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Abstract
Background: One of the greatest challenges facing the early land vertebrates was the need to
effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations
evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus
forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing
is known about the visual pigments present in lungfish or the early tetrapods.

Results: Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2)
expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and
other vertebrate visual pigment genes indicates a closer relationship between lungfish and
amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish,
the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting
an unresolved trichotomy between the three groups.

Conclusion: The presence of four cone pigments in Australian lungfish suggests that the earliest
tetrapods would have had a colorful view of their terrestrial environment.

Background
Vertebrate vision in both bright-light (photopic) and dim-
light (scotopic) conditions occurs following the absorb-
ance of light by a chromophore (based on either vitamin
A1 or A2) attached to a visual pigment protein (opsin)
within retinal photoreceptor cells (rods or cones). Opsin
proteins are a subgroup of G-protein coupled receptors
(GPCRs) with a seven transmembrane domain spanning
the photoreceptor outer segment membrane. Changes in
amino acids surrounding the binding pocket of the light-
sensitive chromophore of the opsin can directly alter the
spectral sensitivity of the visual pigment. Opsins arise
from paralogous opsin genes, and the resulting visual pig-

ments maximally absorb light from different parts of the
spectrum from UV to near infrared (Fig. 1). Species from
most vertebrate classes possess one or more of a total of
five opsin genes; rh1 (medium wavelength-sensitive 1;
found in rods), rh2 (medium wavelength-sensitive 2;
found in cones), lws (long wavelength-sensitive; found in
cones), sws1 (UV/violet or short wavelength-sensitive 1;
found in cones), and sws2 (blue or short wavelength-sen-
sitive 2; found in cones). The persistence, loss or duplica-
tion of these opsin genes reflects the spectral environment
and visual needs of a species [1-3]. While the opsin com-
plement has been well studied in a number of aquatic and
terrestrial species [4-7], there remain large gaps in our
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understanding of the evolution of vertebrate opsins, par-
ticularly among species representing the period prior to
the transition onto land such as the sarcopterygian, or
lobe-finned fish.

Sarcopterygian fish gave rise to the first tetrapods and are
represented today by the lungfishes (the Australian,
Neoceratodus forsteri; the African, Protopterus spp.; and the
South American, Lepidosiren paradoxa), and the coela-
canth, Latimeria chalumnae. The relationship between all
early Sarcopterygii remains controversial and highly
debated despite the advent of phylogenetic analysis of
nucleotide and amino acid sequences [8-10]. Some
molecular analyses of sarcopterygian phylogeny reveal
that the lungfish is more related to tetrapods than to the
coelacanth, L. chalumnae [9], while others present an
unresolved trichotomy between all three groups [10]. Fos-
sil forms of the lungfish family Ceratodontidae (genus
Ceratodus) first appear in the fossil record in the Triassic
period ([11] for review). The genus Neoceratodus (approx.
4 species, of which N. forsteri is the sole survivor) is found
in the fossil record from the Lower Cretaceous period 135
million years ago (mya) and therefore N. forsteri lays
claim to being the oldest surviving vertebrate genus [12].
Consequently, the visual system of N. forsteri may repre-
sent an evolutionary design most closely reflecting that
present just prior to the emergence of land vertebrates in
the Devonian period.

The Australian lungfish Neoceratodus forsteri was thought
to have poor eyesight due to its small eye size, low spatial
resolving power [13,14], sluggish behaviour in captivity
[15-17] and ability to detect prey using electroreception
[18]. However, recent work on the retina of N. forsteri has
revealed four morphologically-distinct photoreceptor
types (one rod and at least three cones), some containing
colored intracellular filters that are otherwise only found
in terrestrial Orders [13,19]. Although a partial sequence
of the African lungfish Protopterus spp. rh1 opsin gene has
been previously published [[20]; Genbank: AF369054],
nothing else is known about lungfish opsins. The other
extant sarcopterygian fish, L. chalumnae, possesses only
two functional opsin genes, rh1 and rh2 and lives in a
photon-limited deep-sea environment [21]. Conversely,
N. forsteri inhabits a brightly lit, shallow freshwater habi-
tat more similar to the environment from which terrestrial
evolution occurred [8]. This prompted us to investigate
the complement of opsins expressed in N. forsteri in order
to trace the evolution of photoreception in ancestral tetra-
pods.

