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Abstract
Background: The regulation of a gene depends on the binding of transcription factors to specific
sites located in the regulatory region of the gene. The generation of these binding sites and of
cooperativity between them are essential building blocks in the evolution of complex regulatory
networks. We study a theoretical model for the sequence evolution of binding sites by point
mutations. The approach is based on biophysical models for the binding of transcription factors to
DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics
model including mutations, genetic drift, and selection.

Results: We show that the selection for factor binding generically leads to specific correlations
between nucleotide frequencies at different positions of a binding site. We demonstrate the
possibility of rapid adaptive evolution generating a new binding site for a given transcription factor
by point mutations. The evolutionary time required is estimated in terms of the neutral
(background) mutation rate, the selection coefficient, and the effective population size.

Conclusions: The efficiency of binding site formation is seen to depend on two joint conditions:
the binding site motif must be short enough and the promoter region must be long enough. These
constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we
analyse the adaptive evolution of genetic switches and of signal integration through binding
cooperativity between different sites. Experimental tests of this picture involving the statistics of
polymorphisms and phylogenies of sites are discussed.

Background
The expression of a gene is controlled by other genes
expressed at the same time and by external signals, a proc-
ess called gene regulation [1]. Due to the combinatorial
complexity of regulation, a large number of functional
tasks can be performed by a limited number of genes. Dif-
ferences in gene regulation are believed to be a major
source of diversity in higher eukaryotes.

To a large extent, gene regulation is the control of tran-
scription. It is accomplished by a number of regulatory

proteins called transcription factors that bind to specific
sites on DNA. These binding sites contain about 10 – 15
base pairs relevant for binding and are mostly located in
the cis-regulatory promoter region of a gene. A cis-regula-
tory region in E. coli is about 300 base pairs long and con-
tains a few transcription factor binding sites [2]. There
may be two or more sites for the same factor in one pro-
moter region. At the same time, the sequences of binding
sites are fuzzy, that is, different sites for the same factor dif-
fer by about 20 – 30 percent of the bases relevant for bind-
ing [2]. This makes the identification of sites a difficult
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bioinformatics problem [3-5]. Frequently, the simultane-
ous binding at two nearby sites is energetically favoured.
This so-called binding cooperativity can be related to various
functions. In a genetic switch such as the famous phage
lambda switch in Escherichia coli [6], it produces a sharp
increase of the expression level at a certain threshold con-
centration of a transcription factor. A pair of sites for two
different kinds of factors with cooperative binding can be
a simple module for signal integration, leading to the
expression of the downstream gene only when both kinds
of factors are present simultaneously [1]. These examples
are discussed in more detail below. Regulation in higher
eukaryotes shares these features but is vastly more compli-
cated [7]. A promoter region is typically a few thousand
base pairs long and contains many different binding sites
with often complex interactions. At the same time, indi-
vidual sites are shorter, with about 5–8 relevant base pairs.
The sites are sometimes organized in modules interspersed
between regions containing no sites. In many known
cases, the expression of a gene depends on the simultane-
ous presence of several factors. Well-studied examples of
regulatory networks in eukaryotes include the sea urchin
Strongylocentrotus purpuratussea [8] and the early develop-
mental genes in Drosophila [9].

The sequence statistics of binding sites has been addressed
in two recent theoretical studies [10,11]. Based on a
model incorporating the biophysics of sequence-factor
interaction [12,13], a fitness landscape for binding site
sequences is constructed (see the discussion in the next
section). The resulting mutation-selection equilibrium is
analysed using a mean-field quasispecies approach [14].
This approach, which neglects the effects of genetic drift,
is applicable in very large populations. In both studies
[10,11], fuzziness is attributed to mutational entropy as a
possible reason: the single or few sequence states with
optimal binding of the transcription factor can be out-
weighed by the vastly higher number of sub-optimal
states at some mutational distance from the optimal bind-
ing sequence. This effect is similar to the fuzziness of
amino acid sequences in proteins discussed in [15].

From an evolutionary perspective, explaining the molecu-
lar programming of regulatory networks presents a strik-
ing problem. The diversification of higher eukaryotes, in
particular, requires the efficient generation and alteration
of regulatory binding interactions. One likely mode of
evolution is gene duplications with subsequent comple-
mentary losses of function in both copies [16,17]. However,
the differentiation of regulation should also require com-
plementary processes that generate new functions of genes
as a response to specific demands. This task must be
accomplished mainly by sequence evolution of regulatory
DNA. There are examples of highly conserved regulatory
sequences with a conserved function but binding sites can

also appear, disappear, or alter their sequence even
between relatively closely related species; see, e.g., refs.
[18-22]. This turnover of binding sites has been argued to
follow an approximate molecular clock in Drosophila [23].
The transcription factors themselves are known to remain
more conserved, especially if they are involved in the reg-
ulation of more than one gene.

