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Abstract
Background: The Notostraca is a small but ancient crustacean order with a contrasting combination of a conservative
morphology and a wide range of reproductive modes. The tadpole shrimp Triops cancriformis, includes bisexual – the putatively
ancestral state -, androdioecious and hermaphrodite populations. As hermaphroditism and androdioecy confer a colonisation
advantage, we expect the postglacial colonisation of northern Europe to have been effected by lineages with such reproductive
modes. Therefore, N European populations should be composed of closely related lineages reflecting a recent range expansion.
In contrast, glacial refugia in the south should contain bisexual populations with high haplotype diversity and more population
structuring. To test these hypotheses, we analysed the geographic distribution of reproductive modes based on new and
published sex ratio data. In addition, we investigated the European phylogeography of T. cancriformis by sequencing over a 1000
bp of mitochondrial DNA (mtDNA) in individuals from a large sample of populations of the three recognised subspecies.

Results: Bisexual populations were only found in the Iberian Peninsula, with the rest of European populations showing low male
proportions or no males. Androdioecious populations were found in Central and Eastern Europe. Regarding mtDNA diversity,
Spanish and Moroccan populations of T. c. mauritanicus were highly divergent, and showed strong population structure. In
contrast, Triops c. cancriformis and T. c. simplex formed a single mtDNA lineage with low haplotype diversity. This diversity was
structured into two phylogenetic clades (A, B), coexisting in E Germany. Basal haplotypes of both lineages were found in the
Iberian Peninsula. Most of the populations in clade A and B are either hermaphroditic or androdioecious, with the only bisexual
population in these clades found in the Iberian Peninsula. The genetic divergence between these two clades suggests a split in
the Late Pleistocene and their geographic distribution reflects a complex evolutionary history of European Triops populations,
with possibly two episodes of range expansions – one of them by clade A – involving androdioecious and hermaphroditic
populations.

Conclusion: As we predicted, N European populations of T. cancriformis are closely related, with few widely distributed
haplotypes and indications of a recent range expansion involving hermaphroditic/androdioecious lineages. A possible second
range expansion or long distance colonisation may have created the secondary contact zone between T. c. cancriformis/simplex
clades A and B. The large haplotype diversity and strong genetic subdivision in the Iberian Peninsula, which is known to contain
only bisexual populations, strongly suggest that this area was a Pleistocene refugium for T. cancriformis, although the occurrence
of additional eastern refugia cannot be ruled out. Our data support the status of T. c. mauritanicus as a separate species and the
colonisation of N Africa from the Iberian Peninsula. We suggest that hermaphroditism/androdioecy has evolved recently in T.
cancriformis and has facilitated the postglacial colonisation of northern Europe.
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Background
The widespread occurrence of outcrossing sexual repro-
duction has puzzled evolutionary biologists since Darwin,
as reproduction either through self-fertilisation or parthe-
nogenesis provides immediate advantages [1,2]. One of
such key advantages is evident during the colonisation
process [3,4], as a single selfing hermaphrodite or parthe-
nogenetic individual can found a new population. Organ-
isms with mixed reproductive strategies allow a unique
direct comparison of the relative advantages of different
reproductive modes [5,6]. Mixed strategies often have a
geographic component (e.g. 'geographical parthenogene-
sis') which reflects the interplay between historical and
selective factors [6]. The process of recolonisation of
northern areas during interglacial periods of the Pleis-
tocene might have favoured passively dispersing parthe-
nogens or selfing hermaphrodites. As a consequence, in
temperate organisms with mixed reproductive strategies,
hermaphroditism is often found in areas previously cov-
ered by glaciers or permafrost and therefore, recolonisa-
tion must have taken place after the last glacial maximum.
Despite this, ecological correlates have been intensively
sought to explain such geographic patterns adaptively
[5,7], whereas the phylogeographic context of mixed
reproductive patterns has only recently begun to be inves-
tigated [8-10].

The Eurasian tadpole shrimp Triops cancriformis (Crusta-
cea: Branchiopoda: Notostraca) has a mixed reproductive
strategy which includes hermaphroditism, androdioecy
(consisting of hermaphrodites and a small proportion of
males) and bisexuality [11,12], the latter being considered
to be the ancestral condition [13]. The currently recog-
nized subspecies T. c. simplex (N Africa and NE Iberian
Peninsula) and T. c. mauritanicus (NW Morocco and SW
Iberian Peninsula) are considered to be bisexual, with
equal or male biased sex ratios [14,15]. The nominal sub-
species T. c. cancriformis, occurring in central and northern
Europe and a disjunct area in Japan, includes hermaphro-
dite and androdioecious populations [16,17]. The repro-
ductive strategy in T. c. cancriformis populations is
controversial, although there is evidence to suggest that
'females' are in fact hermaphrodites as they can reproduce
in isolation [18] and ovotestes are present [12]. However,
females from a German T. c. cancriformis population
apparently lacked testicular tissue [19] suggesting that
parthenogenesis – or a mixture of bisexual and hermaph-
roditic reproduction in some populations – cannot be
ruled out. Our preliminary microsatellite data [20] show
significant heterozygote deficiencies in many popula-
tions, and genotyping of individuals reared in isolation
and their offspring supports hermaphroditism. Thus, and
following Sassaman [11] we consider some T. c. cancri-
formis populations to be androdioecious, as populations
consist of variable proportions of hermaphrodites and

males, with some populations being made solely of self-
ing hermaphrodites. As in other androdioecious branchi-
opods, T. c. cancriformis hermaphrodites can reproduce
either by selfing or by outcrossing with males.