Results and discussion
Opsin mRNA
We have characterised the full length cDNA coding
sequences of five visual opsin genes (rh1, rh2, lws, sws1
and sws2), one from each of the five image-forming verte-
brate opsin groups, in N. forsteri. In addition, 3' RACE
experiments reveal multiple transcripts of rh1 utilising dif-
ferent polyadenylation (polyA) signal sequences within
the rh1 3' untranslated region (UTR). All five opsins are
expressed in the retina of sub-adult fish and the deduced
amino acid (aa) sequences yield polypeptides ranging in
size between 351–356 aa's. Lungfish opsins share highly
conserved residues known to be important in visual pig-
ment function such as a glutamate counterion at aa site
113 (numbering follows that of bovine rhodopsin [22])
and a lysine residue forming the chromophore binding
site at aa site 296.

More than ten independent clones (from PCR experi-
ments using both degenerate primers and in 3' and 5'
rapid amplification of cDNA ends) from at least two indi-
vidual lungfish were sequenced for each opsin gene family
and, while there was evidence of polymorphism in the
gene pool (and/or possible sequencing error) with a vari-
ation between clones of up to 0.5%, there was no evidence
for gene duplications in individuals. We therefore con-
clude that we did not sequence paralogous opsins within
the five main vertebrate opsin groups in N. forsteri and
that the lungfish genome encodes a single copy of each
opsin gene. This is in contrast to opsin gene duplications
in teleost fish. Ray-finned fish (Actinopterygii) underwent
a whole genome duplication event around 350 mya, after
the divergence of the Sarcopterygii, and many lineages of

The phylogenetic relationships between the vertebrate visual opsin lineagesFigure 1
The phylogenetic relationships between the vertebrate visual 
opsin lineages. A series of four duplication events produced 
the lws, sws1, sws2 and then rh1 and rh2 genes. The position 
of each branch on the spectrum portrays the approximate 
spectral sensitivity of each opsin group. Maximum absorb-
ance value ranges (nm) are based on pigments reconstructed 
with 11-cis retinal. Values are taken from [45], figure adapted 
from [3].
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teleost fish are tetraploid ([23] and references therein),
whereas N. forsteri is a diploid animal [24]. In addition,
some species of teleost fish appear to have undergone
multiple opsin gene duplications independently [25].
These have accumulated subsequent amino acid changes,
resulting in differences in the maximum sensitivity of
opsins. These opsins can then be preferentially expressed
to fine-tune the animal's spectral sensitivity to environ-
mental light, thus reflecting a degree of visual plasticity
[3,26]. For example, African cichlid fish determine their
spectral sensitivity by means of preferential expression by
up to seven available cone opsin genes [2,26,27].

Two rh1 polyA transcripts were successfully sequenced
from Neoceratodus forsteri (a third, faint band was also vis-
ible but not sequenced, fig. 2) and sequence analysis
shows that the two polyA signals are present in a tandem
array within the 3' UTR. This finding adds to increasing
evidence that multiple transcripts arising from tandem
polyA signals are a common, yet little studied, feature of
rh1 genes [28-31]. The longer lungfish rh1 transcript
shows a more intense band than the shorter transcripts
(Fig. 2A), which could be a result of differential stability
of the transcripts. There is evidence that some genes con-
tain regulatory elements between polyA sites, which influ-
ence the stability of the longer mRNA transcript [32]. rh1
transcript levels in mice change according to circadian
rhythms, possibly due to inherent transcript stability or
even a circadian variation in competing mRNA processing
factors and therefore site preference [33]. The use of alter-
native polyA transcripts as a mechanism of rh1 gene regu-

lation therefore evolved early in vertebrate evolution and
has been selectively maintained in mammals.

