on a Hidden Markov
Model [51,52]).

Promoter and terminator detection
The 500 bp upstream of the six lgrs were screened for the
presence of the Escherichia coli canonical σ70 promoter. We
searched the more conserved positions of the so-called -
35 and -10 elements, i.e. the motifs TTG and TANNNT,
separated by 19 to 21 bp [29,30], N representing a non-
defined nucleotide.

The 500 bp downstream of the six lgrs were screened for
the presence of terminator motifs with the software Find-
Term designed for bacterial sequences [53].
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Determination of the common LRR frame by Cumulative 
Alignment Score (CAS)
For each LGR, we first defined by BLAST an initial 28-res-
idue LRR consensus sequence by assigning at each of its 28
relative positions the amino acid present in at least half of
all LRRs. Then, respecting the 28-residue frame used to
determine the initial consensus, each amino acid of the
LGRs is compared by an identity analysis to the consensus
defined for each LGR: an alignment score is calculated by
assigning 0 or 1 to each amino acid, respectively, different
or identical to the amino acid of the consensus sequence.
Finally, a Cumulative Alignment Score (CAS) curve is
drawn by plotting to each amino acid position of the
LGRs the sum of its alignment score to those of all preced-
ing positions. On this representation, all six LGRs dis-
played a C-terminal steep slope region corresponding to
the LRR region. Preliminary analyses showed that the lim-
its of the LRR domains defined by our method are fully
independent of the initial consensus frame. The CAS
approach was able to unambiguously define a common
frame to all LRRs of the six LGRs and thus to accurately
define the LRR region of these proteins and of other pro-
teins such as the mammalian NODs.

Amino acid identity analyses on LRR sequences and 
related consensus
In addition to standard phylogenetic methods, we also
compared the amino acid identity between pairs of any
combination of the 72 LRRs of the six LGRs (70 units) and
a small additional LRR protein (2 units). The divergence
dab between the LRRs a and b is calculated from the fre-
quency of common amino acids cab shared by both
repeats at the same relative position of the polypeptide:

dab = 1 - cab (3)

Such distances calculated for all pair combinations of the
72 LRRs are compared either by an UPGMA (Unweighted
Pair Group Method with Arithmetic mean) dendrogram
(Phylip 3.65; [54]) or bidimensionally using a principal
coordinate analysis (see below).

This evolutionary distance based on identity was also used
to compare within the LGRs the identity existing between
a given LRR and two neighboring units concatenated to
the LRR or separated by a same number of intercalary
LRRs.

This approach was also used to compare the LRR consen-
sus sequences specific to each protein. These comparisons
were performed only on consensus sequences exhibiting a
consensual amino acid in at least half of the 28 relative
positions. The identity between a pair of given consensus
LRR was defined as the number of consensual amino acids
common to this pair divided by the number of consensual

positions shared by both consensus sequences. The diver-
gence between two LRR consensus sequences is calculated
as above (equation 3). We then used these identity rates as
evolutionary distances to infer a UPGMA tree.

Multivariate comparisons: principal coordinate (PCO) and 
principal component analyses (PCA)
All PCO and PCA analyses were carried out with the
software MVSP 3.1 [55]. Practically, both PCO and
PCA represent the variability existing between n data in
a n-dimension space. For each dimension, an eigenvalue
is calculated. The bi/tridimensional graph able to best
discriminate the data represents the n elements in the
two/three dimensions exhibiting the highest eigenvalues
[56]. PCA were chosen for codon usage analyses of all
ORFs of P. amoebophila and PCO displaying a slightly
more biased representation was selected for comparison
of LRR since it was possible to replace Euclidean dis-
tances by Manhattan counterparts, the latter comparison
exhibiting a slightly better data resolution.
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