The modes of regulatory sequence evolution and their rel-
ative importance remain largely to be explored. Contribu-
tions may arise from point mutations, slippage processes
[24], and larger rearrangements of promoter regions [25].
The latter processes may lead to the shuffling of entire
modules of binding sites between different genes. In this
paper, we are more interested in the local sequence evolu-
tion within a module, which has been argued to contrib-
ute most of the promoter sequence difference between
species [26]. It is also the most promising starting point
for a quantitative analysis of binding site evolution. We
study a theoretical model that takes into account point
mutations, selection, and genetic drift. The form of selec-
tion is inferred from the biophysics of the binding interac-
tions between transcription factors and DNA. We derive
the stationary distribution of binding sites under selec-
tion, which shows specific correlations between nucleo-
tide frequencies at different positions in a binding site.
The non-stationary solutions of the model describe effi-
cient adaptive pathways for the molecular evolution of
regulatory networks by point mutations. This efficiency
can be quantified in terms of the length of the binding
motif, and the length of the promoter region, and the fit-
ness landscape for factor binding, which is amenable to
quite explicit modeling.

With the parameters found in natural systems, our model
predicts that a new binding site for a given transcription
factor can be generated by a fast series of adaptive substi-
tutions, even if the expression of the corresponding gene
bears even a modest fitness advantage. The evolutionary
time required for site formation in response to a newly
arising selection pressure is estimated in terms of the char-
acteristic time scales of mutation, selection, and drift. For
Drosophila, it may be as short as 105 years even for moder-
ate selection pressures. However, this pathway is found to
depend crucially on the presence of selection. It would be
too slow under neutral evolution, in contrast to the results
of [7], see also the recent discussion in [27]. Cooperative
interactions between binding sites can evolve adaptively
on similar time scales, as we show for the two simple
examples alluded to above, the genetic switch and the sig-
nal integration module. These results are discussed at the
end of the paper with particular emphasis on possible
experimental tests.
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Factor binding and selection
The binding energy (measured in units of kBT) between a
transcription factor and its binding site is, to a good
approximation, the sum of independent contributions
from a small number of important positions of the bind-

ing site sequence, , with  ≈ 10 - 15 [28-

30]. The individual contributions εi depend on the posi-
tion i and on the nucleotide ai at that position. There is

typically one particular nucleotide  preferred for bind-

ing; the sequence  is called the target sequence.

The target sequence can be inferred as the consensus
sequence of a sufficiently large number of equivalent sites.
The so-called energy matrix εi(a) has been determined
experimentally for some factors from in vitro measure-
ments of the binding affinity for each single-nucleotide
mutant of the target sequence. Typical values for the loss
in binding energy are 1–3 kBT per single-nucleotide mis-
match away from the target sequence. In this paper, we

use the further approximation εi = ε if ai =  and ε = 0
otherwise, the so-called two-state model [12]. The binding

energy of any sequence  is then, up to an irrele-
vant constant, simply given by its Hamming distance r to
the target sequence: E/kBT = εr. (The Hamming distance is
defined as the number of positions with a mismatch ai ≠

.)

It is important to note the status of this "minimal model"
of binding energies for the discussion in this paper. Both
approximations underlying the model can be violated.
Even though typical mismatch energies are of the same
order of magnitude, there can be considerable differences
between different substitutions at one position and
between different nucleotide positions. Moreover, devia-
tions from the approximate additivity of binding energies
for the single nucleotide positions have also been
observed. However, these complications do not affect the
order-of-magnitude estimates for adaptive sequence evo-
lution. As it will become clear, the efficiency of binding
site formation depends only on the qualitative shape of
the fitness landscapes derived below. In these landscapes,
the regime of weakly-binding sequences and of strongly-
binding sequences are separated by only a few single
nucleotide substitutions. The relative magnitude of the fit-
ness increase of these substitutions does not matter in first
approximation. Indeed, inhomogeneities in the values of
the εi(a) tend to reduce the number of crucial steps in the
adaptive process and thereby to further increase its speed.

Within the two-state model, the binding probability of
the factor in thermodynamic equilibrium is

Here ε is the binding energy per nucleotide mismatch and
ερ is the chemical potential measuring the factor concen-
tration. Both parameters are expressed in units of kBT and
hence dimensionless. Appropriate values for typical bind-
ing sites have been discussed extensively in refs. [10,13]. It
is found that ε should take values around 2, which is con-
sistent with the measurements for known transcription
factors mentioned above [28-30]. The chemical potential
depends on the number of transcription factors present in
the cell, on the binding probability to background sites
elsewhere in the genome (which have a sequence similar
to the target sequence by chance), and on the functional
sites in the in the genome other than the binding site in
question that may compete for the same protein. Binding
to background sites does not significantly reduce the
binding to a specific functional site [13]. This leads to val-
ues ρ ≈ (log nf)/ε ≈ 2 - 4, given observed factor numbers nf
of about 50 – 5000 [13]. Binding to other copies of the
same functional sequence becomes only relevant at low
factor concentrations and high number of copies, when
sites compete for factors.