Phylogenetic analyses
Phylogenetic comparison of codon-matched alignments
of both nucleotide and deduced amino acid sequences of
rh1, rh2, lws1, sws1 and sws2 with other vertebrate opsins
(Genbank accession numbers listed in Table 1) using two
fundamentally different methods of phylogenetic infer-
ence (both the Neighbour-joining (NJ) method and Baye-
sian inference via a Metropolis Markov chain Monte Carlo
simulation) reveals that lungfish opsins share more simi-
larity with tetrapod opsins than those of other fishes (Figs.
3 and 4 and Additional file 1). Lungfish opsins form a
clade with tetrapod opsins rather than teleost fish in four
out of the five opsin families in each analysis, but different
topology is obtained between tree branches with low
bootstrap values or low posterior probability, in particular
within the rh1 and lws groups.

Phylogenetic analysis of rh opsin nucleotide sequences
does not favour the coelacanth as a closer relative to tetra-
pods than lungfish and further supports an unresolved tri-
chotomy between the coelacanth, lungfish and early
tetrapods, which varies according to the gene family inves-
tigated and the method of analysis [10]. For example, the
phylogenetic tree produced using the NJ method with
nucleotide sequences places lungfish rh2 together with
tetrapod opsins rather than the coelacanth opsin gene.
Within the rh1 rhodopsin group, however, lungfish and
coelacanth sequences are placed together as a sister group

Multiple transcripts of rh1 occur in the Australian lungfish retinaFigure 2
Multiple transcripts of rh1 occur in the Australian lungfish retina. A) 3' RACE PCR products from lungfish rh1 cDNA. Arrows 
point to two potential transcripts differing in size in lane 2 (a third, faint band is also visible above these two but was not suc-
cessfully sequenced), while lane 3 contained no template cDNA. The vertical grey line indicates where an irrelevant region of 
gel was removed using Photoshop 6.0 (Adobe). B) The 3' UTR of lungfish rh1. Two sequenced polyA signals are present (bold 
and italicised), both of which can induce polyadenylation producing two differently sized Rh1 transcripts.
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to the tetrapod rod pigments. Bayesian inference favours
the lungfish and coelacanth forming a sister group to the
tetrapods from both rh1 and rh2 sequences (Fig. 4). Con-
versely, comparison of amino acid sequences using the NJ
method [see Additional file 1] supports coelacanth opsins
forming a sister group to both teleost and tetrapod opsins,
while lungfish rh1 and rh2 genes are placed as both a sis-
ter group to teleost fish opsins (rh1) and tetrapod opsins
(rh2).

The fish-tetrapod transition occurred in a space of <20
million years around 400 mya [8] and a large array of
genes or whole genome sequences may therefore be
needed to resolve the trichotomy between sarcopterygian
fish [10]. It is unfortunate that the coelacanth genome
does not encode a functional sws1 pigment as sws1 genes
have recently been proposed as a good marker for verte-
brate phylogenies [34].

The lungfish visual system
Our results demonstrate that the full complement of the
orthologues of the known vertebrate photoreceptive vis-
ual pigment genes are expressed in the retina of the Aus-

tralian lungfish, the nearest, and most primitive, extant
relative to the land vertebrates. Partial sequences of rh1
and lws have also been successfully amplified from the
more derived African lungfish Protopterus sp. (unpublished
data, H.J. Bailes, W.L. Davies, A.E.O. Trezise and S.P. Col-
lin). An earlier molecular study of visual pigments in the
retina of a sarcopterygian fish (the coelacanth Latimeria
chalumnae) found only two opsins, rh1 and rh2 in addi-
tion to a pseudogene Ψsws1 [21]. The coelacanth inhabits
a photon-limited deep-sea environment and the move to
this low-light, shortwave-shifted environment meant that
the subsequent loss of three cone visual pigments (LWS,
SWS1 & SWS2 used for color vision in bright-light envi-
ronments in other vertebrates [21]) was not a selective dis-
advantage, revealing a correlation between loss of opsin
genes and the spectral habitat/functional needs of a spe-
cies [2]. Conversely, the retention of all five vertebrate
opsin families in N. forsteri suggests that the dipnoan lin-
eage has lived in a brightly-lit colorful environment
throughout its evolutionary history, making it a more
appropriate model organism for the early tetrapod visual
system than the coelacanth.