T. cancriformis inhabits temporary freshwater ponds and
all three reproductive modes lead to the production of
resistant diapausing cysts, which survive in the pond sed-
iments during drought periods. These cysts are also the
means of passive dispersal by wind, water currents or
downstream floods, and birds [21-23], amphibians or
hoofed animals [24-26]. An indication of the vagility of
such cysts is that populations occur on remote islands,
and are apparently found wherever suitable habitats are
available [27]. Evidence for wide notostracan distribution
before the Pleistocene can be derived from its abundant
fossil record dating back to the Carboniferous or possibly
up to the Devonian period [28]. In fact, the striking mor-
phological similarity of some Upper Triassic Triops sp. fos-
sils from Germany and extant T. cancriformis [29] makes
this notostracan one of the best examples of morphologi-
cal stasis and 'living fossils' [30]. Thus, the potentially
high dispersal abilities of their diapausing cysts and the
possibility of hermaphrodite reproduction could account
for the wide distribution of T. cancriformis.

Here we present a phylogeographic analysis of European
T. cancriformis in the context of its reproductive mode var-
iation. So far, attempts at investigating the genetic varia-
bility of T. cancriformis have been hampered by its low
genetic variability [31,32], therefore our phylogeographic
survey of T. cancriformis is based on sequence variation on
over 1000 bp of mitochondrial DNA containing highly
informative mitochondrial genes. We hypothesize, in
agreement with Longhurst [18], that hermaphrodite or
androdioecious populations should occur in areas
unsuited for the species during Pleistocene glacial maxima
(either covered with ice sheets or permafrost), and that
therefore must have been recently colonised. Further, N
European populations should be composed of one or few
closely related lineages reflecting a recent range expansion
of hermaphroditism and/or androdioecy. In contrast, gla-
cial refugia in S Europe should contain bisexual popula-
tions with high haplotype diversity and high population
structuring. To test these hypotheses, we analysed the geo-
graphic distribution of inferred reproductive modes based
on reviewed and re-analysed data concerning sex-ratio in
this species and new critical data of our own. In addition,
we screened a large sample of populations of the three rec-
ognised subspecies for nucleotide sequence variation in
two mtDNA genes (COI and ATPase). The phylogeo-
graphic pattern is interpreted in the context of the inferred
population reproductive mode. Our results provide
insights into the evolution of reproductive mode and pop-
ulation diversification in Triops.
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Results
mtDNA haplotype diversity
A total of 84 T. cancriformis individuals from 29 ponds
were sequenced for two mitochondrial gene fragments: a
568 bp sequence of the cytochrome c oxidase 1 gene
(COI) and a 506 bp fragment comprising partial
sequences of ATP synthase FO subunits 8 (ATP8) and 6
(ATP6) genes (Table 1, Figure 1). Given that the partition-
homogeneity test did not find significant differences
between both fragments (p-value of 0.07), we combined
them into a single alignment with a total length of 1074
bp for phylogenetic analysis.

Overall 213 variable nucleotide sites, 158 of them parsi-
mony informative, were identified in the combined align-
ment. Excluding the Iberian (Extremadura, EXT; Ares del
Maestre, ARE) and Moroccan (Youssofia, YOI) T. c. mau-
ritanicus specimens, 38 sites remained variable and 26
sites were parsimony informative. Comparing the COI
and ATPase (including ATP8 and 6 genes) fragments sep-
arately we found within the COI fragment a total of 20
substitutions on 1st codon position, 3 on 2nd and 91 on 3rd

positions, which resulted in nine amino acid changes. The
ATPase fragment is characterised by 46 changes on 1st

codon position, 22 on 2nd and 99 at 3rd codon position
which result in 33 amino acid changes. The combined
alignment was moderately A+T rich (mean AT content =
65.2%).

Despite sequencing over 1000 bp of mtDNA, overall hap-
lotype diversity was low, with only 19 mtDNA haplotypes
identified in the combined alignment. Eleven of those
haplotypes were found in the 14 T. c. cancriformis popula-
tions sampled. Fourteen out of the nineteen identified

haplotypes were found in single populations (Table 1,
Figure 2), while one haplotype (H8) was found in two
nearby populations in Germany (DAX, HAG), H13 was
found in a set of four nearby ponds in the area of König-
swartha, and H1, H2 and H3 were common and wide-
spread, found in six, nine and three ponds respectively.
H1 was found in the Iberian individuals from Espolla
(ESP) and El Puig (PUI), which had been previously iden-
tified as T. c. simplex [33], as well as in individuals of the
nominal subspecies from Döberitzer Heide (DOE),
Königswartha pond 12 and 21 (KOE12, KOE21) and
Rhine (DAX).

