
BioMed CentralBMC Evolutionary Biology

ss
Open AcceMethodology article
New analysis for consistency among markers in the study of genetic 
diversity: development and application to the description of 
bacterial diversity
Sandrine Pavoine*1 and Xavier Bailly2

Address: 1Unité de Conservation des espèces, restauration et suivi des populations (UMR MNHN-UPMC-CNRS 5173), Muséum National 
d'Histoire Naturelle, 55 rue Buffon, 75005 Paris, France and 2Department of Biology, University of York, Post Office Box 373, York, YO10 5YW, UK

Email: Sandrine Pavoine* - pavoine@mnhn.fr; Xavier Bailly - xb502@york.ac.uk

* Corresponding author    

Abstract
Background: The development of post-genomic methods has dramatically increased the amount
of qualitative and quantitative data available to understand how ecological complexity is shaped.
Yet, new statistical tools are needed to use these data efficiently. In support of sequence analysis,
diversity indices were developed to take into account both the relative frequencies of alleles and
their genetic divergence. Furthermore, a method for describing inter-population nucleotide
diversity has recently been proposed and named the double principal coordinate analysis (DPCoA),
but this procedure can only be used with one locus. In order to tackle the problem of measuring
and describing nucleotide diversity with more than one locus, we developed three versions of
multiple DPCoA by using three ordination methods: multiple co-inertia analysis, STATIS, and
multiple factorial analysis.

Results: This combination of methods allows i) testing and describing differences in patterns of
inter-population diversity among loci, and ii) defining the best compromise among loci. These
methods are illustrated by the analysis of both simulated data sets, which include ten loci evolving
under a stepping stone model and a locus evolving under an alternative population structure, and
a real data set focusing on the genetic structure of two nitrogen fixing bacteria, which is influenced
by geographical isolation and host specialization. All programs needed to perform multiple DPCoA
are freely available.

Conclusion: Multiple DPCoA allows the evaluation of the impact of various loci in the
measurement and description of diversity. This method is general enough to handle a large variety
of data sets. It complements existing methods such as the analysis of molecular variance or other
analyses based on linkage disequilibrium measures, and is very useful to study the impact of various
loci on the measurement of diversity.

Background
The exponential increase in sequencing abilities is modi-
fying the way genetic diversity is assessed. For instance,

multilocus sequencing (MLS) now allows the estimation
of genetic relatedness among microorganisms for both
housekeeping genes and accessory genes such as virulence
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or symbiotic determinants [1]. Thus, several publications
reported complex MLS schemes studying more than ten
genes located in different genomic regions and involved
in various metabolic pathways. These studies have indi-
cated the influence of various parameters, such as recom-
bination rate [2] or epidemiological traits [3], on the
diversification of bacterial populations. Furthermore,
recent progress in sequencing technologies suggests that
still more and more sequence data will be available to
study questions related to community ecology in the near
future [4]. New statistical methodologies should therefore
be developed to deal with the complexity of data sets that
will be produced. One of the main problems raised by the
increase in sequence information is the assessment of con-
gruence among population structures depicted by differ-
ent molecular markers [5]. In bacterial lineages, especially
for those in which sex is common, the diversity of each
locus could be shaped by the gain/loss of genes, gene flow
boundaries and specific selective pressures [6]. The prob-
lems which can arise from the overall analysis of a MLS
data set in which loci do not share congruent evolutionary
constraints include, among others, misleading inferences
of genetic relatedness and phylogenetic relationships [7]
or overestimation of linkage disequilibrium [8].

Bacterial isolates which are characterized by MLS usually
belong to several genetic groups (i.e. species or popula-
tions) which can be defined according to the sampling
strategy or according to more refined methodologies [9].
For each locus of a MLS data set, the different sequence
types recovered are called alleles. In this context, the prop-
erties of the data set can be summarized by two sets of
matrices. The first set includes G matrices {F1,..., Fg,..., FG},
in which G is the number of loci. Each of these matrices
contains the frequencies of the different alleles recovered
at a given locus among the populations under study. The
dimensions of these matrices are thus (ρ1, r), ..., (ρg, r), ...,
(ρG, r), in which ρg is the number of alleles observed at
locus g and r is the number of populations delineated. The
second set also includes G matrices called {D1,..., Dg...,
DG}, which contain the pairwise genetic distances
between the alleles observed at locus g. Usually, the infor-
mation contained within these two sets of matrices are
analyzed independently using respective population
genetic statistics (i.e. diversity indices and differentiation
measures) and phylogenetic methods. Yet, while it is pos-
sible to perform analyses over all loci in either a popula-
tion genetic or a phylogenetic framework, few
methodologies are available to assess the congruence of
the information obtained from different loci. In particu-
lar, a comparison of the patterns revealed by differentia-
tion measures among the populations sampled, i.e.
population structure, is a problematic issue.

