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Abstract
Background: Extant placental mammals are divided into four major clades (Laurasiatheria,
Supraprimates, Xenarthra and Afrotheria). Given that Afrotheria is generally thought to root the
eutherian tree in phylogenetic analysis of large nuclear gene data sets, the study of the organization
of the genomes of afrotherian species provides new insights into the dynamics of mammalian
chromosomal evolution. Here we test if there are chromosomal bands with a high tendency to
break and reorganize in Afrotheria, and by analyzing the expression of aphidicolin-induced common
fragile sites in three afrotherian species, whether these are coincidental with recognized
evolutionary breakpoints.

Results: We described 29 fragile sites in the aardvark (OAF) genome, 27 in the golden mole
(CAS), and 35 in the elephant-shrew (EED) genome. We show that fragile sites are conserved
among afrotherian species and these are correlated with evolutionary breakpoints when compared
to the human (HSA) genome. Inddition, by computationally scanning the newly released opossum
(Monodelphis domestica) and chicken sequence assemblies for use as outgroups to Placentalia, we
validate the HSA 3/21/5 chromosomal synteny as a rare genomic change that defines the
monophyly of this ancient African clade of mammals. On the other hand, support for HSA 1/19p,
which is also thought to underpin Afrotheria, is currently ambiguous.

Conclusion: We provide evidence that (i) the evolutionary breakpoints that characterise human
syntenies detected in the basal Afrotheria correspond at the chromosomal band level with fragile
sites, (ii) that HSA 3p/21 was in the amniote ancestor (i.e., common to turtles, lepidosaurs,
crocodilians, birds and mammals) and was subsequently disrupted in the lineage leading to
marsupials. Its expansion to include HSA 5 in Afrotheria is unique and (iii) that its fragmentation to
HSA 3p/21 + HSA 5/21 in elephant and manatee was due to a fission within HSA 21 that is probably
shared by all Paenungulata.
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Background
Analyzing how mammalian genomes are organized and
how chromosomal rearrangements are involved in speci-
ation and macroevolution are fundamental to under-
standing the dynamics of mammalian chromosomal
evolution. Phylogenetic analysis of both nuclear and
mitochondrial DNA [1-6], among others, as well as the
insertion sites of multiple long interspersed elements
(LINE, [7]) and long terminal repeats (LTRs, [8]), all sup-
port the division of extant placental mammals into four
major clades. These are Laurasiatheria and Supraprimates
that together form Boreoeutheria (with a northern hemi-
sphere origin), and Xenarthra and Afrotheria which have
a Gondwanan (southern hemisphere) genesis, although
this biogeographic hypothesis is not without detractors
[9]. Although Afrotheria is usually depicted as basal in
sequence based phylogenies, the first divergence in the
placental tree has been a matter of concern for some time.
For example, some argue [8] for a basal Xenarthra (the so-
called Epitheria hypothesis, [10]) on insertion sites of ret-
roposed elements (but see [11] for a contrary view), while
data from 218 genes encompassing 205 kb of sequence
resulted in a highly supported phylogeny that places the
root between Afrotheria and other Placentalia [6], consist-
ent with the basal Afrotheria or Exafroplacentalia hypoth-
esis [4]. Most recently, however, Xenarthra and Afrotheria
have been placed on a common basal branch (the Atlan-
togenata or Xenafrotheria hypothesis), to the exclusion of
Boreoeutheria [12].

Afrotheria, the focus of our study, includes six mamma-
lian orders all with an Afro-Arabian origin that exhibit
extreme morphogical diversity and niche preference
thought to result from the long period of isolation when
Africa was an island continent 105-25 mya [13]. The six
orders are Proboscidea (elephant), Sirenia (manatees and
dugongs), Hyracoidea (hyrax), Tubulidentata (aardvark),
Macroscelidea (elephant shrews) and Afrosoricida
(golden moles and tenrecs). In cases where the analysis of
primary sequences generates ambiguous phylogenetic
results, "rare genomic changes" (RGCs, [14]) such as
indels, LINEs, SINEs and chromosomal rearrangements
have been widely viewed as markers that could, given
their low levels of homoplasy, provide additional resolu-
tion to seemingly intractable phylogenetic problems (see
[15] for application of SINEs in vertebrate phylogenetics).
So far, afrotherian monophyly is supported by a suite of
sequence-based characters that include a 9 bp deletion in
exon 11 of the BRCA1 gene [16], 5' and 3' deletions in
exon 26 of apolipoprotein B [5], the presence of a unique
family of SINEs (AfroSINEs, [17-19]), long interspersed
elements (LINE 1, [7]) and long terminal repeat (LTR) ele-
ments [8]. Consistent with the view that chromosomal
rearrangements are similarly rarely homoplasious, and
therefore robust indicators of evolutionary change (a

default rate of 1–2 changes per 10 million years of mam-
malian evolution has been suggested, [20-22]), it comes
as no surprise that in addition to providing evidence in
support of the uniqueness of Afrotheria, chromosomal
syntenies have also proved useful for clarifying the phylo-
genetic relationships within the group [23,24].