A fitness landscape quantifies the fitness F  of
each sequence state at the binding site. Fitness differences
arise due to different expression levels of the regulated
gene, and these in turn depend on the binding of the tran-
scription factors. It is only these fitness differences that
enter the population dynamics   of binding site sequences
in the next section. Following the conceptual framework
of ref. [10], we assume that the environment of the regu-
lated gene can be described by a number of cellular states
(labelled by the index α) with different transcription fac-
tor concentrations, i.e., with different chemical potentials
ρα. These cellular states can be thought of as different
stages within a cell cycle. In each state, the fitness depends
on the expression level of the regulated gene in a specific
way. This expression level is determined by the binding
probability pα of the transcription factor. Assuming that
both dependencies are linear (this is not crucial) and that
the cellular states contribute additively to the overall fit-
ness F, we obtain

Here the selection coefficient sα is defined as the fitness dif-
ference (due to different expression of the downstream
gene) between the cases of complete factor binding and
no binding in the state α. Such fitness differences can now
be measured directly in viral systems [31]. Inserting (1),
the fitness becomes a function of the Hamming distance r

E k TB ii
/ = =∑ ε

1
A A

ai
*

a a1
* *,..., A( )

ai
*

( ,..., )a a1 A

ai
*

p
r

=
+ −

1
1

1
exp[ ( )]

. ( )
ε ρ

( ,..., )a a1 A

F s p= ∑ α α

α
. ( )2
Page 3 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:42 http://www.biomedcentral.com/1471-2148/4/42
only. We note that the fitness F is measured relative to that
of a phenotype with zero binding probability in any state
α.

In a simple case, there are just two relevant cellular states.
The on state favours expression of the gene, the off state
disfavours it. It is then natural to assume selection coeffi-
cients of similar magnitude; here we take for simplicity s =
son = -soff > 0. We then obtain a crater landscape,

with a high-fitness rim between ρoff and ρon flanked by
two sigmoid thresholds; see fig. 1(a). The generic features
of this fitness landscape are easy to interpret: the two-state
selection assumed here favors intermediate binding
strength (i.e., intermediate Hamming distances r) where
binding occurs and the gene is expressed in the on state but
not in the off state. Sequences with large Hamming dis-
tance r >ρon can bind the factor neither in the on nor in the
off state, while sequences with r <ρoff lead to binding in the
on and the off state. Both cases lead to misregulation of the
downstream gene, and hence to a lower fitness. We note
that the key feature of these fitness landscapes, the sig-
moid thresholds, is independent of the particular choices
of son and soff.

An even simpler fitness landscape is obtained if only the
on state contributes significantly to selection, i.e., if s = son

> 0 and soff = 0. The crater landscape then reduces to the
mesa landscape discussed in [10,32],

which has a high-fitness plateau of radius ρ and one sig-
moid threshold; see fig. 1(b). In this case, all sequences
with sufficiently small Hamming distance to the target
sequence (r <ρon) have a high fitness. In both cases, the
parameters of the binding model have a simple geometric
interpretation: ε gives the slope and the ρα give the posi-
tions of the sigmoid thresholds in the fitness landscape.
Eqs. (3) and (4) are again to be understood as minimal
models of fitness landscapes for binding sites, represent-
ing target sequence selection for a given level of binding
(ρoff <r <ρon) and for sufficiently strong binding (r <ρon),
respectively. Despite its simplicity, this type of selection
model based on biophysical binding affinities is nontriv-
ial from a population-genetic viewpoint since it leads to
generic correlations between frequencies of nucleotides ai
and aj within a site, see the Results section below. We will
also study generalized models with correlations between
two sites generated by cooperative binding. On the other
hand, these models neglect the context dependence of the

binding process through cofactors and chromatin struc-
ture. However, they are a good starting point for order-of
magnitude estimates of the adaptive evolution of binding
sites.

Mutation, selection, and genetic drift
The rates of nucleotide point mutation show a great vari-
ation, ranging from µ ~ 10-4 per site and generation for
RNA viruses to values several orders of magnitude lower
in eukaryotes, e.g. µ ≈ 2 × 10-9 in Drosophila [33]. (Here we
model mutation as a single-parameter Markov process; we
do not distinguish between transitions and transver-
sions.) The evolution of a sufficiently large population
under mutation and selection can be described in terms of
the average fraction of the population with a given bind-
ing sequence. This so-called mean-field approach neglects
the fluctuations due to finite population size (genetic
drift). It leads to the so-called quasispecies theory [14]. For
a population of sequences at a single binding site, the qua-
sispecies population equation can be written for the frac-
tion n(r,t) of individuals at Hamming distance r from the
target sequence at time t. Along with a generalisation for
two binding sites, it has been analysed in detail in ref.
[10]. For the mesa landscape, the stationary solution
nstat(r) has been found exactly [32]. It depends only on the
ratio s/µ and describes a stable polymorphic population,
i.e., several sequence states coexist. The mean-field
approach is valid as long as the stochastic reproductive
fluctuations are leveled out by mutations. This requires
absolute population numbers Nnstat(r) Ŭ 1/µ for all rele-
vant r, a stringent condition on the total population size
N.