Multivariate analysis is an interesting methodological way
to approach this problem. For instance, Moazami-Gou-
darzi and Laloë [5] have proposed a two-step procedure to
test the dissimilarity in population structures revealed by
different microsatellite loci. Although this analysis can be
used to test the similarity of population differentiations
inferred from a set of markers, it can be noted that: i) it can
not be used to describe population structures, and ii)
genetic divergence among alleles are not taken into
account, while these can be quite informative. Conse-
quently, further improvements should be considered
since alternative statistical approaches are available [10].
In this context, the aim of this survey is to propose a new
procedure called multiple double principal coordinate
analyses (mDPCoA). The mDPCoA aims at comparing
inter-population structures provided by the different
markers of a MLS scheme. Firstly, a pattern of population
differences is obtained for each MLS marker using a dou-
ble principal coordinate analysis (DPCoA) which is a
recently developed ordination method which takes into
account both the frequency of alleles and their genetic
divergence [11] (see Eckburg et al. [12] and Bik et al. [13]
for applications of this method to the analysis of bacterial
diversity). Secondly, population patterns are compared
using three different methods: the Multiple Co-inertia
Analysis [14], STATIS [15], and the Multiple Factorial
Analysis [16]. Finally, a permutation procedure can be
used to test the pairwise correlation among MLS markers.
These analysis pipelines have been used on either simu-
lated or published MLS data sets to check the accuracy and
the relevance of the procedures. The results obtained illus-
trate the ability of this methodology to make inferences
on various features of populations under study.

Results
Algorithms of multiple Double Principal Coordinate 
Analysis
Computations were performed using new functions and
functions implemented in the ade4 [17] and ape [18]
packages written in the R software [19] [see Additional file
1]. A manual describing the use of the different functions
is supplied [see Additional file 2].

Let {F1,..., Fg,..., FG be the set of matrices of type alleles ×

populations, containing the frequencies of alleles in the
populations for the G loci, {D1,..., Dg,..., DG} be the set of

matrices containing the distances among alleles, Br be the

diagonal matrix containing the population weights (the
weight of a population is the proportion of individuals

drawn from this population), and  be the diagonal

matrix containing the allele weights for the gth locus (the
weight of an allele is its frequency over all the populations
studied). The matrices of distances must be Euclidean

Bρg
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[20], which is obtained with, for example, either Lingoes
[21] or Cailliez [22] correction.

For a single locus g, the analysis of the among-population
diversity corresponds to a DPCoA, which results in three
main steps:

1. Defining a Euclidean space composed by principal axes
of the distances among the alleles. The coordinates of the
alleles in this space are in Rg such that:

, where  is a pro-

jector which proceeds to weighted centering, with  the

ρg × ρg matrix of identity and  a ρg × 1 vector of units.

That is to say,  is the matrix centered by rows and

columns;

2. Positioning, in this space, the populations at the cen-
troid of the alleles they possess. The coordinates of the
populations, in this space, are in Cg such that:

;

3. Proceeding to the singular value decomposition of the

triplet (Cg, , Br), where µg is the number of principal

axes for the alleles of the gth locus. This third step leads to

a set of positive eigenvalues, in a diagonal (νg × νg) matrix

Ψg, and to a base of orthonormal eigenvectors, in a (r × νg)

matrix Vg, defining the new Euclidean space. The eigen-

vectors constitute the principal axes of the distances
among populations. In this new space, which is the
DPCoA space, the coordinates of the alleles are in Xg =

RgVg, and the coordinates of the populations in Yg = CgVg.

A consideration of the set of all the loci leads thus to G tri-

plets 

Our objective being to evaluate the consistency among the
patterns of inter-population diversity provided by each
locus, considering evolutionary distances among alleles,
we had to find a Euclidean space allowing the direct com-
parison among the individual DPCoA analyses. We evalu-
ated three alternative solutions taken from the K-table
multivariate analysis: the multiple co-inertia analysis
(MCoA) [14], STATIS [15] and the multiple factorial anal-
ysis (MFA) [16].

DPCoA and Multiple Co-inertia analysis

The Multiple Co-inertia Analysis applied to the triplets

.

can be viewed as follows:

The main step is the definition of a set of axes , for 1

≤ k <K, and 1 ≤ g ≤ G, normalized in each space ,
which will serve to position the populations according to

each individual locus, and K unique variables v[k], for 1 ≤
k <K, Dr-normalized in �r, which may be used to synthe-

size the information provided by the G loci. This defini-
tion is done by maximizing

, given that

 and  for all k, l (1 ≤

k <l), and all g (1 ≤ g ≤ G).

The value πg is a weight attributed to the triplet (Yg, ,

Br) so as to homogenize the impact of each triplet in the

multiple analysis. We use πg equal to the inverse of the

inertia of the triplet (Yg, , Br), sum of all its eigenval-

ues. Let Ug be the matrix  and V

the matrix [v[1]|...|v[k]|...|v[k]]. The individual analyses can
be projected on the MCoA space. In this space, it is possi-
ble to compare the coordinates of the populations accord-
ing to the consensus of the information provided by the
different loci to the coordinates of the populations
obtained from each locus. While V contains the consen-
sual coordinates of the populations, the coordinates at
which the gth locus positions the populations are obtained

from . Because , the matrix

 positions the alleles of the gth locus, so

that each population is at the centroid of its allelic com-
position. However, to compare the individual analyses

with the compromise, it is better to Dr-normalize  and

 because V is by definition Dr-normalized.
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DPCoA and STATIS

The STATIS analysis applied to

 implies the

calculation of a degree of correlation among the triplets,

the so-called Rν coefficient. The matrix

is at the core of our application of STATIS because it is
symmetrical and its dimensions are similar for all the tri-
plets, whereas the dimensions of Yg change. The definition
of Rν is

where

The pairwise calculation of Rν leads to a square matrix
describing the correlations among the loci. With its eigen-
value decomposition, it is possible to describe the correla-
tion pattern, called the interstructure. Its first eigenvector

α = (α1,..., αg,..., αG) is positive and maximizes the quan-

tity  where . STA-

TIS uses these properties to define a matrix

whose eigenanalysis, E = UΛUt, leads to the best compro-
mise of the population pattern over the G loci. Note that

. According to this compro-

mise, the coordinates of the populations are in

. Owing to Lavit et al. [15], the G individual

population patterns corresponding to the locus consid-
ered independently can be obtained. The coordinates of
the ith populations according to the gth locus are the ele-

ments of the ith row of . Given that

, the rows of the matrix 

position the alleles of the gth locus, so that each popula-
tion is at the centroid of its allelic composition.