One of the most important features of mammalian chro-
mosomal evolution is the suggestion of a non-random
distribution of regions implicated in evolutionary chro-
mosomal reorganization, the so-called "fragile-breakage"
hypothesis [25]. Related to this, recent experimental data
have demonstrated a correlation between the location of
fragile sites and evolutionary breakpoints [26-28] suggest-
ing that these unstable regions could be one of many fac-
tors implicated in the evolutionary process. At the
cytogenetic level, fragile sites are expressed as non-stained
gaps and breaks when cells are cultured under specific
conditions [29]. In general, fragile sites can be expressed
by agents such as aphidicolin, BrdU and 5-azacytidine
among others, which delay or inhibit DNA replication or
repair [30]. According to their frequency in the human
population, as well as their mechanisms of expression,
fragile sites have been conventionally classified into two
groups: common and rare [31]. Common fragile sites in
particular have been studied in different mammalian spe-
cies confirming the initial hypothesis that they are struc-
tural characteristics of mammalian chromosomes [31].
Common fragile sites have been expressed in rodents [32-
37], pig and cow [38-41], horse [42], cat [43-45], dog
[46,47] and different primate species [26,48-51]. How-
ever, in all instances the species studied group within Lau-
rasiatheria and Supraprimates, the most distant relatives
of Xenarthra and Afrotheria that are thought to have
diverged ~93 mya [52]. There is, at this point, no compa-
rable data for the deeper divergences such as the Afrothe-
ria whose separation from Boreoeutheria and Xenarthra is
estimated at ~105 mya [52].

In an attempt to test if there are loci with a high tendency
to break and reorganize in the Afrotheria, and whether
these are coincidental with evolutionary breakpoints, we
have analyzed the expression of aphidicolin-induced
common fragile sites in fibroblast cultures from different
specimens of three afrotherian species. These are the aard-
vark (Orycteropus afer, OAF, Tubulidentata), golden mole
(Chrysochloris asiatica, CAS, Afrosoricida) and elephant-
shrew (Elephantulus edwardii, EED, Macroscelidea). Given
the position of Afrotheria near the root of Placentalia
(species on the so-called "eutherian" side of the "metath-
erian-eutherian" dichotomy), the analysis of chromo-
somal instability in these species provides a unique
opportunity to further our understanding of the mecha-
nisms underpinning mammalian chromosomal evolu-
tion.
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Results
Fragile site expression
(i) Orycteropus afer
A total of 652 metaphase spreads were analysed in two
specimens, 374 from cultures treated with 0.2 M APC,
and 278 from control cultures (table 1). As expected, cells
treated with aphidicolin presented the highest number of
chromosomal aberrations (51.34% of the total met-
aphases), a 13-fold increase with respect to the control
cultures. A total of 287 chromosomal abnormalities were
detected of which the most common aberrations were
chromatid breaks (61–94% of all aberrations detected, see
table 2).

For each data set, the FSM program used in our analysis of
fragile sites provides a critical value (C ) that indicates the
minimum number of breaks needed for a chromosomal
band to be considered fragile. This value was 3 for aard-
vark cultures treated with 0.2 M aphidicolin. The
number of fragile sites detected ranged from 23 in OAF
specimen 1 to 12 in OAF specimen 2. Given the intraspe-
cific variability of fragile site expression in mammalian
species, we combined all expressed sites into a single spe-
cies-specific analysis (this was also done for the golden
mole and elephant shrew, see below). On this basis, a
total of 29 sites were considered fragile in the aardvark
(figure 1a and table 3) showing that there are regions in
this species' genome that are prone to breakage under spe-
cific culture conditions; of these, six were expressed in

both aardvark specimens (1p11, 1q18, 1q44, 2q13, 2q15
and 3p11, table 3).

(ii) Chrysochloris asiatica
A total of 1047 metaphase spreads were analysed from the
three specimens included in our investigation: 482 cells
from cultures treated with 0.2 M APC, and 565 from con-
trol cultures (table 1). Cells treated with aphidicolin pre-
sented the highest number of chromosomal aberrations
(68.67% of the total metaphases scored) reflecting a 10-
fold increase with respect to the control cultures. A total of
501 chromosomal abnormalities were detected of which
chromatid breaks were the most frequent class of aberra-
tion encountered in this species (71–94%, table 2).

Analysis of the aphidicolin induced aberrations using the
FSM program indicate that chromosomal bands charac-
terised by 3 or 4 abnormalities per band (depending on
the specimen analysed) could be considered fragile. Using
these values, a total of 27 fragile sites were detected in the
golden mole genome (figure 1b and table 4), with the
number of fragile sites ranging from 12 in CAS specimen
1, to 21 in CAS specimen 3 (table 4). Eight of the fragile
sites (1p13, 1q13, 1q32, 2p13, 2q22, 2q31, 6q23 and
8q17) were found to be expressed in all three specimens
examined (table 4).

Table 1: Numbers of metaphase cells analysed, chromosomal breaks (gaps included) and chromatid breaks (gaps included) per 
metaphase observed in aphidicolin-treated and control cultures from the all afrotherian species and specimens studied.