This paper is concerned with a different regime of popula-
tion dynamics, as described by the Kimura-Ohta theory
for finite populations evolving by stochastic fluctuations
(genetic drift) and selection [34-36]. According to this the-
ory, a new mutant with a fitness difference ∆F relative to
the pre-existing allele could spread to fixation in the pop-
ulation. This is a stochastic process, whose rate constant is
given by

in a diffusion approximation valid for ∆F <<> 1 [37]. Here
N is the effective population size (with an additional factor
2 for diploid populations). Eq. (5) has three well-known
regimes. For substantially deleterious mutations (N∆F d -
1), substitutions are exponentially suppressed. Nearly neu-
tral substitutions (N|∆F| <<> 1) occur at a rate u ≈ µ
approximately equal to the rate of mutations in an indi-
vidual. For substantially beneficial mutations (N∆F t 1),
the substitution rate is enhanced, with u � 2µN∆F for
N∆F Ŭ 1.
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Fitness landscapes and adaptive evolution for a single binding siteFigure 1
Fitness landscapes and adaptive evolution for a single binding site (a) Crater landscape (3) and (b) Mesa landscape (4), 
as a function of the Hamming distance r from the target sequence (within the approximation of the two-state model). rm gives 
the point where the binding probability reaches a maximum (crater landscape), or else values close to 1 (mesa landscape). rs 
approximately indicates the onset of selection, i.e. a binding probability appreciably different from zero. (c) Adaptive dynamics 
as a function of time t measured in units of 1/(2sµN) in the crater landscape at strong selection (sN = 100). Single history r(t) 

(dashed lines), ensemble average  (thick solid lines) and width given by the standard deviation curves  ± δr(t) (thin 
solid lines), (d) Same as (c) in the mesa landscape at moderate (sN = 6.8) selection, (e) Stationary ensembles Pstat(r) of binding 
site sequences with in the crater landscape at strong selection (filled bars) and for neutral evolution (empty bars). (f) Same as 
(e) in the mesa landscape at moderate selection, together with the histogram of Hamming distances of CRP site sequences in E. 
coli from their consensus sequence (diamonds, from [10]).

r t( ) r t( )
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In this picture, a population has a monomorphic majority
for most of the time and occasional coexistence of two
sequence states while a substitution is going on. The time
of coexistence is T ~ N for nearly neutral and T ~ 1/∆F for
strongly beneficial substitutions. The picture is thus self-
consistent for Tu <<> 1, i.e., for µN <<> 1. Asymptotically,
it describes monomorphic populations moving through
sequence space with hopping rates u.

Introducing an ensemble of independent populations, this
stochastic evolution takes the form of a Master equation.
For a single binding site, we obtain

Here P(r,t) denotes the probability of finding a popula-
tion at Hamming distance r from the target sequence, and
ur,r' is given by (5) with ∆F = F(r') - F(r). The combinatorial
coefficients arise since a sequence at Hamming distance r

can mutate in  different ways that increase r,
and in r ways that decrease r, where c = 4 is the number of
different nucleotides. The stationary distribution is

Pstat(r) ~ exp[S(r) + 2NF(r)].  (7)

Here  is the mutational entropy

(the log fraction of sequence states with Hamming dis-
tance r) [32] and we have used the exact result ur+1,r/ur,r+1

= e2(N - 1)∆F. To derive (7), we then simply approximated N
- 1 by N. The form of Pstat(r) reflects the selection pressure,
i.e., the scale s of fitness differences in the landscape F(r).
For neutral evolution (2sN = 0), the stationary
distribution

is obtained from a flat distribution over all sequence
states. For moderate selection (2sN ~ 1), Pstat(r) results
from a nontrivial balance of stochasticity and selection.
For strong selection (2sN Ŭ 1), Pstat(r) takes appreciable
values only at points of near-maximal fitness, where F(r)
t Fm - 1/2sN. In this regime, the dynamics of a population
consists of beneficial mutations only, i.e., the system
moves uphill on its fitness landscape.

The Master equation (6) and the mean-field quasispecies
equation thus describe opposite asymptotic regimes, µN

<<> 1 and µN Ŭ 1, of the evolutionary dynamics. Effective
population sizes show a large variation, from values of
order 109 in viral systems to N ~ 106 in Drosophila and N ~
104 - 105 in vertebrates. (These numbers bear some uncer-
tainty; one reason is that TV varies across the genome
[38].) We conclude that the mean-field quasispecies is
well suited for viral systems, while eukaryotes clearly
show a stochastic dynamics of substitutions.