Maximum parsimony network of Triops cancriformis based on combined COI and ATPase sequence dataFigure 2
Maximum parsimony network of Triops cancriformis based on 
combined COI and ATPase sequence data. Each circle repre-
sents a different haplotype, with its diameter proportional to 
the haplotype sample size. Each line between haplotypes rep-
resents a mutation. Populations containing each haplotype 
and their reproductive mode (if known) are indicated. 
Reproductive mode symbols as in Figure 3. Haplotypes of T. 
c. mauritanicus could not be joined to the T. c. cancriformis/
simplex network or between themselves without exceeding 
the limits of parsimony, and form three disjointed networks.
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The number of haplotypes per population ranged from 1–
4 (average 1.35), with the maximum found in König-
swartha (KOE21) (Table 1). Given the low level of genetic
diversity found in our preliminary analysis, we optimised
our resources by increasing the number of bp sequenced
per individual and the number of populations surveyed,
instead of the number of individuals sequenced per pop-
ulation.

Phylogenetic relationships
Both maximum likelihood and Bayesian analyses pro-
duced identical topologies showing two highly divergent
and strongly supported monophyletic lineages (Figure 3).
The first lineage is represented by T. c. mauritanicus haplo-
types (nucleotide diversity π = 0.05905) (clade C). The
second lineage includes all haplotypes from the subspe-
cies T. c. cancriformis and T. c. simplex (π = 0.00920).
Despite the low genetic diversity within T. c. cancriformis/
simplex, two divergent clades (A and B) were identified.
The closely related haplotypes H1 to H9 within clade A
occurred from E Spain to N and C Europe and the Japa-

nese population (π = 0.00114) (see network in Figure 2).
This group includes the three most common and wide-
spread haplotypes (H1, H2, H3) and a cluster of rare, geo-
graphically restricted haplotypes differing from them in
single substitutions. In contrast, haplotypes from the
southern populations within clade A (H10, Sicily and
H11, UBA in Spain) are more divergent and differ in 9 and
6 respectively substitutions from H3. The two morpholog-
ically described subspecies T. c. cancriformis and T. c. sim-
plex, which show different reproductive modes, are not
represented by distinct monophyletic lineages, as T. c. sim-
plex individuals from some East Iberian populations (PUI,
ESP) share haplotype H1 with five T. c. cancriformis indi-
viduals from four different populations in Germany.
Clade B was only found in three disjunct locations (KOE,
DAN, UBA, see Figure 3). Haplotypes from clades A and B
were present in Königswartha populations. Population
UBA from eastern Spain contained the basal haplotype of
clade A (H11) – the most internal haplotype in the net-
work – and a haplotype of unresolved position (H12)
according to the phylogenetic analyses, but which appears
as most closely related to clade B from our network anal-
ysis under the limits of parsimony (Figure 2), and there-
fore was included in clade B. The root of the T. c.
cancriformis/simplex lineage lies in between both haplo-
types in this population, which seems to have retained
ancestral polymorphisms in the species.

Sequence divergence and approximation of divergence 
times
Based on the combined alignment, pair-wise nucleotide
differences among all T. cancriformis haplotypes ranged
from 1 to 137 bp which translate into a maximum dis-
tance (HKY + G corrected) of 14.38% (H5 vs. H17). The
mean corrected distances between clades for the com-
bined alignment and for the COI and ATPase fragments
separately are shown in Table 2. The genetic distance
between clades A and B, including the two recognized
subspecies T. c. cancriformis and T. c. simplex, is less than
3.5%. The mean genetic distance was considerable higher
(>10%) between haplotypes from clade A and B together
(T. c. cancriformis and T. c. simplex) and clade C (T. c. mau-
ritanicus).

Calculating the corrected distances separately for the COI
and ATPase fragment resulted in higher values for the
ATPase alignment. This illustrates, that ATPase is evolving
faster and provides more information regarding intraspe-
cific relationships than COI (Table 2).

The crustacean COI calibration applied to obtain an
approximate time of divergence between the T. c. cancri-
formis/simplex group (clades A and B) and T. c. mauritani-
cus (clade C), yielded 4.71–7.85 mya (around the
Miocene-Pliocene boundary) (Table 2). The divergence