0.2 M APC CONTROL

Specimen Metaphase 
cells analysed

Normal (%) Aberrant (%) Breaks/
Metaphase

Metaphase 
cells analysed

Normal (%) Aberrant (%) Breaks/
Metaphase

OAF1 130 48 (36.92%) 82 (63.08%) 1.64 132 127 (96.21%) 5 (3.78%) 0.045
OAF3 244 134 (54.92%) 110 (46.08%) 0.59 146 140 (95.89%) 6 (4.11%) 0.041

total 374 182 (48.66%) 192 (51.34%) 1.12 278 267 (96.04%) 11 (3.96%) 0.043

CAS1 134 33 (24.66%) 101 (75.34%) 1.42 223 204 (91.48%) 19 (8.52%) 0.10
CAS2 165 51 (30.91%) 114 (69.09%) 1.60 209 197 (94.26%) 12 (5.74%) 0.05
CAS3 183 67 (36.61%) 116 (63.39%) 0.95 133 124 (93.23%) 9 (6.77%) 0.07

total 482 151 (31.33%) 331 (68.67%) 0.99 565 525 (92.92%) 40 (7.08%) 0.07

EED1 188 49 (26.06%) 139 (73.94%) 1.29 233 134 (90.54%) 14 (9.46%) 0.10
EED2 170 29 (17.06%) 141 (82.94%) 1.44 164 150 (89.82%) 17 (10.18%) 0.12
EED3 162 46 (28.40%) 116 (71.60%) 1.23 193 177 (91.71%) 16 (8.29%) 0.07
EED4 100 24 (24%) 76 (76%) 1.36 111 104 (93.69%) 7 (6.31%) 0.09

total 620 148 (23.87%) 280 (78.21%) 1.33 619 565 (91.32%) 54 (8.77%) 0.09

Abbreviations – OAF: O. afer, CAS: C. asiatica and EED: E. edwardii.



 2007, :199 http://www.biomedcentral.com/1471-2148/7/199

Page 4 of 15

(iii) Elephantulus edwardii
A total of 1239 metaphase spreads were analysed in the
four specimens of this species of which 620 were from cul-
tures treated with 0.2 M APC, and 619 from control cul-
tures (table 1). We detected 824 chromosomal
abnormalities of which chromatid breaks were the most
frequent class of aberration scored (67–92%, table 2).

Mirroring the results in the golden mole, the critical value
generated by the FSM program for the elephant shrew was

3 or, depending on the specimen studied, 4 chromo-
somal abnormalities per band. The number of fragile sites
detected ranged from 14 in EED specimen 4 to 20 in EED
specimen 3 (table 5); in total 35 sites were considered
fragile in the elephant-shrew genome (figure 1c and table
5). Only three of these (2p16, 3q26 and 5q25) are
expressed in all four specimens studied (table 5).

Distribution of evolutionary breakpoints and conservation 
of fragile sites
We plotted all human chromosomal homologies previ-
ously described in [53] and [24] onto the ideogram of
each of the afrotherian species studied so as to identify
bands that delimit human syntenic blocks. Using this
approach we identified a set of evolutionary chromo-
somal bands that correspond to junctions defining
human chromosomal syntenies in the three afrotherian
species studied herein. These are: (a) Aardvark – 1p11,
1q18, 1q28, 1q35, 2q31, 2q34, 3q29, 4q15, 4q24, 5q21,
6q22 and 6q23, (b) Golden mole – 1q18, 1q21, 2q21,
2q22, 3q28, 4p14, 4q12, 4q22, 6q12, 9q14, 11p13 and
11p12 and (c) Cape rock elephant shrew – 1p26, 1q15,
1q21, 2q17, 2q19, 4q14, 4q24, 5q12, 5q22, 7q12, 10q12,
11p12 and 11q12 (see figure 1). Additionally, we were
able to plot the African elephant/aardvark chromosomal

syntenies described in [54] that are based on reciprocal
painting of these two species thereby providing insights
into the association between evolutionary breakpoints
and fragile sites among these two species compared to the
older, phylogenetically more distant human/Afrotheria
evolutionary comparison. Nineteen evolutionary chro-
mosomal bands were detected when comparing the aard-
vark and African elephant genomes: 1p11, 1q15, 1q18,
1q24, 1q26, 1q28, 1q35, 1q38, 2q13, 2q15, 2q21, 2q25,
2q27, 2q31, 3q12, 3q15, 4p11, 5q14 and 6q23 (figure
1a). On combining these data (human and elephant chro-
mosomal syntenies) 25 distinct evolutionary breakpoints
could be defined in the aardvark; of these, six are common
to both data sets (1p11, 1q18, 1q28, 1q35, 2q31 and
6q23).

Given these findings, we proceeded to determine if there
is a correlation between the position of evolutionary
breakpoints and the location of fragile sites in each of the
afrotherian species studied using contingency analysis. Of
the 12 evolutionary breakpoints identified in the aardvark
by reciprocal painting with human painting probes [53],
seven are coincidental with regions of fragility as defined
by fragile site location (1.8 bands expected if the distribu-
tion was random, p = 0.0004) (figure 1a). Of the 19 evo-
lutionary breakpoints identified in the aardvark by
reciprocal painting with the African elephant painting
probes [54], eight are coincidental with regions of fragility
(three bands are expected if the distribution was random,
p = 0.0032) (figure 1a). It is noteworthy that of the six
bands (1p11, 1q18, 1q28, 1q35, 2q31 and 6q23) that
delimit human and elephant chromosomal syntenic
blocks in the aardvark genome (see above), all but one
(1q35) express fragile sites. Additionally, 27 fragile sites
were expressed in the golden mole of which four (1.6

Table 2: Number of chromosomal aberrations observed in cells analysed from aphidicolin-treated cultures of three afrotherian 
species.