Results and discussion
Stationary distributions and nucleotide frequency 
correlations
In the previous sections, we have expressed the fitness
landscape and the resulting population distributions as a
function of the Hamming distance r because it is a con-
venient parameterization of the binding energy in the
two-state model. In order to compare this approach to
standard population genetics, it is useful to recast eq. (7)
for the elementary sequence states (a1,...,al),

where the sum runs over all sequence states at fixed r. At
neutrality, the distribution over sequence states factorizes
in the single nucleotide positions,

In the specific case of the two-state model, ν0(ai) is simply
a flat distribution over nucleotides but it is obvious how
this form can be generalized to arbitrary nucleotide
frequencies.

According to eq. (7), the stationary distribution under
selection takes the form

The salient point is that F(r) is generically a strongly non-
linear function of r due to the sigmoid dependence of the
binding probability on r. An analogous statement holds
beyond the two-state approximation for the dependence

of F on the binding energy E. Hence, even if (a1,...,al)
factorizes in the single nucleotide positions,

(a1,...,al) does not. The selection introduces specific
correlations between the nucleotides: the fitness
differences and, hence, the nucleotide frequencies at one
position i depend on all other it l - 1 positions in the
motif.
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Adaptive generation of a binding site
We now apply the dynamics (6) to the problem of adap-
tively generating a binding site in response to a newly aris-
ing selection pressure. We study a case of strong selection
(sN = 100) in the crater fitness landscape (3) with param-

eters  = 10, ε = 2, ρon = 3, ρoff = 1 (implying that the factor
concentrations differ by a factor of 50), and a case of mod-
erate selection (sN = 7) in the mesa landscape with param-

eters  = 10, ε = 1, ρ = 3.6. (The mesa type may be most
appropriate for factors with multiple binding sites such as
the CRP repressor in E. coli, where binding to an individ-
ual site is negligible in the off state.) The fitness landscapes
for both cases are shown in fig. 1(a),1(b) in units of the
selection pressure s. Substantially beneficial mutations
occur only on their sigmoid slopes, i.e., in narrow ranges
of r. The upper boundary of this region is given by rs = ρon

+ log[sN(eε - 1)]/ε which takes typical values rs = 5 - 7. In
fig. 1(c),1(d), we show a sample history of adaptive sub-
stitutions from r = 5 to lower values of r, which are close
to the point rm of maximal fitness. The statistics of this
adaptation is governed by the ensemble P(r, t); the aver-

age  and the standard deviation δr(t) appear also in
fig. 1(c),1(d). In the case of strong selection, the expected
time of the adaptive process is readily estimated in terms
of the uphill rates in (6),

and takes values of a few times 1/sµN. We emphasize
again that this simple form depends only on the qualita-
tive form of the fitness landscape, namely, that weakly
and strongly binding sequence states are separated only
by few point mutations. The conclusions are thus largely
independent of the details of the fitness landscape, which
justifies using the two-state approximation.

Can such a selective process actually happen? This
depends on the initial state of the promoter region in
question before the selection pressure for a new site sets in.

The region is approximated as an ensemble of L1 = L -  +
1 candidate sites undergoing independent neutral evolu-

tion, i.e., the simultaneous updating of  sites by one
mutation is replaced by independent mutations. The
length of the promoter region is denoted by L. At station-
arity, the Hamming distance at a random site then follows
the distribution Pstat(r) ~ exp[S(r)] shown as empty bars in
fig. 1(e),1(f). The minimal distance rmin in the entire
region is given by the distribution

, where

 is the cumulative distribution

for a single site.  is found to be strongly peaked, tak-

ing appreciable values only in the range 
around its average. We assume selective evolution sets in
as soon as at least one site has a Hamming distance r ≤ rs.

This is likely to happen spontaneously if ,

leading to a joint condition on , L, and rs. For

, there is a neutral waiting time before
the onset of adaptation. Its expectation value

is calculated in the appendix. It is generically much larger
than the adaptation time Ts, rendering the effective gener-
ation of a new site less feasible.

The stationary distribution Pstat(r) under selection is given
by (7) and shown as filled bars in fig. 1(e),1(f). For strong
selection, it is peaked at the point rm of maximal fitness.
For moderate selection, it takes appreciable values for r =
0 - 4: the binding site sequences are fuzzy. Assuming that
the CRP sites at different positions in the genome of E. coli
have to a certain extent evolved independently, we can fit
Pstat(r) with their distance distribution (data taken from
[10]). At the values of ε and ρon chosen, the two distribu-
tions fit well, see fig. 1(f). This finding is discussed in
more detail below.