Maximum likelihood (ML) tree obtained from the combined COI and ATPase sequence alignment and the distribution of COI-ATP Triops cancriformis haplotypes in Europe (Tcc/s, Tri-ops cancriformis cancriformis/simplex; Tcm, Triops cancriformis mauritanicus)Figure 3
Maximum likelihood (ML) tree obtained from the combined 
COI and ATPase sequence alignment and the distribution of 
COI-ATP Triops cancriformis haplotypes in Europe (Tcc/s, Tri-
ops cancriformis cancriformis/simplex; Tcm, Triops cancriformis 
mauritanicus). In the phylogram, values above major branches 
are posterior probabilities in the Bayesian analysis; numbers 
below indicate the bootstrap support in the Maximum likeli-
hood analysis (only values over 50% are shown). The tree is 
midpoint rooted. Inferred reproductive mode in populations 
of each clade is indicated by symbols. In the different clades 
are represented by coloured symbols in the map (green cir-
cles for clade A; red triangles for clade B; yellow squares for 
clade C).
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Table 1: Triops cancriformis sample locations, population code, location of inferred subspecies, source of material, number of 
individuals sequenced for COI and ATPase and observed haplotypes (and numbers individuals per haplotype) per population, 
geographic are given based on the combined COI and ATPase analysis.

Location Code Geographic 
location

Species Material n Haplotype

Caervalerock, UK CAE 54°08'27" N, 
003°30'58" E

Tcc p 1 H6 (1)

Tannen, Germany TAN 53°34'10" N, 
011°25'34" E

Tcc p 1 H2 (1)

Döberitzer Heide, 
Germany

DOE 52°31'43" N, 
013°00'05" E

Tcc h 2 H1 (2)

Lacoma, Germany LAC1 51°48'12" N, 
014°24'02" E

Tcc h 2 H2 (2)

Lacoma, Germany LAC2 51°48'05" N, 
014°23'37" E

Tcc h 3 H2 (3)

Lacoma, Germany LAC3 51°47'47" N, 
014°23'31" E

Tcc h 2 H2 (2)

Königswartha, 
Germany

KOE12 51°19'50" N, 
014°18'30" E

Tcc h 3 H1 (1)

H2 (2)
Königswartha, 
Germany

KOE11 51°19'49" N, 
014°18'31" E

Tcc h 3 H13 (3)

Königswartha, 
Germany

KOE28 51°19'48" N, 
014°18'12" E

Tcc p 4 H13 (4)

Königswartha, 
Germany

KOE27 51°19'46" N, 
014°18'14" E

Tcc p 3 H13 (3)

Königswartha, 
Germany

KOE21 51°19'43" N, 
014°18'23" E

Tcc h 9 H1 (1)

H2 (3)
H5 (1)
H13 (4)

Godshill pond, UK GOD 50°55'37" N, 
001°46'30" E

Tcc h 8 H3 (8)

Ibersheim, Germany IBE 49°43'41" N, 
008°25'55" E

Tcc h 2 H3 (2)

Daxlander Au, 
Germany

DAX 49°01'10" N, 
008°17'00" E

Tcc c 2 H1 (1)

H8 (1)
Hagenbach, Germany HAG 49°00'40" N, 

008°16'25" E
Tcc h 1 H8 (1)

Neuburg, Germany NEU 48°59'30" N, 
008°16'25" E

Tcc h 3 H3 (3)

Morava, Czech 
Republic

CZE n.d. Tcc h 1 H2 (1)

Danube, Austria DAN n.d. Tcc c 2 H14 (2)
Tiszabercel, Hungary TIZ 48°10'38" N, 

021°37'18" E
Tcc p 1 H2 (1)

Kaiserlacke, Austria KAI 47°47'40" N, 
016°52'31" E

Tcc h 3 H2 (3)

Poroszlo, Hungary POR 47°39'01" N, 
020°43'37" E

Tcc p 1 H7 (1)

Espolla, Spain ESP 42°09'02" N, 
002°45'60" E

Tcs* p 7 H1 (6)

H4 (1)
Ares del Maestre, 
Spain

ARE 40°25'19" N, 
000°04'13" W

Tcm* p 3 H16 (3)

El Puig, Spain PUI 39°34'24" N, 
000°16'43' E

Tcs* p 3 H1 (3)

Laguna de la 
Gitanilla, Spain

EXT 39°27'00" N, 
006°15'54" W

Tcm* p 1 H15 (1)

Ullal de Baldovi, 
Spain

UBA 39°14'55" N, 
000°19'03" E

Tcs p 2 H11 (1)

H12 (1)
Gorgo di Baglio 
Cofano Sicily, Italy

SIC 38°06'11" N, 
012°40'39" E

Tcc p 2 H10 (2)

Yamagata 
Prefercture, Japan

YAM 38°02'58" N, 
140°10'48" E

Tcc p 4 H9 (4)

Youssofia, Morocco YOI 32°17'06" N, 
008°19'22" W

Tcm p 5 H17 (2)

H18 (2)
H19 (1)

p, preserved individuals collected in the wild; h, preserved individuals from laboratory rearing; c, cyst
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time between clades A and B was estimated to have hap-
pened during the Early Pleistocene (0.68–1.13 mya).