DPCoA and Multiple Factorial Analysis
The MFA is the Principal Component Analysis (PCA) of
the global matrix

YTOT = [π1Y1|...|πgYg|...|πGYG]:

The global coordinates of the populations synthesizing
the information given by all the loci are in YTOTU. The
coordinates at which the gth locus positions the popula-
tions are in

Because , the matrix

 positions the alleles of the gth

locus, so that each population is at the centroid of its
allelic composition.

Relationships between the multiple DPCoA and the 
measurement of diversity
Consider for the two next paragraphs, only one locus – the
locus g. The DPCoA is centered around a diversity index
called "nucleotide diversity" by Nei and Li [23], or "quad-
ratic entropy" by Rao [24], and which is at the core of the
Analysis of Molecular Variance (AMOVA) [25-27]:

In this formula, g designates the gth locus, ρg is the number

of different alleles observed for that locus,

 is the vector containing the rela-

tive frequencies of the alleles in the ith population, so that
pki is the frequency of the allele k in the ith population, and

 is the distance among the alleles k and l of the gth

locus. The DPCoA uses a decomposition of this diversity
component defined by Rao [27]:

HTOTAL, g({µi},{pi}) = HINTRA, g({µi},{pi}) + HINTRA, 

g({µi},{pi}),

where
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and

where

.

In the first step of the DPCoA, all the points (i.e. alleles
and populations) are in a space called "common space"
[11]. In this common space, the inertia (i.e. variance) of
the allele points weighted by pi is equal to Hg(pi), the

diversity of the population i, according to locus g. The

inertia of all the allele points weighted by  is

equal to HTOTAL, g, the total diversity of the data set.

Finally, the inertia of all the population points weighted

by µ = (µ1,..., µi,..., µr) is equal to HINTER, g, the component

of diversity among populations [11]. At the end of the
DPCoA analysis, all the points are projected in a subspace
which optimizes the representation of the differences
among populations. In this subspace, only HINTER, g is

maintained, which is thus the focus of the analysis: opti-
mally displaying the diversity among populations.

Consequently, the multiple DPCoA allows us to optimize
the description of diversity among populations obtained
with several loci. The first goal of this method is to
describe the differences in population patterns across the
loci, hence studying the congruence among loci. Another
objective may be to erase these differences and provide a
compromise population pattern revealed by the majority
of the loci. The DPCoA-STATIS is advocated for this pur-
pose. Concerning the measurement of diversity, when sev-
eral loci are considered to measure diversity, the sum or
average of the diversity components over the loci is cur-
rently used as a global measure of diversity [see for exam-
ple [28,29]]. With such processes, the weights given to the
loci for the sum or averaging are uniform. We have just
shown that STATIS provides optimal locus weights for the
calculation of the component of diversity among popula-
tions. The great advantage of these multivariate analyses is
that visualization of the differences among loci is possible

so that one can assess the relevance of using average infor-
mation over loci, whether these means are weighted or
not.

Associated tests
We performed both Mantel and Rν tests to evaluate the
significance of the differences in population patterns
among loci. For each locus, distances among populations
are calculated with the inter-population diversity HINTER,

g({µi}:{pi}) according to Nei and Li [23] and Rao [24,27].
We just said that this statistic is at the core of the DPCoA.
As we apply formula (HINTER, g) in a pairwise fashion, the
distance between population i and population j for locus
g is µiµjdpop, g(pi, pj). We choose µiµjdpop, g(pi, pj) and not
simply dpop, g(pi, pj) to take into account differential sam-
ple sizes, exactly in the way that we considered them in
ordination procedures. The Mantel test calculates correla-
tions among the raw distance measures, while the Rν test
compares principal coordinates obtained by PCoA. Rν
correlations are always higher than Mantel correlations
because their values lie between 0 and 1, while Mantel
correlation values lie between -1 and 1.

Application to simulated and real data sets
We used the following procedure to test the methodolo-
gies presented above based on simulated and real data
sets. First, pairwise correlations among loci by Mantel
and/or Rν tests were assessed to define groups of consist-
ent loci. At this step, atypical loci can be identified. Then
mDPCoA was performed to describe both the compro-
mise population structure and the differences among
groups of loci. Finally, we describe the connections
between the observed structures and ecological, evolu-
tionary or functional data.

Application to a simulated data set
Simulation process
In order to assess the efficiency of the present method,
simulated sequence data sets, which illustrate various
population structures, were obtained assuming linkage
equilibrium among loci. Assuming recombination, the
different markers can indeed have different histories and
thus different population structures. Moreover, if every
marker has an independent history, finding similarities
and differences among their genetic structures would be
more difficult. Using SIMCOAL 2.0 [30] we considered a
one-dimensional stepping stone model with eight popu-
lations of constant size [31]. The eight populations
evolved 106 generations after emerging from a single
ancestral population. For each population, 60 individuals
were sampled out of 10000 individuals. In this context,
we simulated DNA sequence evolution of ten loci of 300
base pairs under a Jukes and Cantor model [32] assuming
a mutation rate of 5 × 10-6. The stepping stone model
allows migration between adjacent populations: for
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example, at time t, the population 4 can exchange individ-
uals with populations 3 or 5, but not with other popula-
tions. We chose the following migration rates: 5 × 10-2, 10-