Adaptation of binding cooperativity
The cooperative binding of transcription factors involves
protein-protein interactions which may be specific to the
DNA substrate. These interactions often do not require
conformational changes of either protein involved and
depend only on few specific contact points. They result in
a modest energy gain of order 3 – 4kBT [1]. Hence, it is a
reasonable simplification to study the adaptive adjust-
ment of binding affinities using a simple generalisation of
the two-state binding model. We define the energies E1/
kBT = εr1 and E2/kBT = εr2 for the binding of a single factor

and  for the simulta-

neous binding of both factors. The cooperativity gain is

assumed to result from mutations at  positions in the
DNA sequences of the factors, which encode the amino
acids at the protein-protein contact points. These muta-

tions define a Hamming distance  from the tar-
get sequence for optimal protein-protein binding, and

2γε/  is the binding energy per nucleotide. Here we use

the values ε = 2,  = 6 and γ = 1 but the qualitative pat-
terns shown below are rather robust.
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The resulting equilibrium probabilities for the four ther-
modynamic states (--) (both factors unbound), (+-) and (-
+) (one factor bound), and (++) (both factors bound) are

q--,

q+- = q-- exp[-ε(r1 - ρ1)],

q+- = q-- exp[-ε(r2 - ρ2)],  (14)

q++ = q-- exp[-ε(r1 + r2 - ρ1 - ρ2 - 2γ)],

with the normalisation q-- + q+- + q-+ + q++ = 1. The scaled
chemical potentials ρ1 and ρ2 are independent variables if
the two sites bind to different kinds of factors and are
equal if they bind to the same kind. As before, the binding
probabilities determine expression levels and, therefore,
the fitness. Here we study only pairs of sites contributing
additively to the expression level in each cellular state,
where we have

Other important cases include activator-repressor site
pairs such as the famous lac operon [39], where the tran-
scription-factor induced expression level is proportional
to q+-. The stochastic dynamics of substitutions is straight-
forward to generalise; it leads to a Master equation like (6)

for the joint distribution P(r1, r2, , t). This higher-dimen-
sional equation can again be solved exactly for its steady
state

Pstat(r1, r2, ) ~ exp[S(r1) + S(r2) + S( ) + 2NF(r1, r2, )].
 (16)

Here we discuss two simple examples of fitness landscapes
where binding cooperativity evolves by adaptation to spe-
cific functional demands. A genetic switch with a sharp
expression threshold is favoured in a system with a single
transcription factor having similar concentrations in its on
and off cellular state. As can be seen from eq. (14), coop-
erative binding can sharpen the response of the binding
probability to variations in factor concentration, q++ ~ 1/
[1 + exp(-2ερ + ...)] versus p ~ 1/[1 + exp(-ερ + ...)] as given
by (1) for individual binding. Figs. 2(a),2(c) show the fit-
ness landscape F(r1, r2, γ) obtained from (14) and (15) for
ρon = 2.5, ρoff = 1.5, and s = son = -soff. A simple signal inte-
gration module responds to two different factors in four dif-
ferent cellular states, (on, on), (on, off), (off, on), (off, off).
Individually weak but cooperative binding leads to
expression of the gene only if both factors are present
simultaneously. This case is favoured by a fitness function
of the form (15) with selection coefficients s = -soff,off = -

son,off = -soff,on = son,on/2. The resulting fitness landscape
F(r1, r2, γ) is shown in figs. 2(b),2(d) for chemical poten-
tials ρon = 3, ρoff = 1 (for each factor).

In both cases, a pair of sites with weaker individual bind-
ing (r1, r2 = 3 - 4) and cooperativity (γ = 1) is seen to have
a higher fitness than an optimal pair (r1 = r2 = 2) without

cooperativity, as expected. Adaptive pathways  and

 for strong selection (sN = 100) are shown in fig.
2(e),2(f). Typical adaptation times Ts are again a few times
1/(sµN). A closer look reveals that this fast adaptation
sometimes leads to a metastable local fitness maximum
with some degree of cooperativity. Compensatory muta-
tions (see below) are then required to reach the global
maximum, a process that may be considerably slower. The
fuzziness δr1,2(t) and δγ(t) observed in fig. 2(e),2(f)
decays on the larger time scale of compensatory muta-
tions, reflecting the presence of such metastable states.

Conclusions
Transcription factors and their binding sites emerge as a
suitable starting point for quantitative studies of gene reg-
ulation. Binding site sequences are short and their
sequence space is simple. Moreover, the link between
sequence, binding affinity, and fitness is experimentally
accessible. For a single site, the simplest examples are of
the mesa [10] or of the crater type, see fig. 1(a),1(b). Land-
scapes for a pair of sites with cooperative binding interac-
tions are of a similar kind as shown in fig.
2(a),2(b),2(c),2(d). They can be used to predict the out-
come of specific single-site mutation experiments to a cer-
tain extent.