Distribution of inferred reproductive modes in Triops 
cancriformis
Bisexuality was supported in two Portuguese populations
of T. c. mauritanicus (Algarve) and one Spanish popula-
tion of T. c. simplex (Espolla) (Table 3, Figure 4). Androdi-
oecy was inferred for populations in Central and E Europe
(Table 3). Populations with male proportions above
0.100 were identified mainly from eastern European pop-
ulations (Poland and Hungary). As listed in Table 3, male-
less populations occur in Germany, France, Poland and
United Kingdom, and no males have been reported from
Italian, Polish and Japanese populations (with no
reported sample sizes) [17,34-36]. As androdioecious
populations can have low proportion of males it can not

be excluded that those population are actually androdio-
ecious. In populations where males have been recorded
male proportions ranged from 0.012 to 0.281 (Table 3).
As shown in Figure 4 both androdioecious and putatively
hermaphrodite populations are distributed where no suit-
able habitats for T. cancriformis were found during the
Pleistocene ice ages.

Discussion
As we predicted, T. cancriformis haplotypes from most N
European populations and the disjunct Japanese popula-
tion – clustered in clade A – are closely related, with a few,
widely distributed haplotypes. The reduced genetic diver-
sity in T. cancriformis is a consistent and remarkable result
of our data. This can be supported by the large mitochon-
drial fragment we investigated, the selection of the most
rapid evolving gene in Triops and extensive sampling. A
low mitochondrial diversity in T. cancriformis was noted
by Mantovani et al. [32] and Korn et al. [31] based on 16S
and 12S sequences, which are slowly evolving compared
to our fragments. Furthermore, preliminary data on diver-
sity of nuclear microsatellite loci [20,37] suggested low
genome wide polymorphism in T. c. cancriformis/simplex
[20]. This pattern supports postglacial range expansion of
T. c. cancriformis/simplex lineages into areas which were
unsuitable for this species during the last glacial maxi-
mum. When we take the phylogeographic and reproduc-
tive mode results together, the predominance of
androdioecious and potentially hermaphroditic popula-
tions in formerly glacial or permafrost regions strongly
suggests that lineages with alternative reproductive modes
were responsible for the postglacial recolonization of N
Europe, as hypothesized by Longhurst [18]. Our results
with T. cancriformis closely resemble the pattern found in
geographic parthenogenesis. The term geographical par-
thenogenesis is used for the tendency of parthenogenetic
populations to be distributed in high latitudes reflecting
an association between parthenogenesis and environ-
ments that were strongly affected by the Pleistocene gla-
cial cycles [6,38]. Several organisms have been described

Table 2: Mean corrected percent sequence divergences between Triops cancriformis clade/population comparisons and estimated 
divergence times based on corrected COI distance. Distances are given for the combined COI-ATPase fragment as well as separately 
for COI and ATPase sequences. Because no crustacean molecular clock calibration factors are available for ATPase we used the COI 
corrected distance for approximations of divergence times. For population codes see Table 1, for clade definition see Figure 2.

Corrected % sequence divergence Estimated divergence times (mya)

clade/population COI-ATP ATP COI 1.4% sequence 
divergence per mya

2.3% sequence 
divergence per mya

clade A vs. clade B 2.1590 3.4323 1.5865 1.1332 0.6809
clade A and B vs. C 13.5477 44.5345 10.985 7.8465 4.7146
ARE vs. YOI 9.7768 24.3929 7.9947 5.6762 3.4106
ARE&YOI vs. EXT 10.4396 31.5413 7.8278 5.5912 3.3595

Geographic variation of male proportions in Triops cancri-formis (for data and references see Table 3)Figure 4
Geographic variation of male proportions in Triops cancri-
formis (for data and references see Table 3). The pie charts 
show the proportion of males in black for each population 
with sample size over 25. The dotted line indicates the maxi-
mal extent of permafrost in the last glacial maximum [74].
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having parthenogenetic populations in N and C Europe
and sexual populations in restricted southern areas
[39,40]. Although T. cancriformis populations, being her-
maphroditic, do not fulfil the geographical parthenogen-
esis concept, they would enjoy the colonisation advantage
in a comparable way. Therefore we suggest broadening
the concept of geographical parthenogenesis by introduc-
ing the term 'geographical hermaphroditism'.

In contrast to the pattern found in N Europe with popula-
tions of low genetic diversity and alternative reproductive
modes, southern T. cancriformis populations, including all
the identified bisexual populations, show high and geo-
graphically structured haplotype diversity. These results
support the hypothesis that bisexual populations are char-
acterised by reduced gene flow and high interpopulation
divergence (regional differentiation as found between Ibe-
rian T. c. mauritanicus populations), possibly because the
areas inhabited by these populations have been suitable
for longer. Similar strong geographic structuring of genetic
variation with very isolated populations has been
reported from other sexual European large branchiopods
(Anostracans) [41,42]. These strong population structures