Table 1: Species and Genbank accession numbers [46] of opsin nucleotide sequences and deduced amino acids used in phylogenetic 
analyses.

Opsin Common name reference in Fig. 3 Species Genbank accession number

Invertebrate Rh4 Fruit Fly Drosophila melanogaster NM_057353
Rh1 Common frog Rana temporaria U59920

Salamander Ambystoma tigrinum U36574
Lungfish Neoceratodus forsteri EF526295
Coelacanth Latimeria chalumnae AF131253
Cavefish Astyanax fasciatus U12328
Goldfish Carassius auratus L11863

Rh2 Green anole Anolis carolinensis AF134189
Italian wall lizard Podarcis sicula AY941829
Lungfish Neoceratodus forsteri EF526296
Coelacanth Latimeria chalumnae AF131258
Cavefish Astyanax fasciatus AH004622
Goldfish Carassius auratus L11865

SWS2 Salamander Ambystoma tigrinum AF038946
Bullfrog Rana catesbiana AB010085
Lungfish Neoceratodus forsteri EF526299
Goldfish Carassius auratus L11864
Cavefish Astyanax fasciatus AH007939

SWS1 Green anole Anolis carolinensis AF134192
Salamander Ambystoma tigrinum AF038948
Lungfish Neoceratodus forsteri EF526298
Goldfish Carassius auratus D85863
Bluefin killifish Lucania goodei AY296735

LWS African clawed frog Xenopus laevis U90895
Salamander Ambystoma tigrinum AF038947
Lungfish Neoceratodus forsteri EF526297
Goldfish Carassius auratus L11867
Zebrafish Danio rerio NM_001002443
Lamprey Geotria australis AY366491
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A phylogenetic tree of the five photoreceptor opsins of Neoceratodus forsteri and selected full-length nucleotide coding sequences of related speciesFigure 3
A phylogenetic tree of the five photoreceptor opsins of Neoceratodus forsteri and selected full-length nucleotide coding 
sequences of related species. The tree was constructed using the Neighbour-joining method with 1000 bootstrap replications 
[39]. Sarcopterygian fish (coelacanth and lungfish) are in red, agnathan fish (lamprey) are in light blue, teleost fish are in dark 
blue, amphibians are in green and reptiles are in purple. Genbank accession numbers are listed in Table 1. Bootstrap confidence 
values are at the base of each node. The rh4 opsin of Drosophila melanogaster (Table 1) was used as an outgroup. Scale bar indi-
cates nucleotide substitutions per site.
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Conclusion
The characterization of four cone opsins reveals the
potential for tetrachromatic vision in lungfish, although
behavioral work is needed to verify if lungfish can dis-
criminate objects based on differences in chromatic hue.
Multiple opsins and a range of colored intraocular filters
in the retina of N. forsteri [13,19] suggest that it is adapted
for diurnal vision, in contrast to earlier reports that adult
lungfish are crepuscular [16,35]. Lungfish have a mostly
carnivorous diet [16] and may utilise color vision in prey
capture or reproductive behaviour. These findings indi-
cate that the first tetrapods probably possessed eyes
adapted for chromatic diurnal vision, with all five opsins
expressed in the retina. Colored oil droplets within the
photoreceptors would have also filtered the incident light,
enhancing color discrimination by reducing the spectral
overlap of pigment absorbance curves [13,36].

Methods
One adult lungfish was caught by hook and line in the
Mary River near Tiaro, Queensland (Queensland Fisheries
Management Authority Permit No. PRM01599G). Three
subadult and two juvenile fish were bred in captivity and
donated by Prof. Jean Joss from Macquarie University,
Sydney, Australia. Animals were sacrificed using an over-
dose of benzocaine dissolved in acetone (according to
animal ethics guidelines of the University of Queensland
AEC No. ANAT/436/04/ARC). Australian lungfish are
listed as 'Vulnerable' under the Australian Commonwealth
Environment Protection and Biodiversity Conservation Act
1999 and as such only a limited number of animals were
available for this work.