2, 5 × 10-3, 10-3, 5 × 10-4, 10-4, 5 × 10-5, 10-5, 5 × 10-6. We
also simulated an eleventh locus that reveals a different
population structure. For this locus, we assumed no
migration between odd populations (i.e. populations 1, 3,
5, 7) and even populations (i.e. populations 2, 4, 6, 8) and
a migration rate of 10-3 among odd or even populations,
with other parameters kept unchanged. Such a simulation
resulted in two clades of alleles which are obviously diver-
gent, the first clade being specific to some populations
(e.g. odd ones), the second clade being specific to other
populations (e.g. even ones). Such genetic structure can
be observed in case of either balancing/disruptive selec-
tion [e.g. [33]] or horizontal transfer of an outlier allele
[e.g. [7]].

We applied the mDPCoA approach first on the complete
data set, second on the allele distances only and then tak-
ing into account just the allele frequencies. We evaluated
the intensity of inter-population structure by measuring
the AMOVA ϕST parameter [25].

Results
The correlations among locus 11 and the ten other loci are
very low and not significant as expected (Figure 1). Thus,
we correctly identified the atypical locus. These correla-
tions decrease when migration rate decreases. Test statis-
tics based on both the Mantel correlation and the Rν
correlation between the atypical locus and other loci
clearly behave in a similar way, and results are hardly
changed when removing allele frequencies or distances.

Regarding the correlation tests among the 10 loci submit-
ted to the stepping stone model, the inter-population
structure measured by the AMOVA ϕST parameter
increases slightly when the migration rate decreases from
5 × 10-2 to 5 × 10-4 and then increases very quickly (Figure
2). Values of the Mantel correlation, the percent of signif-
icant tests according to the Mantel correlation and the per-
cent of significant tests according to the Rν correlation are
three parameters correlated with ϕST, especially when
using both allele frequency and allele divergences. The
raw value of the Rν correlation is steadier. These results
show that a non-significant correlation may be due to
either an absence of genetic structure (e.g. no differentia-
tion among populations) or reliable differences in the
inter-population structures revealed by the different loci.
The graphical analysis completed by ϕST values will help
to reach a conclusion between the two alternatives.

Regarding the mDPCoA, we present below the results of
the DPCoA-MCoA approach, which we expected to pro-
vide a description of the difference among the ten first loci

and the eleventh, atypical locus (Figure 3; to limit the size
of the Figure 3, only the results for migration rates 10-2,
10-3, 10-4 and 10-5 are shown since intermediate migration
rates revealed intermediate inter-population structure).
Indeed, for migration rates higher than 10-2, where no
inter-population structure was highlighted in the previous
paragraph, the atypical locus takes the first axis of the
compromise analysis, which therefore distinguishes odd
from even populations. With a migration rate of 10-3, the
stepping stone model interacts with the structure pro-
vided by locus 11; the 10 first loci with a stepping stone
model take the first axis and locus 11 roughly takes the
second axis. With a migration rate lower than 10-3, the
first two axes of the DPCoA-MCoA only represent the
stepping stone model. Whatever the migration rate, the
projection of the individual loci on the DPCoA-MCoA fac-
torial axes emphasizes locus 11's special status (Figure 3).
This last result is also emphasized by specific results of the
DPCoA-STATIS approach as interstructures. With a migra-

Mantel and Rv correlations between atypical and other loci in the simulated data setFigure 1
Mantel and Rv correlations between atypical and 
other loci in the simulated data set. The parameter m is 
the migration rate of the simulated linear stepping stone. 
Each statistic is calculated and averaged between the atypical 
locus and the first 10 loci submitted to a stepping stone 
model, A) with both allele frequency and distance informa-
tion, B) with allele distances without allele frequencies, C) 
with allele frequencies without allele distances. Plain lines 
with triangle-shaped symbols mark the average Rν correla-
tion values, while the broken lines with open circles indicate 
the average Mantel correlation values.
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tion rate equal to 5 × 10-4 or lower, the structure is very
clear with either complete or incomplete data on allele
composition.

Application to the description of Sinorhizobium species 
diversity
The data set
In order to test the efficiency of the procedures we pro-
posed, we needed a real data set which should give simple
and explicit results but which could also encompass the
features of complex MLS data sets. We chose to focus on
nitrogen fixing bacteria belonging to the genus Sinorhizo-
bium (Rhizobiaceae) associated with the plant genus Med-
icago (Fabaceae). The data set we chose is a combination
of two data sets fully available online from GenBank and
published in two recent papers [8,34]. The complete sam-
pling procedure is described in the two papers and sum-
marized in an additional file [see Additional file 3]. Based
on the sampling scheme, we delineated six populations
according to geographical origin (France: F, Tunisia Had-
jeb: TH, Tunisia Enfidha: TE), the host plant (M. truncatula
or similar symbiotic specificity: T, M. laciniata: L), and the
taxonomical status of bacteria (S. meliloti: mlt, S. medicae:
mdc). Each population will be called hereafter according
to the three above criteria, e.g. THLmlt is the population
sampled in Tunisia at Hadjeb from M. laciniata nodules
which include S. meliloti isolates. S. medicae interacts with
M. truncatula while S. meliloti interacts with both M. lacin-
iata (S. meliloti bv. medicaginis) and M. truncatula (S.
meliloti bv. meliloti) [35,36]. The numbers of individuals
are respectively 46 for FTmdc, 43 for FTmlt, 20 for TET-
mdc, 24 for TETmlt, 20 for TELmlt, 42 for THTmlt and 20
for THLmlt [see Additional files 4, 5, 6, 7].