Chromosomal aberrations

Specimens chr breaks chr gaps cht breaks cht gaps total

OAF1 8 (5.59%) 46 (32.17%) 87 (60.84%) 2 (1.40%) 143
OAF3 1 (0.69%) 5 (3.47%) 135 (93.75%) 3 (2.08%) 144

CAS1 1 (0.69%) 5 (3.47%) 135 (93.75%) 3 (2.08%) 144
CAS2 2 (1.10%) 10 (5.49%) 152 (83.52%) 18 (9.89%) 182
CAS3 3 (1.71%) 38 (21.71%) 124 (70.86%) 10 (5.71%) 175

EED1 0 (0%) 13 (5.35%) 224 (92.18%) 6 (2.47%) 243
EED2 6 (2.45%) 46 (18.78%) 183 (74.69%) 10 (4.08%) 245
EED3 0 (0%) 50 (25%) 135 (67.65%) 15 (7.5%) 200
EED4 1 (0.74%) 35 (25.74%) 92 (67.65%) 8 (5.88%) 136

Abbreviations – OAF: O. afer, CAS: C. asiatica, EED: E. edwardii, chr breaks: chromosome breaks, chr gaps: chromosome gaps, cht breaks: chromatid 
breaks and cht gaps: chromatid gaps.
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Ideograms representative of O. afer (A), C. asiatica (B) and E. edwardii (C) chromosomesFigure 1
Ideograms representative of O. afer (A), C. asiatica (B) and E. edwardii (C) chromosomes. The regions of homol-
ogy with human chromosomes [see 24, 53, 54] are depicted in red and indicated by the numbers to the left of each chromo-
somal schematic. In aardvark, homology with the African elephant chromosomes is shown in blue. The location of aphidicolin-
induced fragile sites (fs) found in all specimens studied is indicated to the right of each chromosomal schematic in the three 
afrotherian species. Asterisks mark fragile sites conserved in at least two of the three species studied. Heterochromatic 
regions are marked by diagonal lines.
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expected, p = 0.07) show correspondence with the 12 evo-
lutionary breakpoints detected by chromosome painting
(figure 1b). Of the 35 aphidicolin induced fragile sites in
the elephant shrew, six (2.5 expected, p = 0.02) (figure 1c)
were coincidental with the 13 evolutionary breakpoints
previously identified in this species using human chromo-
some painting probes [24].

We conducted a more refined analysis of the afrotherian
fragile sites by comparing those that are (i) expressed in a
single species (i.e., species-specific fragile sites), and (ii)
those fragile sites conserved between two or more species
(i.e., conserved fragile sites). As above, we assessed each
category of fragile site for correspondence with evolution-
ary breakpoints. Our aim was to test if conserved fragile
sites, which are more likely to be ancient fragile sites,
might show an enrichment of evolutionary breakpoints.

This was borne out by the data which show that of the 12
evolutionary breakpoints identified in the aardvark by
reciprocal painting with human painting probes [53],
three are coincidental with aardvark-specific fragile sites
(1.15 bands are expected if the distribution was random,
p = 0.001) and four are coincidental with conserved frag-
ile sites (0.7 bands are expected if the distribution was
random, p = 0.001). Similarly, a significant association
was found in the elephant shrew (p = 0.03). However, in
the case of the golden mole, the tendency was not signifi-
cant. These data suggest, therefore, that evolutionary
breakpoints tend to concentrate more frequently in con-
served fragile sites than in those that are species-specific,
although only significantly so in two of the three species
analysed. Finally, three conserved fragile sites were shared
between all three afrotherian species (located in bands
1q28, 1q44 and 3q24 in the aardvark, bands 1q28, 1q32
and 3q24 in the golden mole, and bands 1p22, 1q15 and

Table 4: Chromosomal bands that are considered to contain 
fragile sites in the three golden moles (CAS) specimens studied.

No. aberrations

band CAS1 CAS2 CAS3

1p15 0 0 8
1p13 8 8 5
1p11 0 0 3
1q13 11 8 5
1q18 3 0 0
1q21 0 8 3
1q32 6 7 4
2p15 0 0 8
2p13 6 6 3
2q17 0 0 3
2q22 7 7 5
2q31 18 26 25
3p11 0 4 0
3q15 0 0 3
3q24 0 0 4
3q25 3 0 0
4q24 0 0 3
5q24 3 0 0
6q23 3 6 6
7q13 0 4 3
7q25 0 0 4
8p15 0 0 6
8q17 5 5 15
9p13 0 0 3
9q14 0 4 6
10q23 0 6 0
12q12 3 0 0

Total 76 99 125

The number of chromosomal aberrations (chromosomal breaks, 
chromosomal gaps, chromatid breaks and chromatid gaps) observed 
in each specimen studied (CAS1, CAS2 and CAS3) at each fragile 
band is provided.

Table 3: Chromosomal bands which are considered to contain 
fragile sites in the two aardvark (OAF) specimens studied.

No. aberrations

band OAF 1 OAF3

1p11 4 6
1q13 0 4
1q18 4 5
1q22 7 0
1q28 6 0
1q38 4 0
1q42 6 0
1q44 7 7
2q13 13 5
2q25 3 4
2q31 0 6
2q42 0 4
2q46 4 0
2q48 4 0
3p11 7 5
3q12 3 0
3q24 0 4
3q26 0 5
3q29 3 0
4p13 3 0
4q19 4 0
4q24 3 0
5p13 3 0
5p15 0 6
6p11 6 0
6q23 10 0
7q11 3 0
7q13 4 0
Xp13 3 0

total 114 66

The number of chromosomal aberrations (chromosomal breaks, 
chromosomal gaps, chromatid breaks and chromatid gaps) observed 
in each specimen (OAF1 and OAF3) at each fragile band is provided.
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1q32 in the elephant shrew). One of these (corresponding
to band 1q28 in the aardvark, 1q18 in the golden mole
and 1q15 in the elephant shrew) was coincidental with
the site of an evolutionary breakpoint in all three species
– that corresponding to HSA 2/8, the only chromosomal
synteny which strongly supports the Afroinsectiphillia
(golden moles, elephant shrews and aardvark) to the
exclusion of the elephant [24]).