despite high potential for gene flow through their dia-
pausing propagules suggests that Triops populations and
other large branchiopods, in a similar way to continental
zooplankton undergo a process of 'Monopolisation' of
their habitats [43]. The presence of ancestral haplotypes
and strong genetic subdivision in the Iberian Peninsula,
strongly points to this area as a Pleistocene refugium for T.
cancriformis. This inference is further supported by the
presence of bisexual populations for T. c. mauritanicus and
T. c. simplex in the Iberian Peninsula. However, the genetic
divergence between clades A and B and their geographic
distribution indicates that the phylogeographic history of
European T. cancriformis is more complex as these clades
are likely to have diverged earlier than the last glacial
cycle. Clade B is especially puzzling as it is present only in
three locations including northern and southern popula-
tions. Different scenarios could explain this pattern. One
of these is the possibility that N European populations
from clade B are derived from an early postglacial expan-
sion which left relict populations in an Eastern refugium
– Balkans, Middle East – which we did not sample, a pat-
tern that has previously been reported for the European
fire salamander [44]. Another explanation could be long

Table 3: Sex ratio and inferred reproductive mode in European Triops cancriformis. The number (n) of individual males and females/
hermaphrodites and the male proportion per pond are given. The results of the Chi-Square test to infer deviations from a null 
hypothesis of equal sex ratio and the inferred type of reproductive mode are provided (see text). In the populations investigated here, 
the collection year is indicated under the Reference heading.

Location nmale nfemale/her-

maphrodite

prop. of males p value 
(Chi-Square)

Inferred reproductive 
mode

Reference

Baillargues, France 0 200 0.000 <0.0001 hermaphrodite [35]
Neuburg, Germany 0 102 0.000 <0.0001 hermaphrodite own data (2004–2006)
Jaktorów, Poland 0 40 0.000 <0.0001 hermaphrodite [75]
Zabieniec, Poland 0 40 0.000 <0.0001 hermaphrodite [75]
Godshill pond, 
United Kingdom

0 25 0.000 <0.0001 hermaphrodite this paper (2004–2006)

Königswartha 
(KOE25), Germany

2 32 0.059 <0.0001 androdioecious this paper (2006)

Bavaria, Germany 8 1000 0.008 <0.0001 androdioecious [76]
Augsburg, Germany 7 568 0.012 <0.0001 androdioecious [77]
Königswartha 
(KOE12), Germany

10 95 0.095 <0.0001 androdioecious this paper (2004 to 2006)

Cracow, Poland 16 144 0.100 <0.0001 androdioecious [78]
Königswartha 
(KOE27), Germany

14 123 0.102 <0.0001 androdioecious this paper (2006)

Wroclaw, Poland 114 912 0.111 <0.0001 androdioecious [79]
unknown location, 
Hungary

9 34 0.209 0.0001 androdioecious [80]

Wroclaw, Poland 29 88 0.248 <0.0001 androdioecious [79]
Lake Balaton, 
Hungary

15 45 0.250 0.0001 androdioecious [81]

Lake Balaton, 
Hungary

7 19 0.269 0.0186 androdioecious [81]

Cracow, Poland 154 395 0.281 <0.0001 androdioecious [78]
Algarve, Portugal 19 23 0.452 0.5371 bisexual [82]
Algarve, Portugal 54 22 0.711 0.0002 bisexual [82]
Espolla, Spain 64 57 0.529 0.5245 bisexual this paper (2006)
Espolla, Spain 1723 1775 0.493 0.3872 bisexual [33]
Page 7 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:161 http://www.biomedcentral.com/1471-2148/7/161
distance colonisation events facilitated by the passive dis-
persal of Triops diapausing cysts as reported for other
aquatic invertebrates [45,46]. Either way, this possible
range expansion/long distance colonisation event – com-
parable to clade A – was linked to androdioecious line-
ages, which is the reproductive mode, present in clade B.
In summary we suggest a split in the Late Pleistocene that
originated clades A and B in T. c. cancriformis/simplex, with
an early refugium in the Iberian Peninsula and possibly a
second one. Further sampling from eastern populations
and further Mediterranean islands where the species is
known to occur should shed light into this issue. Subse-
quently these lineages underwent possibly two episodes
of range expansions/long distance colonisation, in both
cases involving hermaphroditic and/or androdioecious
populations. Interestingly, those populations we infer to
be androdioecious, occur in the area where both clades
coexist in Germany. The occurrence of hybridisation
between these clades is suggested by our microsatellite
data [20] as two of the populations where both lineages
coexist (KOE) and have been analysed with microsatellite
loci display Hardy Weinberg equilibrium [20].

We suggest that geographic isolation within the Iberian
Peninsula, possibly dating back to the Miocene-Pliocene
boundary, led to the initial divergence between T. c. mau-
ritanicus and T. c. cancriformis/simplex lineages and also to
genetic isolation among T. c. mauritanicus populations in
the Northwest and Southeast Iberian Peninsula. Such
regional persistence suggests that long-term suitable hab-
itats were available in separate areas within the Iberian
Peninsula throughout the Pliocene and Pleistocene. Deep
phylogeographic splits within the Iberian Peninsula have
been observed in a wide range of taxa, indicating either
the existence of several independent Pleistocene refugia
within this area [47] or colonisation of the southern Ibe-
rian Peninsula from North Africa [48,49]. Our analyses,
containing Moroccan samples, indicate that the Iberian
populations of T. c. mauritanicus are basal, which supports
a scenario in which T. c. mauritanicus would have colo-
nised North Africa from the Iberian Peninsula, possibly
during the early Pliocene. A similar pattern of colonisa-
tion from the Iberian Peninsula into North Africa has
been documented for lizards and amphibians [50-52].
Therefore, we suggest that the Iberian Peninsula provided
a long-term subdivided glacial refugium for both T. c.
mauritanicus and T. c. cancriformis/simplex.