Four different intergenic spacers (IGS), IGSNOD,
IGSEXO, IGSGAB, and IGSRKP, distributed on the differ-
ent replication units of the model strain 1021 of S.
meliloti bv. meliloti (Figure 4) had been sequenced to
characterize each bacterial isolate (DNA extraction and
sequencing procedures are described in an additional file
[see Additional file 3]). It is noteworthy that the IGSNOD
marker is located within the nod gene cluster and that spe-
cific alleles at these loci determine the ability of S. meliloti
strains to interact with either M. laciniata or M. truncatula
[37].

For each locus, we selected a model of evolution using the
software PHYML [38] and its R interface provided by ape
[18,19]. This software compares the models by likelihood
ratio tests. When several models were not significantly dif-

ferent according to a χ2 test we selected the model with the
smallest number of parameters. From this procedure, we
selected Felsenstein's model F84 [39,40] for IGSNOD,

IGSEXO, IGSGAB, and Felsenstein's model F81 [40,41] for

IGSRKP. Then, using the ape package, a set of matrices

 containing pair-

wise genetic distances between alleles observed at each

D D D DIGS IGS IGS IGSNOD EXO GAB RKP
, , ,{ }

Mantel and Rv correlations among the ten first loci in the simulated data setFigure 2
Mantel and Rv correlations among the ten first loci in 
the simulated data set. The parameter m is the migration 
rate of the simulated linear stepping stone. Each statistic is 
calculated on 10 loci submitted to this stepping stone model, 
A) with allele frequency and distance information, B) with 
allele distances without allele frequencies, C) with allele fre-
quencies without allele distances. Symbol legends are given at 
the bottom of the graphs.
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Application of the DPCoA-MCoA to the simulateddata setFigure 3
Application of the DPCoA-MCoA to the simulateddata set. The parameter m is the migration rate of the simulated lin-
ear stepping stone. The DPCoA-MCoA was applied on the simulated data set, A) with allele frequency and distance informa-
tion, B) with allele distances without allele frequencies, C) with allele frequencies without allele distances. Each figure A) B) and 
C) comprises two series of four subfigures. In the first row, for each locus the compromise pattern of differences among pop-
ulations (Numbers in boxes) is given with lines relating the compromise to the ten first loci submitted to the stepping stone 
model. In the second row, for each locus the compromise pattern of population differences is also given at the beginning of the 
arrows, and this time, the arrows point at the position of each population according to the atypical locus. The longer the 
arrow, the more different the pattern inferred by the atypical locus from the compromise pattern. Eigenvalue barplots are pro-
vided for analyses A), B), and C).
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locus was computed according to these selected models,
and Neighbor-Joining trees with bootstrap values were
obtained from these distance matrices to illustrate the
data sets (Figure 5).

We applied the multiple DPCoA to this data set, and com-
pared the results to those obtained with STRUCTURE
[42,43]. STRUCTURE estimates population structure
using genotype data. The basic hypotheses are linkage
equilibrium within subpopulations (or possibly weak
linkage [44]) and Hardy-Weinberg equilibrium (if the
organism under study is not haploid).

Results
Mantel and Rν tests demonstrated that the locus IGSNOD
provides a very specific ordination of populations, while
the three other markers IGSRKP, IGSEXO and IGSGAB, were
significantly congruent (Table 1).

With DPCoA-MCoA (Figure 6), the first axis, which
expresses 94% of the diversity among populations, sepa-
rates the two bacterial species, S. meliloti and S. medicae,
while the second axis, with 6% of the diversity among
populations, distinguishes the impact of the host plants,
M. laciniata and M. truncatula. The DPCoA-STATIS analy-

sis reveals a very similar pattern (Figure 7). Consistently,
the STRUCTURE analysis indeed defined two main clus-
ters including respectively S. meliloti and S. medicae, with-
out any trace of admixture between the two species.
However, these results are a compromise with the infor-
mation provided by IGSRKP, IGSGAB, IGSEXO and IGSNOD.
Although the four markers effectively delineate the two
bacterial species, they express this segregation differently.
The DPCoA-MCoA indeed revealed that the segregation
between S. meliloti and S. medicae is supported by more
than 90% population variation for the three most coher-
ent markers, i.e. IGSRKP, IGSGAB and IGSEXO, while it only
concerns a minor part of the population variation
observed for IGSNOD. The discrimination between the
impact of the two host plants, i.e. M. truncatula and M. lac-
iniata, which appears in axis 2, is the main structure for the
IGSNOD marker. The interstructure obtained by using STA-
TIS (Figure 7A), i.e. the eigenanalysis of the Rν matrix,
illustrated the special status of IGSNOD.

It is noteworthy that based on DPCoA-MCoA, the second-
ary structure is due to a host-plant effect (e.g. IGSGAB) and/
or a geographical origin effect (e.g. IGSEXO) discriminating
between French and Tunisian populations of S. meliloti.
Interestingly, the effect of geographical distance on the
population structure of S. meliloti is not detected by com-
promise analyses. Because both STATIS and MFA aim at
pointing out similarities among loci, these approaches
failed at highlighting the secondary structure observed
using DPCoA-MCoA (Figure 7B and Figure 8).