Discussion
Fragile sites and chromosomal evolution
This investigation confirms and extends earlier observa-
tions that fragile sites form part of the chromosomal struc-
ture in mammals, and that the characteristics underlying
their susceptibility to breakage have been conserved dur-
ing evolution [26,36,37,51,55,56]. Using data from frag-
ile site expression, G-banding analysis, and cross-species
chromosome painting, we have identified fragile sites in
aardvark, golden mole and elephant-shrew (Afroinsec-
tiphillia) that are located in homologous chromosomal
positions in these species. We detected 11 conserved frag-
ile sites in aardvark genome, eight in golden mole, and 10
fragile sites in the elephant-shrew (figure 1). Fragile sites
detected in more than one species were regarded as "con-
served fragile sites" in order to distinguish them from
those that were species-specific.

Although fragile sites have been considered "hot spots"
for evolutionary reorganization in a variety of mamma-
lian species (i.e. are regions where chromosomal rear-
rangements such as fusion/fissions and inversions can
repeatedly occur), the data are limited to a single clade,
Boreoeutheria [26-28]. This begs the question whether
this fragility is a more general phenomenon in mammals,
and whether the evolutionary breakpoints that character-
ise human syntenies detected in the basal Afrotheria sim-
ilarly correspond at the chromosomal band level with
fragile sites detected in other species when using a chemi-
cal challenge. Twenty nine fragile sites were detected in
aardvark, 27 in golden mole and 35 in the elephant-shrew
(Figure 1). A contingency analysis shows that there is a sig-
nificant association for bands that contain evolutionary
breakpoints to accumulate fragile sites in the aardvark (p
= 0.0004), as well as in the Cape rock elephant shrew (p =
0.02) genomes. The association was not statistically sig-
nificant in the golden mole, but there is, nonetheless, a
tendency for bands that contain evolutionary breakpoints
to accumulate fragile sites in this species (p = 0.07).

The inclusion of the elephant/aardvark chromosome
painting data into the analysis offered an opportunity to
compare old (aardvark vs. human) and phylogenetically
younger evolutionary breakpoints (aardvark vs. elephant)
and their correlation with chromosomal fragility. We rea-
soned that younger breakpoints may show a greater corre-
lation with afrotherian fragile sites than their more
ancient counterparts identified in the human vs. afrothe-
rian comparisons. The analysis, however, did not reveal
marked differences between the two types of evolutionary
breakpoints. When the human chromosomal homologies
are plotted against the aardvark genome, seven of the 12
evolutionary breakpoints co-localize with fragile sites (1.8
expected, p = 0.0004). Plotting the elephant chromo-
somal homologies to the aardvark genome revealed that

Table 5: Chromosomal bands which are considered to contain 
fragile sites in the three elephant-shrew (EED) specimens 
studied.

No. aberrations

Band EED1 EED2 EED3 EED4

1p22 8 0 0 0
1q11 4 0 0 0
1q15 0 0 5 0
1q16 0 0 3 7
1q21 0 7 16 5
1q31 0 0 8 5
1q33 0 0 16 3
2p16 12 8 7 3
2p13 5 6 0 0
2q13 5 0 3 0
2q26 0 4 3 3
2q31 0 0 3 3
3p26 9 0 4 0
3q26 43 27 11 19
3q28 0 0 17 0
4p11 6 5 0 0
4q11 4 0 0 0
4q18 6 0 5 5
4q24 6 0 0 0
4q26 5 5 0 3
5p12 0 6 4 0
5q25 41 60 18 20
6q16 5 0 0 0
7q12 0 26 4 0
7q14 4 5 0 0
8q11 0 0 0 4
9p12 0 0 0 9
9p11 0 5 3 0
9q14 0 0 0 3
10q12 0 0 5 0
11p12 4 4 0 0
Xp13 5 6 4 0
Xp11 0 6 12 0
Xq13 10 7 0 0
Xq15 0 12 0 0

total 163 159 127 92

The number of chromosomal aberrations (chromosomal breaks, 
chromosomal gaps, chromatid breaks and chromatid gaps) observed 
in each specimen (EED1, EED2, EED3 and EED4) at each fragile band 
is provided.
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eight of 19 evolutionary breakpoints co-localize with frag-
ile sites (3 expected, p = 0.0032) indicating that the mech-
anism causing the fragility is conserved. Given these
findings, we then proceeded to determine whether the
data inform previous conclusions on chromosomal synte-
nies thought to underpin the recognition of Afrotheria as
one of the four major supraordinal clades of placental
mammals (Placentalia).