Opsin mRNA
Dissected retinae were placed in RNAlater solution at 4°C.
Total RNA was extracted using a Macherey-Nagel Nucleos-
pin-RNA II kit (Machery-Nagel GmbH & Co. K.G.) for

A clade credibility tree showing the relationships between lungfish and other selected vertebrate opsinsFigure 4
A clade credibility tree showing the relationships between lungfish and other selected vertebrate opsins. The tree was gener-
ated using Bayesian inference via a Metroplis-coupled Markov chain Monte Carlo simulation. Sarcopterygian fish (coelacanth 
and lungfish) are in red, teleost fish are in blue, amphibians are in green and reptiles are in maroon. Genbank accession num-
bers are listed in Table 1. Posterior probability values are at the base of each node. The rh4 opsin of Drosophila melanogaster is 
used as an outgroup (Table 1). The probability of most relationships within the tree is 1.00 after 300,000 generations, while 
lower posterior probability values are found within the lws and rh1 groups.
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individual adult and subadult eyes, or from pooled left
and right eyes for each juvenile fish used. Total RNA was
converted to cDNA using Superscript II (Invitrogen Corp.)
and random 9-mer or 16-mer oligo-dT primers. A series of
degenerate primers were designed to conserved regions
specific to each of the five vertebrate retinal opsin families
(rh1, rh2, lws, sws1 and sws2). Primers were used in nested
PCR on cDNA using standard methods [37]. Amplified
fragments were cloned into pBluescript vector (Stratagene
Inc.) and sequenced at the Australian Genome Research
Facility (AGRF Ltd.). Once sequenced fragments were
obtained and assembled, rapid amplification of cDNA
ends (RACE) at both the 5' and 3' ends was performed to
produce the full-length sequence of visual opsin mRNA.
Specific primers were then designed to the 5' and 3' ends
of each opsin and used in conjunction with a proof-read-
ing enzyme (Phusion; Finnzymes Oy) to verify the full
length coding sequence of each opsin identified (rh1 for-
ward TTA GGA GCT GCA ACC ATG AAC GGA ACA GAG,
rh1 reverse [polyA transcript1] GCT TGT GGG TTT GTC
TGC AGA TTG CAA TGG, rh1 reverse [polyA transcript2]
CCG TTC TAT GCC TTC TCT ACC GGT TTC TTG, rh2 for-
ward ACC AAC AGC AGT AGT GTA TTC GCA GCA AAG,
rh2 reverse AGG GAT ACT TGG CTT GAG GAG ACT GAA
GAG, lws forward ATA GAG ACA GAG AGG GAG AGA
TGG CTG AAC, lws reverse CGC CGT ACA GTC ATT GCT
TGT GAA ATA GTG, sws1 forward AGC AGA CAG AAG
ATG TCA GGG GAA GAA GAG, sws1 reverse GCC ATA
ACA CAA CTA AGG GGC CAT CAC TTC, sws2 forward
CCG GGT TAC ACA CCA CTA CAA GTC AAC TAC, sws2
reverse AAT GGC TGG AGG AGA CCG AAG AGA CCT
GAG). The verification of each opsin with these primer
sets was carried out using cDNA from additional individ-
uals from those used in original opsin identification
experiments. In this way, each sequence was confirmed as
transcribed in at least two individuals.

Phylogenetic analyses
Full-length coding sequences were compared against
known sequences from other fish and tetrapods in the
Genbank database, and against an outgroup of Drosophila
melanogaster rh4 (Table 1). A codon-matched alignment
was carried out using ClustalW (European Bioinformatics
Institute) and by manual inspection. Phylogenetic analy-
sis of nucleotides and corresponding amino acids was per-
formed using MEGA3 [38] software and the Neighbour-
joining (NJ) method [39] with 1000 bootstrap replica-
tions. The Tamura-Nei [40] model of DNA evolution was
used, with complete deletion and a homogeneous pattern
of nucleotide substitution among lineages and uniform
rates of nucleotide substitution across all sites. The NJ
method with 1000 bootstrap replications, a homogene-
ous pattern of substitution among lineages and uniform
rates of evolution was also used to infer phylogeny from
deduced amino acids using a Poisson correction substitu-