There is a clear relationship between the patterns of pop-
ulation differences and the distribution of allelic diversity
(Figure 6B). For instance, the two bacterial species did not
share any alleles in common, even for the IGSNOD locus.
Furthermore, the populations associated with M. laciniata
did not share any alleles with the populations associated
with M. truncatula for the IGSNOD locus, resulting in three
independent allelic pools belonging respectively to S.
medicae and the two biovars of S. meliloti. Furthermore,
the distance between the IGSNOD alleles associated with
M. laciniata and those associated with M. truncatula is very
high, almost as high as the distance which separates S.
meliloti and S. medicae on IGSEXO. The particular polymor-
phism pattern observed for IGSNOD might be explained by
both the host-plant selective pressure that acts on nod
genes and the events of horizontal transfer that affect the
nod gene cluster [34].

Relative effects of distances and frequencies
In order to estimate the relative impacts of allele frequen-
cies and distances in the above results, we applied the
DPCoA-MCoA taking into account either sequence diver-
gences without allele frequencies or allele frequencies
without sequence divergences (Figure 9). When only

Table 1: Pairwise correlations among loci with the complete real 
data set

Mantel IGSNOD IGSEXO IGSGAB Rv 
tests

IGSNOD IGSEXO IGSGAB

IGSEXO -0.164 IGSEXO 0.232
IGSGAB -0.173 1.000* IGSGAB 0.230 1.000*
IGSRKP -0.164 1.000* 0.999* IGSRKP 0.227 1.000* 0.999*

*Significant correlations with P-values < 0.05.

Location of genetic markers on the genome of Sinorhizobium meliloti strain 1021Figure 4
Location of genetic markers on the genome of Sinor-
hizobium meliloti strain 1021. Gene clusters located 
nearby each genetic marker are indicated by black boxes. It is 
noteworthy that the IGSNOD marker is located near genes 
involved in symbiotic specificity (nod genes), symbiotic effi-
ciency (nif/fix genes), secretion (virB gene) and conjugation 
(tra genes). IGSRKP and IGSEXO are located near genes involved 
in the synthesis of surface polysaccharides, which are also 
involved in the symbiotic interaction. IGSGAB is physically close 
to genes involved in secondary metabolic pathways.
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sequence divergences are kept, like in the complete analy-
sis, IGSEXO, IGSGAB, and IGSRKP are significantly correlated
sharing a strong separation between the species S. medicae
and S. meliloti (correlations vary from 0.81 and 0.93
according to Mantel and are superior to 0.999 according
to Rν; significance of correlation tests was assessed accord-
ing to a 0.05 threshold). Regarding the DPCoA-MCoA fac-
torial maps, the population structure is maintained on
axis 1, which in that case exhibits 96% of the inter-popu-
lation diversity. IGSNOD stands out by presenting very dis-
tinct alleles according to the host plant. On the second
axis, with 4% of the inter-population diversity, the differ-

ences between populations according to host plants are
maintained for IGSGAB as a secondary structure. Yet, the
secondary structures of both IGSRKP and IGSEXO become
hardly interpretable. When only the allele frequencies are
kept, due to the high differentiation between the two spe-
cies S. medicae and S. meliloti for all the loci when allele
distances are removed, all the pairwise correlations
between loci are significant according to the Mantel statis-
tic (correlations greater than 0.83), and all except IGSEXO-
IGSNOD (0.61) and IGSRKP-IGSNOD (0.63) correlations
according to the Rν statistic. Regarding the DPCoA-MCoA
factorial maps, the first axis of all the loci represents the

Neighbor-Joining trees for the representation of the distances among allelesFigure 5
Neighbor-Joining trees for the representation of the distances among alleles. The alleles belonging to S. medicae iso-
lates are surrounded by a plain-line circle. Only IGSNOD presents alleles found only in S. meliloti bv. meliloti populations and alle-
les found only in S. meliloti bv. medicaginis. Consequently, for IGSNOD, alleles are also divided according the two biovars of S. 
meliloti, by broken-line circles. Bootstrap values higher than 50% are given in boxes. Nodes with bootstrap values higher than 
50% are indicated by plain circles and in case of possible ambiguity, a broken line links the node to the bootstrap value. The 
interrupted lines have a length of 0.0986 for IGSNOD, 0.1075 for IGSEXO, 0.0456 for IGSGAB and 0.0421 for IGSRKP.
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inter-species separation. The difference among popula-
tions according to their host plant measured on IGSNOD is
relegated to axis 2 representing 12% of the inter-popula-
tion analysis. Along this axis, all the three other loci
IGSEXO, IGSGAB, and IGSRKP distinguish the French popula-
tion from the Tunisian populations.

The conclusions which can be drawn from these analyses
of the effects of distances and frequencies on the inter-
population diversity are as follows. In all of the analyses,
the most peculiar locus remains IGSNOD. The high separa-
tion of populations according to their host plant is due to
distinct and distant alleles for IGSNOD and allele distances
for IGSGAB. The differences among IGSGAB, IGSRKP, and
IGSEXO are due to differentiation patterns among S.
meliloti populations. Finally, the distinction between the
French and the Tunisian populations mostly relies on
allele frequency data.

Discussion
The MDPCoA approach provides a useful tool for: (i)
identifying atypical loci by both tests and factorial maps;
(ii) describing differences in population structures
between groups of congruent loci by factorial maps; (iii)
including evolutionary distances among alleles, which is
seldom done.