Fast adaptation may generate or eliminate a new binding 
site
Despite this simplicity, the evolutionary dynamics of
binding sites is far from trivial, since it is governed, in the
generic case, by the interplay of three evolutionary forces:
selection, mutation, and genetic drift. Here we have
focused on the dynamical regime appropriate for eukary-
otes, where the evolution can be approximated as a sto-
chastic process of substitutions. We find the possibility of
selective pathways generating a new site in response to a
newly arising selection pressure, starting from a neutrally
evolved initial state and progressing by point substitu-
tions. Such a selective formation takes roughly Ts ≈ ∆r/
(2sµN) generations, where ∆r is the number of adaptive
substitutions required. This number is given by the Ham-
ming distance between the onset of selection and the
point of optimal fitness, ∆r = rs - rm, and takes values 2 – 3
for typical fitness landscapes; see fig. 1(a),1(b). For Dro-
sophila melanogaster, with µ ≈ 2 × 10-9 [33] and N ≈ 106, the
resulting Ts is of the order of 106 generations or 105 years

F s q q q= + +∑ +− −+ ++
α

α
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Fitness landscapes and adaptive evolution for a pair of sites with cooperative bindingFigure 2
Fitness landscapes and adaptive evolution for a pair of sites with cooperative binding. Genetic switch (left column), 
signal integration module (right column). (a,b) Fitness landscape F(r1, r2) without cooperativity (γ = 0). (c,d) Fitness landscape. 

F(r1, r2) with cooperativity (γ = 1). Next-nearest neighbour states (r1, r2) and  of similar fitness are 

linked by compensatory mutations if the intermediate states (r1, ) and ( , r2) have lower fitness. (e,f) Adaptive dynamics: 

ensemble averages  and  (thick lines), ensemble width given by  (same for r2 and  
(thin lines); cf. fig. 1(e,f).

( , )′ = ± ′ = ±r r r r1 1 2 21 1

′r2 ′r1
r t r t1 2( ) ( )= γ ( )t r t r t1 1( ) ( )± δ γ δγ( ) ( )t t±
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even for sites with a relatively small selection coefficient s
= 10-3. Such selective processes are faster than neutral evo-
lution by a factor of about 1000 and would allow for inde-
pendent generation of sites even after the split from its
closest relative Drosophila simulans about 2.5 × 106 years
ago. Notice that new sites are more readily generated in
large populations. As discussed above, generating a new
site may also require a neutral waiting time to T0 until at
least one candidate site in the promoter region of the gene
in question reaches the threshold distance rs from the tar-
get sequence, where selection sets in. For site formation to
be efficient, however, selection must be able to set in
spontaneously, i.e., T0 must not greatly exceed the adap-

tive time Ts. This places a bound on the relevant length 
of the binding motif that can readily form in a promoter
region of length L. Given L ≈ 300, for example, a motif

with  = 8 and rs = 3 could still allow for spontaneous
adaptive site formation. (For longer motifs, correspond-
ing to groups of sites with fixed relative distance, this
pathway would require promoter regions of much larger
L.) A more general case has recently been treated numeri-
cally in [27], where the dependence of the neutral waiting
time on the G/C ratio of the initial sequence has been
investigated. One may speculate that this adaptive
dynamics is indeed one of the factors influencing the
length of regulatory modules in higher eukaryotes.
Clearly, the present model also allows for pathways of
negative selection leading to the elimination of spurious
binding sites in regulatory or non-regulatory DNA where
the binding has an adverse fitness effect. This is important
since under neutral evolution, candidate sites with a dis-
tance of at most rs from the target sequence occur fre-
quently on a genome-wide scale. A recent study has
indeed found evidence for such negative selection from
the underrepresentation of binding site motifs over the
entire genome [40].

Binding sites under selection have nucleotide frequency 
correlations
We have shown that under stationary selection the fre-
quencies of nucleotides at any two positions of the bind-
ing sequence are correlated. For the two-state model, the
correlations are the same for any pair of positions i ≠ j and
can be computed exactly from the joint distribution (11).
We emphasize that these correlations refer to an ensemble
of independently evolving (monomorphic) populations
and are not to be confused with linkage disequilibria
within one population. This finding limits the accuracy of
bioinformatic weight matrices, which are often assumed
to factorize in the nucleotide positions even in the pres-
ence of selection.

Experimental tests: binding site polymorphisms and 
phylogenies
The predictions of our model lend themselves to a
number of experimental tests. In the dynamical regime
appropriate for eukaryotes (µN <<> 1), populations
should be monomorphic at most positions of their bind-
ing site sequences and polymorphic at a few. On the other
hand, the quasispecies model discussed in refs. [10,11]
(which assumes µN Ŭ 1) may be most appropriate in viral
systems. The intermediate regime µN ~ 1 with frequent
polymorphisms and genetic drift could be realized in
some bacterial systems and presents a challenge for the-
ory. Thus it would be very interesting to compare the sta-
tistics of single-nucleotide polymorphisms at binding
sites in eukaryotes, bacteria, and viruses. Polymorphism
data are expected to contain evidence for adaptive evolu-
tion. However, statistical tests of selection must be modi-
fied for promoter sequences [40,41]. A recent study uses
data on binding sites in three yeast species and deduces
the rates of sequence evolution [42].