tion model. Phylogeny was also deduced using Bayesian
inference via a Metropolis-coupled Markov chain Monte
Carlo (MCMC) simulation using MrBayes 3.1 software
[41,42]. A general time-reversible model (GTR [43]) of
DNA evolution was used, with a gamma-shaped rate vari-
ation with a proportion of invariable sites. Two simulta-
neous runs were performed for 300,000 generations with
chains sampled taken every 1000 generations. The first 75
trees sampled (25%) were discarded as burnin. Consensus
trees were extracted in Treeview 1.6.6 [44].

Authors' contributions
HJB carried out the PCR work, phylogenetic analysis and
drafted the manuscript. WLD helped design and co-ordi-
nate PCR work. AEOT helped with phylogenetic analysis
and the design and co-ordination of the study. SPC helped
with the conception, design and co-ordination of the
study. All authors read, contributed to, and approved the
final manuscript.

Additional material

Acknowledgements
The authors wish to thank Robert Lucas of The University of Manchester, 
UK, for helpful comments on the manuscript. We are also grateful to Jean 
Joss of Macquarie University, Australia and Mike Bennett of the University 
of Queensland, Australia for the donation of juvenile and subadult lungfish. 
Mal Jepson and Helen Nicoll kindly helped in catching wild adult lungfish. 
This work was funded by an Australian Research Council grant 
(DP0209452) to SPC and AEOT, and an International Postgraduate 
Research Scholarship and Travel Scholarship from The University of 
Queensland to HJB.

References
1. Yokoyama S, Yokoyama R: Adaptive evolution of photorecep-

tors and visual pigments in vertebrates.  Annu Rev Ecol Syst 1996,
27:543-567.

Additional file 1
A phylogenetic tree of the five photoreceptor opsins of Neoceratodus for-
steri and selected deduced amino acid sequences from full-length nucle-
otide coding sequences of related species. An additional figure representing 
a phylogenetic tree of lungfish opsins using deduced amino acid sequences. 
A phylogenetic tree of the five photoreceptor opsins of Neoceratodus for-
steri and selected deduced amino acid sequences from full-length nucle-
otide coding sequences of related species. The tree was constructed using 
the Neighbour-joining method with 1000 bootstrap replications and a 
Poisson correction substitution model. Sarcopterygian fish (coelacanth 
and lungfish) are in red, teleost fish are in dark blue, amphibians are in 
green and reptiles are in purple. Genbank accession numbers are listed in 
Table 1. Bootstrap confidence values are at the base of each node. The rh4 
opsin of Drosophila melanogaster (Table 1) was used as an outgroup. 
Scale bar indicates amino acid substitutions per site.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-200-S1.tiff]
Page 7 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2148-7-200-S1.tiff


BMC Evolutionary Biology 2007, 7:200 http://www.biomedcentral.com/1471-2148/7/200
2. Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton
KL: Adaptive molecular evolution in the opsin genes of rap-
idly speciating Cichlid species.  Mol Biol Evol 2005, 22:1412-1422.

3. Trezise AEO, Collin SP: Opsins: Evolution in waiting.  Curr Biol
2005, 15:R794-R796.

4. Nathans J, Thomas D, Hogness DS: Molecular genetics of human
color vision: the genes encoding blue, green, and red pig-
ments.  Science 1986, 232:193-202.

5. Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J,
Nakanishi K: Cloning and Expression of Goldfish Opsin
Sequences.  Biochemistry 1993, 32:208-214.

6. Chang WS, Harris WA: Sequential genesis and determination
of cone and rod photoreceptors in Xenopus.  J Neurobiol 1998,
35:227-244.

7. Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO:
Ancient colour vision: multiple opsin genes in the ancestral
vertebrates.  Curr Biol 2003, 13:864-865.

8. Carroll RL: Patterns and Processes of Vertebrate Evolution Cambridge,
England: Cambridge University Press; 1997. 

9. Brinkmann H, Venkatesh B, Brenner S, Meyer A: Nuclear protein-
coding genes support lungfish and not the coelacanth as the
closest living relatives of land vertebrates.  Proc Natl Acad Sci
USA 2004, 101:4899-4905.

10. Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N: The phy-
logenetic relationship of tetrapod, coelacanth, and lungfish
revealed by the sequences of 44 nuclear genes.  Mol Biol Evol
2004, 21:1512-1524.

11. Marshall CR: A List of Fossil and Extant Dipnoans.  J Morphol
Supp 1986, 1:15-23.

12. Kemp A, Molnar RE: Neoceratodus forsteri from the lower Cre-
taceous of New South Wales, Australia.  J Paleontol 1981,
55:211-217.

13. Bailes HJ, Robinson SR, Trezise AEO, Collin SP: Morphology, char-
acterization and distribution of retinal photoreceptors in the
Australian lungfish Neoceratodus forsteri (Krefft, 1870).  J
Comp Neurol 2006, 494:381-397.

14. Bailes HJ, Trezise AEO, Collin SP: The number, morphology and
distribution of retinal ganglion cells and optic axons in the
Australian lungfish Neoceratodus forsteri (Krefft 1870).  Vis
Neurosci 2006, 23:257-273.

15. Dean B: Notes on the living specimens of the Australian lung-
fish, Ceratodus forsteri, in the Zoological Society's collection.
Proc Zool Soc Lond 1906:168-178.

16. Kemp A: The Biology of the Australian Lungfish, Neocera-
todus forsteri (Krefft 1870).  J Morphol 1986:181-198.

17. Simpson R, Kind P, Brooks S: Trials of the Queensland Lungfish.
Nat Aust Winter 2002:36-43.

18. Watt M, Evans CS, Joss JMP: Use of electroreception during for-
aging by the Australian lungfish.  Anim Behav 1999,
58:1039-1045.

19. Robinson SR: Early vertebrate color-vision.  Nature 1994,
367:121 [http://www.nature.com/nature/journal/v367/n6459/pdf/
367121a0.pdf].

20. Venkatesh B, Mark EV, Brenner S: Molecular synapomorphies
resolve evolutionary relationships of extant jawed verte-
brates.  Proc Natl Acad Sci USA 2001, 98:11382-11387.

21. Yokoyama S, Zhang H, Radlwimmer FB, Blow NS: Adaptive evolu-
tion of color vision of the Comoran coelacanth (Latimeria
chalumnae).  Proc Natl Acad Sci USA 1999, 96:6279-6284.

22. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox
BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M,
Miyano M: Crystal structure of rhodopsin: a G protein-cou-
pled receptor.  Science 2000, 289:739-745.

23. Christoffels A, Koh EGL, Chia J-M, Brenner S, Aparicio S, Venkatesh
B: Fugu genome analysis provides evidence for a whole-
genome duplication early during the evolution of ray-finned
fishes.  Mol Biol Evol 2004, 21:1146-1151.

24. Rock J, Eldridge M, Champion A, Johnston P, Joss J: Karyotype and
nuclear DNA content of the Australian lungfish, Neocera-
todus forsteri (Ceratodontidae: Dipnoi).  Cytogenet Cell Genet
1996, 73:187-189.

25. Matsumoto Y, Fukamachi S, Mitani H, Kawamura S: Functional
characterization of visual opsin repertoire in Medaka
(Oryzias latipes).  Gene 2006, 371:268-278.

26. Parry JW, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK:
Mix and match color vision: tuning spectral sensitivity by dif-

ferential opsin gene expression in Lake Malawi cichlids.  Curr
Biol 2005, 15:1734-1739.

27. Spady TC, Parry JW, Robinson PR, Hunt DM, Bowmaker JK, Carleton
KL: Evolution of the cichlid visual palette through ontoge-
netic subfunctionalization of the opsin gene arrays.  Mol Biol
Evol 2006, 23:1538-1547.

28. Al-Ubaidi MR, Pittler SJ, Champagne MS, Triantafyllos JT, McGinnis JF,
Baehr W: Mouse opsin: Gene structure and molecular basis of
multiple transcripts.  J Biol Chem 1990, 265:20563-20569.