Missing data
In all the analyses we performed, the weight of a popula-
tion is the number of individuals sampled from this pop-
ulation divided by the total number of individuals
sampled. Given that we consider several loci, this defini-
tion of the weights supposes that we have identified the
allelic composition of each individual for all loci. In case

Application of the DPCoA-STATIS to the real data setFigure 7
Application of the DPCoA-STATIS to the real data 
set. A) The interstructure which displays the eigenanalysis of 
the Rν matrix, and B) the best compromise. Eigenvalue bar-
plots are provided in boxes. In the interstructure (A), the 
smaller the angle between two loci, the more similar the 
inter-population patterns provided by the two loci.
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Application of the DPCoA-MCoA to the real data setFigure 6
Application of the DPCoA-MCoA to the real data set. A) Comparison between the patterns of the differences among 
populations given by the compromise over all loci (black dots, start of the arrows) and the individual analyses (end of the 
arrows). The special status of IGSNOD is highlighted by horizontal arrows (wrong assignment on the first axis), whereas IGSGAB, 
IGSRKP and IGSEXO presents vertical arrows (discrepancies from the compromise structure on axis 2 only); B) Location of the 
alleles. A low (or high) variance in allele points on an axis indicates that the diversity among alleles within populations is lower 
(or higher) than the diversity among populations, because each axis is normalized for diversity among populations. An eigen-
value barplot is provided in the left-hand corner.
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of missing allelic data, i.e. if the allelic content of some
individuals is missing for one or several loci, one should
define different weight systems depending on the loci.
According to the gth locus, the weight of population i is the
number of characterized individuals from population i
divided by the total number of characterized individuals.
This would lead to G different systems of weights, i.e. one
per locus. Unfortunately, neither STATIS nor the MCoA
nor the MFA can support different population weights.
Consequently, one will have to assume a similar set of
population weights over loci although some data are
missing. To overcome this problem, it may be assumed
that the weight of a population is the number of individ-
uals sampled from this population divided by the total
number of individuals sampled, whether or not the allelic
information for all the loci and for all the individuals is
available.

Another case of usual missing data is the lack of nucle-
otide divergence among alleles. In that case, we suggest
fixing the distance among any two different alleles equal
to 1, so that the DPCoA is equal to the non-symmetric cor-
respondence analysis [11,45]. Furthermore, the inertia of
the allelic points per population in the DPCoA "common
space" is then equal to the gene diversity index H, intro-
duced by Nei [28], and the inertia of the population
points is equal to the gene diversity among populations
defined by Nei [28] in its decomposition of gene diversity.

The inertia among population points in the best compro-
mise plot and DPCoA-STATIS is a measure of gene diver-
sity among populations averaged over the G loci, where
the weights given to the loci are not simply uniform but
set optimal for synthesizing what is common to the loci.
This process gives less weight to outliers and reflects the
distances among populations as they are seen by the
majority of the loci.

Effects of frequencies and distances
The effect of frequencies and distances comprises two
components: the effect due to sampling error and the
effect due to population structure. The effects of sampling
error on the component of nucleotide diversity within
and between populations have been studied elsewhere
[23,46], and might be the object of further research in the
context of the mDPCoA.

The relative effects of frequencies and distances on the
analysis of population structure depend on the degree of
differentiation among the populations under study. In
case of low differentiation, population structure is usually
due to variations in allelic frequencies. For instance, dif-
ferences among French and Tunisian populations of S.
meliloti that are highlighted by IGSEXO, IGSGAB and IGSRKP
are due to allelic frequencies. Conversely, as the number
of alleles shared by the different population decreases,
taking into account the information provided by sequence

Application of the DPCoA-MFA to the real data setFigure 8
Application of the DPCoA-MFA to the real data set. A) Patterns of population differences, and B) allele differences per 
locus. An eigenvalue barplot is provided at the left-hand corner. Only "mlt" (respectively "mdc") is written when no differenti-
ation can be done on the graphs among S. meliloti (respectively S. medicae) populations.
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divergence is crucial to efficiently describe their relation-
ships. For instance, the specific inter-population structure
of IGSNOD is mainly due to sequence divergence.

Pertinence of the correlation tests
Both correlation tests (Mantel and Rν) can be non-signif-
icant for two reasons: either because of an absence of pop-
ulation structure or because the two loci compared reveal
different population structures. As highlighted in a previ-
ous section, the estimated ϕST parameter and the factorial
maps obtained by one of the three versions of the mDP-
CoA (with MCoA, STATIS or the MFA), can be used to
choose among the two alternatives. Concerning the rela-
tive interest of the two tests, the Rν test is revealed to be
more powerful when applied to our simulated data set, so
we advocate its use.

Relative advantages and disadvantages of the three 
proposed analyses – choice of a method
The three methods are alike in their procedure because
they are all based on a compromise. However, they differ
in the way the compromise is obtained. With the MCoA,
the compromise is built during the definition of the facto-
rial axes. It maximizes the average correlation among the
individual analyses and the compromise. With STATIS,
the compromise is obtained before going to the core of
the multivariate ordination analysis. Here, the compro-
mise maximizes the correlations among the patterns of
inter-population diversity provided by the loci. With the

MFA, the pieces of information given by the loci are sim-
ply added to each other by creating a large table juxtapos-
ing the information on the loci. This last method is the
simplest, where pieces of information are simply added.
On the other hand, MCoA and STATIS first compare the
patterns of inter-population diversity provided by the loci,
either for visualizing in a single space the differences
among loci or for erasing these differences, and find a best
compromise over the loci, respectively.