The combined alignment of COI and ATPase sequences
showed that T. c. mauritanicus and T. c. cancriformis/simplex
form two highly divergent monophyletic lineages, as also
suggested by a 16S and 12S analysis [31]. The estimated
13.55% sequence divergence between both lineages is
within the range separating other notostracan [53] and
crustacean species [54]. Our data therefore provide strong

support to the proposal of Korn et al. [31] to reinstate T.
c. mauritanicus to species status, as originally described by
Ghigi [55]. In contrast, the traditional subdivision into
the subspecies T. c. cancriformis and T. c. simplex sensu Lon-
ghurst [27] could not be supported by our data as the pop-
ulations representing T. c. simplex (ESP, PUI, UBA) shared
either a genetic haplotype with T. c. cancriformis popula-
tions or were very closely related to them. We propose that
the validity of T. cancriformis simplex should be reconsid-
ered.

Conclusion
Our analysis of T. cancriformis reproductive mode in the
context of its phylogeography allowed us to gain insights
into the role of alternative reproductive modes during
Pleistocene range shifts. We suggest that hermaphro-
ditism/androdioecy has evolved recently, possibly in the
Late Pleistocene and has facilitated the postglacial coloni-
sation of northern Europe from one or two refugia, one of
them likely placed in the Iberian Peninsula. Despite gen-
erally low genetic variability in T. cancriformis we were
able to identify mitochondrial regions which provided
sufficient resolution to reveal phylogeographic patterns
across Europe. Our data support a taxonomic revision of
T. cancriformis. The occurrence of three different reproduc-
tive modes within closely related genetic lineages of a sin-
gle species make T. cancriformis a good model to
investigate the evolution of mixed reproductive strategies.

Methods
Samples
A total of 29 water bodies in inundated floodplains, iso-
lated ponds, puddles and fish nursery pools containing T.
cancriformis populations were sampled in Europe, Japan
and Morocco between 2000 and 2006 (Table 1, Figure 1).
Overall 23 populations belong to the nominal subspecies,
T. c. cancriformis, 3 populations were identified as the sub-
species T. c. simplex and 3 populations belong to T. c. mau-
ritanicus (Table 1). Samples included specimens collected
using a dip net (5 mm pore diameter), and sediment con-
taining diapausing cysts from dry ponds where the species
was known to occur. Once specimens were needed for
genetic analyses, and to be able to obtain sex ratio data,
sediment was placed at the bottom of glass tanks and dis-
tilled water added to induce hatching of cysts. Individuals
were grown until maturity and fed daily with fish flakes ad
libitum.

Amplification and Sequencing
Total genomic DNA was isolated from ethanol-preserved
tissue using commercial DNA extraction kits (Invisorb
Spin Forensic Kit, Invitek; PureGene Kit, Gentra Systems).
For the populations DAN and DAX, where attempts to
hatch specimens from the sediment were unsuccessful,
DNA was extracted from single cysts isolated from the sed-
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iment following procedures described in Gómez & Car-
valho [56] (Table 1).

Given that our preliminary studies based on sequence var-
iation at mitochondrial 16S and COI genes provided little
resolution for intraspecific relationships within T. cancri-
formis [20] we decided to explore the published T. cancri-
formis and T. longicaudatus mitochondrial genomes in
order to identify the most variable regions for a phyloge-
ographic survey. We designed primers within highly con-
served regions identified from an alignment of four
branchiopoda sequences, Triops cancriformis (GenBank
accession number NC_004465), Triops longicaudatus
(NC_006079), Daphnia pulex, (DQ340834) and Artemia
franciscana (X69067). The set of primers are available
from the authors under request. We then carried out a pre-
liminary survey of genetic variation for nine mitochon-
drial genes (ATP6, ATP8, cytb, ND2, ND3, ND5, ND4,
ND4L and the D-loop) using eight T. cancriformis individ-
uals from different populations. As a result ATP8 and
ATP6 in combination with COI proved to be the most
diverse fragments in terms haplotype and nucleotide
diversity (data available from the authors upon request).
Consequently these loci were chosen to complement our
preliminary COI data.