29. Hara-Nishimura I, Kondo M, Nishimura M, Hara R, Hara T: Cloning
and nucleotide sequence of cDNA for rhodopsin of the squid
Todarodes pacificus.  FEBS Lett 1993, 317:5-11.

30. Petersen-Jones SM, Sohal AK, Sargan DR: Nucleotide sequence of
the canine rod-opsin-encoding gene.  Gene 1994, 143:281-284.

31. Lim J, Chang JL, Tsai HJ: A second type of rod opsin cDNA from
the common carp (Cyprinus carpio).  Biochim Biophys Acta 1997,
1352:8-12.

32. Edwalds-Gilbert G, Veraldi KL, Milcarek C: Alternative poly (A)
site selection in complex transcription units: means to an
end?  Nucl Acids Res 1997, 25:2547-2561.

33. von Schantz M, Lucas RJ, Foster RG: Circadian oscillation of pho-
topigment transcript levels in the mouse retina.  Brain Res (Mol
Brain Res) 1999, 72:108-114.

34. van Hazel I, Santini F, Muller J, Chang BSW: Short-wavelength sen-
sitive opsin (SWS1) as a new marker for vertebrate phyloge-
netics.  BMC Evol Biol 2006, 6:97.

35. Grigg GC: Studies on the Queensland lungfish, Neoceratodus
forsteri (Krefft). III. Aerial respiration in relation to habits.
Aust J Zool 1965, 13:413-421.

36. Vorobyev M: Coloured oil droplets enhance colour discrimina-
tion.  Proc R Soc Lond Ser B: Biol Sci 2003, 270:1255-1261.

37. Sambrook J, Russell D: Molecular cloning: A laboratory manual Cold
Spring Harbor: Cold Spring Harbor Laboratory Press; 2001. 

38. Kumar S, Tamura T, Nei M: MEGA3: Integrated software for
molecular evolutionary genetics analysis and sequence align-
ment.  Brief Bioinform 2004, 5:150-163.

39. Saitou N, Nei M: The neighbor-joining method: A new method
for reconstructing phylogenetic trees.  Mol Biol Evol 1987,
4:406-425.

40. Tamura K, Nei M: Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial DNA in
humans and chimpanzees.  Mol Biol Evol 1993, 10:512-526.

41. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of
phylogeny.  Bioinformatics 2001, 17:754-755.

42. Ronquist F, Huelsenbeck JP: MRBAYES 3: Bayesian phylogenetic
inference under mixed models.  Bioinformatics 2003,
19:1572-1574.

43. Lanave C, Preperata GS, Saccone C, Serio G: A new method for
calculating evolutionary substitution rates.  J Mol Evol 1984,
20:86-93.

44. Page RDM: TREEVIEW: An application to display phyloge-
netic trees on personal computers.  Comput Appl Biosci 1996,
12:357-358.

45. Bowmaker JK, Hunt DM: Molecular Biology of Photoreceptor
Spectral Sensitivity.  In Adaptive Mechanisms in the Ecology of Vision
Edited by: Archer MA, Djamgoz MBA, Loew ER, Partridge JC, Vallerga
S. Dordrecht: Kluwer Academic Publishers; 1999:439-462. 

46. The National Institutes of Health Genetic Sequence Data-
base   [http://www.ncbi.nlm.nih.gov/Genbank/index.html]
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2937147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2937147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2937147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8418840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8418840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9622007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9622007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16320259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16638177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8114909
http://www.nature.com/nature/journal/v367/n6459/pdf/367121a0.pdf
http://www.nature.com/nature/journal/v367/n6459/pdf/367121a0.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10339578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8697805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16460888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16213819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16720697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16720697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1978723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1978723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8428633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8206388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8206388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9177476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17107620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17107620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17107620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6429346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6429346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/Genbank/index.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Opsin mRNA
	Phylogenetic analyses

	The lungfish visual system
	Conclusion
	Methods
	Opsin mRNA
	Phylogenetic analyses

	Authors' contributions
	Additional material
	Acknowledgements
	References