A complementary source of information are phylogenies
of binding sites. Trees with functional differences between
branches contain information on the generation of new
sites or of interactions between sites and on the time
scales involved. In a tree for a conserved site or group of
sites with sufficiently long branches, the fuzziness of the
sequences observed on different branches is given by the
ensemble Pstat introduced above. For strong selection, Pstat
lives on the quasi-neutral network of sequence states with
maximal fitness, where two neighbouring sequence states
are linked by neutral mutations or by pairs of compensatory
mutations at two different positions. In the crater land-
scape for a single site, this quasi-neutral network consists
of all sequences with a fixed distance r = rmax from the tar-
get sequence; see fig. 1(a). Beyond the two-state approxi-
mation for binding energies, it will be smaller since only
some of the positions are energetically equivalent. For a
group of sites, however, quasi-neutral networks can be
larger since compensatory mutations can also take place at
positions on different sites as shown in fig. 2(d) for the
example of a signal integration module. This is consistent
with experimental evidence that the sequence divergence
between Drosophila melanogaster and Drosophila pseudoob-
scura involves compensatory mutations and stabilising
selection between different binding sites [43].

For weaker selection, site fuzziness increases further since
Pstat extends beyond the sequence states of maximal fitness
and is influenced by mutational entropy. As shown in fig.
1(f), one can explain in this way the observed fuzziness in
CRP sites of E. coli. It would then reflect different evolu-
tionary histories of independent populations, rather than
sampling in one polymorphic population as in the quasis-
pecies picture of refs. [10,11]. (In a mean-field quasispe-
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cies, appreciable fuzziness occurs only for selection
coefficients s ~ µ, minute in other than viral systems.)
However, the data are also compatible with strong selec-
tion if the selection coefficients sα, and hence the value of
rm, vary between different genes. Clearly, comparing Pstat
with the distribution of sites in a single genome requires
the assumption that the evolutionary histories of sites at
different positions are at least to some extent independ-
ent. Future data of orthologous sites in a sufficient
number of species will be more informative. Thus, further
experimental evidence is needed to clarify the role of
mutational entropy in the observed fuzziness.

Evolvability of binding sites
The present work was aimed at obtaining some insight
into the molecular mechanisms and constraints underly-
ing the dynamics of complex regulatory networks, thereby
quantifying the notion of their evolvability. The program-
ming of binding sites and of cooperative interactions
between them is found to provide efficient modes of
adaptive evolution whose tempo can be quantified for the
case of point mutations. The formation of complicated
signal integration patterns and of multi-factor interactions
in higher eukaryotes, however, requires generalizing our
arguments in two ways. There are further modes of
sequence evolution such as slippage events, insertions and
deletions, large scale relocation of promoter regions, and
recombination. Our ongoing work is aimed at quantifying
their relative importance in terms of substitution rates.
Moreover, there are also more general fitness landscapes
describing, e.g., binding sites interacting via the expres-
sion level of the regulated gene (such as activator-repres-
sor site pairs) and the coupled evolution of binding sites
in different genes.

The rapid evolution of networks hinges upon the exist-
ence of adaptive pathways for these formative steps with a
characteristic time scale Ts ~ 1/(sµN) much smaller than T0
~ 1/µ, the time scale of neutral evolution. The presence of
these two time scales has a further interesting conse-
quence. If the selection pressure on an existing site ceases,
that site will disappear on the larger time scale T0. It is pos-
sible, therefore, that large existing networks have accumu-
lated a considerable number of redundant regulatory
interactions acquired by selection in their past. This may
be one factor contributing to their robustness against
perturbations.

Methods – neutral evolution of binding sites
To estimate the average neutral waiting time T0, we study
the mutation dynamics in the restricted range r = rs +

1,..., , allowing mutations from rs + 1 to rs but suppress-
ing mutations from rs back to rs + 1. We evaluate the time-
dependent solution P(r, t) of the Master equation (6) with

the initial condition P(r, 0) = Pstat(r), and the resulting

cumulative probability . The current

across the lower boundary, J(t) = µ(rs + 1)P(rs + 1,t) = -dQ/
dt, determines the waiting time for a single site,

This is formally solved by expanding in eigenfunctions of
the mutation operator. In the case relevant here, the sys-
tem remains close to equilibrium since the boundary cur-
rent is much smaller than typical currents for r ≥ rs. Hence,
P(r,t) ≈ Pstat(r) exp(-λt) with λ = J(0)/Q(0) = µ(rs + 1)Pstat(rs

+ 1)/Qstat(rs + 1). We conclude that the waiting time for a
single site is positive with probability Qstat(rs + 1), follow-
ing a distribution ~exp(-λt), and 0 otherwise. The result-
ing expectation value is T0 = Qstat(rs + 1)/λ. For L1

independent sites, the distribution of positive waiting
times is still exponential, and to is given by an expression
of the form (17) with a total boundary current

. This yields 
as given by (13). The average waiting time (in units of 1/
µ) becomes large for values of rs in the tail of the distribu-

tion , where . This is the case for

.
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