Unfortunately, the representation of the differences
among loci with STATIS is not optimal [15] because STA-
TIS focuses on similarities instead of dissimilarities
among loci. Consequently, in comparison to alternative
methods, it theoretically lacks an optimal explicability,
and an efficient description of the differences in popula-
tion patterns among loci. The description of the differ-
ences among population patterns is thus more precise
using MCoA and MFA. Conversely, the main advantage of
STATIS over other methods is that it provides a simpler
compromise pattern.

The choice among the three methods therefore depends
on the goal of the underlying study. If the objective is to
obtain the best compromise over the loci, then we advo-
cate the use of DPCOA with STATIS. However, if the
objective is to obtain a detailed comparison among the
population patterns provided by the G loci, then we
encourage the use of the DPCoA with the MCoA.

Effects of allele frequencies and distances in thereal data setFigure 9
Effects of allele frequencies and distances in thereal data set. We applied the DPCoA-MCoA to A) the data set with 
allele distances without allele frequencies; B) the data set with allele frequencies, without allele distances. In each of the two 
cases A) and B), each plot gives a comparison between the patterns of the differences among populations given by the compro-
mise over all loci (black dots, start of the arrows) and the individual analyses (end of the arrows).
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Complementarity between mDPCoA and other analyses
The mDPCoA could be associated with other tools to
study population structure, including the AMOVA, which
forms the basis of the DPCoA, Linkage Disequilibrium
(LD) statistics, and also recent approaches such as STRUC-
TURE or CLONAL FRAME.

The AMOVA averages molecular variability over loci to
test the existence of differences between populations or
groups of populations in terms of both allele frequencies
and nucleotide distances among alleles. The Mantel and
Rv statistics associated with the mDPCoA use the same
information to test the differences between the inter-pop-
ulation structures inferred by several loci.

Both linkage disequilibrium (LD) measures and the mDP-
CoA aim at assessing whether there is a significant associ-
ation among the polymorphism patterns observed for
different molecular markers. However, LD approaches
and mDPCoA differ in several ways. Without discrepan-
cies among the population structures, mDPCoA would
fail to detect that different loci evolve independently, even
if these are in linkage equilibrium at the population scale.
Conversely, in the Sinorhizobium spp. data set, the mDP-
CoA detected that IGSNOD pattern of population differ-
ences was drastically different from the ones obtained
with IGSRKP, IGSGAB and IGSEXO, suggesting a horizontal
gene transfer of nod genes between S. meliloti bv. meliloti
and S. medicae. Because of the differentiation between S.
meliloti and S. medicae, LD measures would have failed to
detect such a transfer event. Linkage disequilibrium meas-
ures and mDPCoA therefore appear as complementary
tools to study the influence of sex during the evolution of
bacterial lineages.

The mDPCoA is above all a descriptive method, as it does
not rely on any assumptions about models of evolution
such as linkage equilibrium or selective neutrality. Never-
theless, this analysis pipeline can raise questions that will
be investigated using complementary analyses. Thus,
demonstrating differences among population structures
obtained from different loci raised questions regarding
the definition of population boundaries, or the genealogy
of both genes and individuals. A consensus population
structure could be inferred without any a priori knowledge
using STRUCTURE, and its efficiency can be confirmed
and illustrated using the correlation tests and the graphi-
cal outputs of the mDPCoA. CLONAL FRAME is an
explanatory method, estimating clonal relationships and
looking for key recombination events with a view of find-
ing the mechanisms implied in microevolution [47]. It
can be used to gain insights into the history of an atypical
locus. Finally, the detection of selection traces and mech-
anistic experiments can be of great interest to explain
mDPCoA results. These different approaches thus com-

plement the mDPCoA, and conversely, the mDPCoA
complements these approaches. For instance, both
STRUCTURE and CLONAL FRAME imply working on
MLS analyses, and the choice of the finite set of loci used
in these analyses may be crucial. Each method can be
improved by looking at the results returned by the two
others. A joint interpretation of the results of the alterna-
tive methods may thus allow a better interpretation of the
results and lead to a deeper analysis of particular loci for a
better understanding of the data.

Conclusion
All three methods proposed can be used for a better
description of inter-population genetic diversity meas-
ured over more than one locus. They imply a new reflec-
tion on the role of means in measures of diversity: can we
work on average information over loci, or do we first need
to examine the differences among the patterns of diversity
given by the loci? Sometimes, the differences among loci
are so high that the compromise obtained by the multi-
variate analyses will be unstable and the use of averaged
information can hamper interpretation. This issue is
related to the question raised decades ago: can we build a
unique, very synthetic measure of biodiversity, or do we
have to make up our mind to define several conflicting
measures? As it is based on multivariate analyses, the mul-
tiple DPCoA in its three forms can be used to analyze large
data sets. It allows a comparison of genetic diversity meas-
ured on various loci. It complements existing tools such as
AMOVA and linkage disequilibrium measures. It is used
here on molecular data because it is in genetics the ques-
tion of congruence among markers was raised several
years ago. We illustrated this procedure using a limited
but complex sequence database. The method will have to
be tested on other data sets, yet the results are already very
promising. Moreover, mDPCoA is potentially more gen-
eral than we presented here since it can be extended to any
data set where pairs of matrices comprise a matrix with
abundance or presence/absence and a matrix of dissimi-
larities. Further applications in ecology could thus be con-
sidered, such as the description of inter-community
diversity based on both genotypic and phenotypic fea-
tures.

Abbreviations
AMOVA, Analysis of MOlecular Variance; bv., biovar;
DPCoA, Double Principal Coordinate Analysis; FTmdc,
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MLS, Multilocus Sequencing; PCA, Principal Component
Analysis; STATIS, comes from a French expression "structu-
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