Chromosomal signatures in Afrotheria
The recognition of a monophyletic afrotherian clade was
initially based on DNA sequence comparisons [13,57]
and subsequently supported by the analysis of large con-
catenations of nuclear and mitochondrial genes
[1,2,4,5,16,58,59], unique insertion and deletion events
(indels) [8,18,19], comparative cytogenetic studies
[23,24,60], morphology [61,62], placentation [63] and,
most recently, by whole genome assemblies [11]. Given
that Afrotheria is thought to be near the root of the euth-
erian tree, the organization of their genomes could pro-
vide unique insights into the dynamics of mammalian
chromosomal evolution.

Two human syntenies have been proposed by chromo-
some painting studies to link afrotherians to the exclusion
of other placental mammals (1/19p [23,53] and 3/21/5
[24]). In terms of the former, it is noteworthy that HSA 1/
19 has been reported in a xenarthran species (Tamandua
tetradactyla, [64,65]), the insectivore shrew-hedgehog
(Neotetracus sinensis, [66]), the pig [67], as well as in the
prosimians Galago moholi, Otolemur crassicaudatus and
Nycticebus coucang [68,69], the New World monkeys
Saimiri sciureus [70] and Callicebus lugens [71], and the Old
World monkeys Presbytis cristata [72], Pygathrix nemaeus
[73], Nasalis larvatus [74], Trachypithecus francoisi [74] and
T. phayrei [74]. However, only three of these studies relied
on reciprocal chromosomal painting [23,53,69] with a
fourth [67] based on unidirectional painting, but comple-
mented by comparative gene mapping (figure 2). These
data are a prerequisite for allowing unequivocal identifi-
cation of the chromosomal arms (either 19p or 19q)
involved in the 1/19 syntenies. Of these, G. moholi and N.
coucang [69] show an HSA 1q/19q association and the pig
HSA 1p/19q [67]. In contrast, the African elephant and
the aardvark share HSA 1/19p [23,53] begging more
detailed analysis of whether 1/19p is truly an afrotherian
specific chromosomal signature (figure 2).

By computationally scanning the genomic assemblies of
human and opossum (a marsupial outgroup to Afrotheria
and other Placentalia) we sought to validate the HSA 1/
19p synteny as a lineage specific, rare genomic change
underpinning the monophyly of Afrotheria. In attempting
to address this it is important to point out that the defin-
ing character in a conserved segmental association is the

presence of the breakpoint (i.e. the junctions 1/19p and
3/21/5) since, as has been noted elsewhere [28,60], the
size of segments may be altered by subsequent transloca-
tions to other regions in the genome, and FISH provides
no insight to gene order within the syntenic block which
may be altered by intrachromosomal rearrangement. Fur-
thermore, in deciding the most parsimonious pathway to
derive a specific chromosomal rearrangement we follow
[22] in viewing the independent disruption of a syntenic
group to be more likely than the same adjacent synteny
being independently reassembled in different lineages.
While the opossum genome shows a HSA 1p/19q/1p/
19q/1p/19q/1p association on its chromosome 4 (figure
3), this adjacent synteny is different to the HSA 1q/19q
found in the prosimian species G. moholi and N. coucang
([69] and figure 2) further reinforcing the finding that
HSA 1, reportedly the largest physical unit in the euthe-
rian ancestral genome, has suffered multiple independent
fissions [75].

Importantly, however, and of substantial phylogenetic
significance, the human chromosomal segment involved
in the HSA 1/19p afrotherian synteny is currently ambig-
uous since the painting data do not allow inference on
whether the junction is between HSA 1q or HSA 1p in
those species for which there are reciprocal painting data
(i.e., elephant and aardvark [23,53]). G-banding homol-
ogy on the other hand favours HSA 1p/19p (see insert fig-
ure 2). If correct, this association would support the
monophyly of Afrotheria [23,53] on current information.
However, should further analysis reveal its presence in
Xenarthra, this would give credence to the recognition of
Atlantogenata [76], a clade containing Afrotheria and
Xenarthra to the exclusion of Boreoeutheria [11]. Both
outcomes underscore the importance of resolving this
critical chromosomal synteny for clarifying deep diver-
gences in the eutherian tree although recent strong sup-
port for a sister group relationship for Afrotheria and
Xenarthra (based on a ~2.2 mega-base data set of protein
coding sequences), clearly tips the odds in favour of HSA
1(p?)/19p being a shared synteny for Atlantogenata [12].

Moreover, it is of interest that the human syntenies HSA
1, HSA 16q/19q and HSA 19p have all previously been
proposed for the boreoeutherian ancestor [22,28,77]
which, if present in the eutherian ancestor, would require
a fusion (possibly promoted by an ancient fragile site
retained in aardvark OAF 3q29 – figure 1a) to derive the
HSA 1/19p synteny that possibly unites Afrotheria to the
exclusion of other Placentalia (figure 2). If the same syn-
tenies were present at the therian root all that would be
required is a breakpoint in HSA19q with a fusion to HSA1
to give the opossum HSA 1p/19q and HSA1 6q/19q com-
binations (figure 2).
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Using a similar approach we examined the second synteny
thought to underpin Afrotheria monophyly, HSA 3/21/5.
It was previously argued [24] that the ancestral association
HSA 3/21 [53] should be expanded to include segments
homologous to human chromosome 5 forming an HSA

3/21/5 segmental combination defining Afrotheria. The
authors posit that the most parsimonious explanation for
the observed patterns is that HSA 21 appears to have fis-
sioned within Paenungulata; in this regard it is notewor-
thy that 2q31 is expressed as a fragile site in aardvark