A 568 bp fragment of COI was amplified and sequenced
using primers LCO1490 and HCO2198 [57]. A second
fragment of 506 bp, covering parts of the ATP8 and parts
of the ATP6 gene, was amplified using newly designed Tri-
ops specific primers. The 5' primer, ATP-Tc-3800U (5'-
TCTAATCCCCCAAATAGCCCCTAGT-3'), is located in the
tRNAAsp (corresponding to sites 3800 to 3825 in the refer-
ence sequence NC_004465), and the 3' primer, ATP-Tc-
4405L (5'-ACAGCAAGAGTTCCGGGACGAATA-3') is
located in the ATP6 mtDNA (sites 4381 to 4405 in the ref-
erence sequence NC_004465).

Amplifications were performed in 20 µl final volume con-
taining 2 µl template DNA, 1.5 mM MgCl2, 200 µM of
each nucleotide, 100 µM of each primer, 0.01 U of Taq
DNA polymerase and 1× NH4-PCR Buffer (Bioline). The
following cycling conditions were used: 3 min denaturat-
ing at 93°C, (45 s at 94°C, 45 s at 50°C, 1 min at 72°C)
× 35, 5 min extension at 72°C. PCR products were
sequenced directly using the PCR primers and the Beck-
man DTCS Quick Start Sequencing kit in a Beckman
CEQ8000 capillary sequencer. The sequences were
checked by eye with the CEQ8000 data analyser and ini-
tially aligned with Clustal W [58] and finally adjusted by
hand. Sequences for the COI, ATP6 and ATP8 fragments
were obtained for all individuals. All the sequences were
deposited in GenBank (accession numbers EF675826–
EF675991).

Phylogenetic reconstructions
A partition-homogeneity test [59] was performed using
PAUP*4.0 [60] on the COI and ATPase datasets to deter-
mine whether datasets were congruent and could be com-
bined for phylogenetic analyses.

Phylogenetic relationships were reconstructed using max-
imum-likelihood and Bayesian approaches. The best fit-
ting, least-parameter rich model of sequence evolution
was based on hierarchical likelihood-ratio test in the pro-
gram ModelGenerator0.6 [61]. This method identified the
HKY+G model of sequence evolution and four gamma
distributed rate categories as the optimal model. This
model of sequence evolution and its parameter estimates
were used to perform a maximum likelihood (ML) algo-
rithm in PHYML 2.4.4 [62]. Branch support of the ML tree
was assessed by 1000 bootstrap pseudo-replications.
MRBAYES 3.1.1 [63] was used to generate a Bayesian
reconstruction by running a Markov chain for 2,000,000
generations and using a burn-in of 2500. The 50% con-
sensus tree was obtained from the remaining trees from
both runs sampled after the initial burn-in period.

Nodes in the ML-tree were considered to be well sup-
ported if they showed at least 70% bootstrap support [64].
Similarly, strong branch support was inferred in the Baye-
sian analyses when posterior probabilities were over 80%
[65]. Trees were displayed with NJPlot [66]. To examine
the geographic and reproductive mode associations of
haplotypes a haplotype network was constructed using
TCS1.21 [67].

Molecular clock estimates
Unfortunately, the abundant fossil record of Triopsidae is
not informative for molecular calibration purposes
mainly due to the morphological stasis of the group since
the Carboniferous period (about 302 Ma) [28,68-70].
Therefore, currently, fossil data provide no information
on splits within Triops. In consequence, no direct calibra-
tion points were available within the Triops phylogeny
precluding the application of methods to estimate diver-
gence times such as suggested by Sanderson [71]. In order
to provide a rough approximation of divergence times
among T. cancriformis lineages we used two crustacean
clock calibrations of Knowlton and Weigt [72] (1.4%
sequence divergence per million years) and Schubart et al.
[73] (1.66–2.33% sequence divergence per million years).
Both calibrations are based on COI data and consequently
we used only the COI fragment from our data set to esti-
mate divergence times. Corrected average pairwise genetic
sequence (using the best fit model for the COI dataset,
TVM+G) between haplotypes were used in all divergence
time estimates.
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Sex ratio and reproductive mode
Sex ratio was determined for all T. cancriformis popula-
tions sampled in this study either from wild-caught speci-
mens or from individuals hatched in the laboratory from
sediment samples. Sexing was carried out on fixed speci-
mens under a dissecting microscope. We considered an
individual was a male when no egg sac was found in the
11th pair of thoracopods. No external diagnostic character
allows discriminating between females and hermaphro-
dites; therefore, we calculated the sex ratio as the number
of males divided by the number of female/hermaphro-
dites. Furthermore we included published data for 21
European populations in order to understand the geo-
graphic distribution of sex ratios. We only included litera-
ture data that provided either sample sizes and the sex
ratio, or the raw numbers of males and females/hermaph-
rodites per sample. Sex ratio was used to distinguish
between three potential reproductive modes for each pop-
ulation: bisexual reproduction was inferred when the sex
ratio did not significantly differ from 1 based on a binom-
inal Chi-square test; androdioecy was inferred when
males where present but the sex ratio deviated signifi-
cantly from 1; populations in which no males where
found were treated as potentially hermaphroditic popula-
tions. Note, however, that such populations could also
represent androdioecy with low frequency of males.
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