Phylogenetic tree showing the HSA 1/19 chromosomal syntenies in different mammalian speciesFigure 2
Phylogenetic tree showing the HSA 1/19 chromosomal syntenies in different mammalian species. In this scheme 
we place Afrotheria at the root. There are other competing hypotheses for the basal resolution of Placentalia (see text for 
details). The ancestral chromosomal forms corresponding to HSA 1, HSA 19p and HSA 19q/16q are represented as single con-
served entities in both the therian (Marsupialia + Placentalia) and boreoeutherian ancestors. Data based on chromosomal 
painting in the African elephant (Afrotheria, [23]), the anteater (Xenarthra, [64, 65]), loris (Primates, [69]), the shrew-hedge-
hog (Eulipotyphla, [66]) and the pig (Cetartiodactyla, [67]) are represented. The human/opossum homologies are determined 
from ENSEMBL genome sequence alignments [82]. Question marks indicate instances of ambiguity where reciprocal chromo-
somal painting has not been performed and therefore unequivocal identification of chromosomal arms is not possible. Inset 
shows G-banding comparisons between elephant chromosome 2 (LAF 2) and human chromosomes 1 and 19 (HSA 1 and HSA 
19); syntenic boundaries are derived from reciprocal chromosome painting data [23]. Note that HSA 1 is inverted to facilitate 
comparisons with LAF 2. Centromeres are marked by asterisks.
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(figure 1a), perhaps indicating an ancestral locus. Their
reasoning was that the HSA 3/21/5 configuration is
present in aardvark, golden mole and elephant-shrew
with all three chromosomes retained as intact, conserved
entities in the two former species. In the case of the ele-
phant, the fissioning of HSA 21 gave rise to HSA 5/21
(LAF 3) and HSA 1/3/21/3 on LAF 21 (see [23] and inset
in figure 4). This rearrangement (the modification of 3/
21/5 to HSA 3/21 + HSA 5/21) was recently confirmed
[54] in manatee and elephant (data on the hyrax are
incomplete) by reciprocal painting with paenungulate
species-specific painting probes, and through inferences
made from human and aardvark [53]. New information
on the Florida manatee (Trichechus manatus latirostris,
TMA, [78]) resulting from unidirectional painting experi-
ments with human probes similarly show HSA 5/21 on
TMA 1, and HSA 2/3/21 on TMA 15.

The widely accepted boreutherian ancestral syntenies
(HSA 4/8/4, 7a/16p, 10/12a/22a, 12b/22b, 14/15 and
16q/19q, [22,77]) are all in the opossum genome suggest-
ing their presence in a therian ancestor, and retention for
>180 mya (divergence based on stem branches between
crown placentals and crown marsupials, [79-81]). One
further ancestral synteny (HSA 3/21) deserves special
comment, especially with respect to its importance for
Afrotheria. Froenicke [22] provided evidence that neigh-
bouring segments homologous to HSA 3 and HSA 21
have been found in all eutherian orders for which there is
information, and that the combined analysis of reciprocal
chromosome painting data in conjunction with draft

genome sequence information for mouse and human
showed that the breakpoint is located in HSA 3p, the
region closest to the centromere of this chromosome.
While there is no evidence of this synteny in opossum,
electronic screening of the chicken genome assembly indi-
cates its retention in this species (the HSA 3p segment
extends from 76Mb-90 Mb, [82], see figure 3). Opossum
has a 21/Xp/3q/Xp/3q synteny in chromosome 4 and,
importantly, 3p/3q/Xp in chromosome 7 indicating dif-
ferent breakpoints in Marsupialia (figure 4). In summary
therefore, it would seem that HSA 3p/21 was present in
the common ancestor of Amniota (i.e. common to turtles,
lepidosaurs, crocodilians, birds and mammals) support-
ing its identification as an ancestral synteny that was
present >310 MYA [79], but which was disrupted in the
lineage leading to the marsupials. The expansion to
include HSA 5 in the afrotherian ancestor is unique [24]
and defines the monophyly of this ancient African clade
of mammals.

Conclusion
Using data from fragile site expression, G-banding analy-
sis, and cross-species chromosome painting, we have
described a suite of afrotherian common fragile sites that
are correlated with evolutionary breakpoints when com-
pared to the human genome. By computationally scan-
ning the newly released opossum and chicken genomes as
outgroups to Placentalia, we have shown that the primi-
tive HSA 3p/21 synteny was present in the amniote ances-
tor, and its expansion to include HSA 5 validates the HSA
3/21/5 synteny as a robust cytogenetic signature that

Representation of the syntenies HSA 3/21/X and HSA 1/19 in the chicken and opossum genomesFigure 3
Representation of the syntenies HSA 3/21/X and HSA 1/19 in the chicken and opossum genomes. Different col-
ours show contiguous synteny blocks between (a) chicken and human, and (b) opossum and human as determined from 
ENSEMBL genome sequence alignments [82].
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defines the monophyly of Afrotheria. Its fission into two
segments (HSA 3p/21 + HSA 5/21) is probably shared by
all Paenungulata and may have been facilitated by an
ancient fragile site that is still expressed in aardvark. Fur-
ther, if the human syntenies HSA 1, HSA 16q/19q and

HSA 19p (all previously proposed for the boreoeutherian
ancestor) were present at the eutherian root, a single
fusion (the breakpoint junction being coincidental with a
fragile site retained in aardvark at OAF 3q29) would be
required to derive the HSA 1/19p synteny that may, with

Phylogenetic tree showing the HSA 3/21 chromosomal syntenies in different mammalian speciesFigure 4
Phylogenetic tree showing the HSA 3/21 chromosomal syntenies in different mammalian species. In this scheme 
we place Afrotheria at the root. There are other competing hypotheses for the basal resolution of Placentalia (see text for 
details). The ancestral chromosomal forms corresponding to HSA 3/21 are represented as single conserved entities in the 
amniote, therian, eutherian and boreoeutherian ancestors. Source references for the species shown in the tree are: African 
elephant [23], domestic pig [84], rabbit [85], tree shrew [86], grey squirrel [87], domestic cat [88], aardvark [53], the xenar-
thran taxa the amadillo and lesser anteater [64], and the ENSEMBL genome database [82] for the rat, mouse, cattle, dog, opos-
sum and chicken sequence alignments. The asterisks indicate the unequivocal identification of the HSA 3p/21 synteny based on 
reciprocal chromosome painting or data from the ENSEMBL genome database [82]. The estimated divergence dates follow 
[11]. The opossum and the chicken are included as representative outgroups species. Inset shows G-banding comparisons 
between elephant chromosomes 3 (LAF 3) and 21 (LAF 21) and aardvark chromosome 2 (OAF 2) showing the regions of 
homology to human chromosomes 3, 5 and 21 (HSA 3, HSA 5 and HSA 21); syntenic boundaries are derived from reciprocal 
chromosome painting data [23].
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further refined analysis, be found to unite Afrotheria to
the exclusion of other Placentalia.

Methods
Cell culture and fragile site expression
Fibroblast cell cultures were established from two aard-
vark (one male and one female), three golden mole (two
males and one female) and four elephant-shrew speci-
mens (two females and two males). Twenty four hours
before harvesting 50 l of aphidicolin (APC, 2 mM) dis-
solved in DMSO was added to cell cultures at a final con-
centration of 0.2 M. Concurrent control cultures were
established for each experiment. Cells were harvested and
chromosomal preparations obtained using standard pro-
tocols.

Ideograms were constructed for each of the species accord-
ing to the standardised karyotype for O. afer (2n = 20,
OAF [53]), C. asiatica (2n = 30, CAS [24]) and E. edwardii
(2n = 28, EED [24]). (Note that the karyotype presented
in [24] was originally incorrectly identified as E. rupestris;
DNA from the same specimen was subsequently extracted
and sequenced, verifying its status as E. edwardii; unpub-
lished data). Our banding data show that 177 chromo-
somal bands define the O. afer ideogram, whereas the C.
asiatica and E. edwardii ideograms have 200 and 182
bands, respectively.

All metaphases were sequentially solid-stained and then
G-banded to establish the location of the breakpoints.
Digital images were captured with a BX60 Olympus
microscope utilizing the GENUS imaging System (version
2.75) (Applied Imaging Corporation).

Analysis of fragile sites
In order to identify which chromosomal bands could be
considered fragile regions, a statistical analysis of the dis-
tribution of chromosomal abnormalities detected in each
specimen analysed was undertaken using the programme
FSM (version 995, [83]). In this program, the standard-
ized 2 and G2 test statistics are used for all chromosomal
bands that express non-random breaks or gaps. The
hypothesis tested by the programme is that the probabil-
ity of breakage is equal for all chromosomal bands in a
given karyotype using a 0.05 level of significance ( ). The
FSM analysis gives a critical value for each data set ana-
lysed, abbreviated to C , which indicates the lowest fre-
quency of breakage per band that exceeds the level of
significance [35,83]. Any chromosomal band with a
number of breaks greater than the critical value is consid-
ered a fragile site. This value ranged from 3 to 4 depending
on the number of chromosomal bands determined in
each karyotype (177 bands for the aardvark, 200 bands for
the golden mole and 182 bands for the elephant shrew),
and the number of breaks detected in each species' data

set. In our analyses, chromatid and chromosomal breaks
and gaps were treated equally as representing single chro-
mosomal events, and these were mapped to the respective
ideogram of each afrotherian species.

Computational analysis of afrotherian and 
boreoeutherian lineage-specific syntenies
Data from different studies [24,53,54,78] were used as
sources for determining homologies between the human
genome and those of the aardvark, golden mole and Cape
rock elephant shrew. Evolutionary breakpoints were
defined as the limit between each adjacent human homol-
ogous region. Evolutionary bands are chromosomal
bands that contain evolutionary breakpoints (see [27] for
further clarification of evolutionary breakpoints and evo-
lutionary bands). We omitted the centromeres from the
analysis and plotted all fragile sites and evolutionary
breakpoints onto the ideograms of each of the afrotherian
species analysed. A contingency analysis was used (JMP
package version 5.1.2; SAS Institute Inc.) to evaluate if
evolutionary breakpoints concentrate significantly (p 
0.05) in chromosomal bands containing fragile sites. This
is based on the assumption that the chromosomal bands
of the genomes of each afrotherian species analysed have
the same probability to be affected, independently of the
size of the band involved.

The Ensembl genome browser of the Sanger Center and
EMBL data base [82] were used for determining homolo-
gies between the human genome and those of the opos-
sum and chicken. We used the completed human/chicken
(WASHUC 1) and human/opossum (MonDom 4.0)
whole-genome sequence assemblies that are available on
the Ensembl genome browser [82] to determine syntenic
regions between the human genome (NCBI Build 36) and
those of opossum and chicken
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