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Abstract

Background: Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways.
Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and
PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the
poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity
of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the
pathway for microcystin assembly.

Results: Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin
biosynthetic pathway have resulted in convergence on a rare [D-Leu1] microcystin-LR chemical variant. We
detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and
Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster
demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for
conversion of the gene encoding the McyA2 adenylation domain in strains of the genera Nostoc and Phormidium.
However, point mutations affecting the substrate-binding sequence motifs of the McyA2 adenylation domain were
associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu1]
microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met1] microcystin-LR.

Conclusions: Phylogenetic analysis demonstrated that both point mutations and gene conversion result in
functional mcy gene clusters that produce the same rare [D-Leu1] variant of microcystin in strains of the genera
Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could
provide new natural products or increase the activity of known compounds. Our results suggest that the
replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the
modification of the non-ribosomal peptides than point mutations.
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Background
Non-ribosomal peptides are an important class of sec-
ondary metabolites produced by a range of bacteria and
fungi [1-3]. These peptides have many biotechnological
and pharmaceutical applications such as the antibiotics
penicillin [4] and daptomycin [5], and the anticancer
bleomycin [6]. They are synthesized on large modular
non-ribosomal peptide synthetase (NRPS) and polyketide
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synthase (PKS) enzyme complexes. Each NRPS module
is responsible for the recognition and incorporation of
an amino acid during elongation of the peptide inter-
mediate. The basic NRPS module has a condensation
(C), adenylation (A), and peptidyl carrier protein (PCP)
domains. The adenylation domain is responsible for the
selection and activation of amino acids in the form of
aminoacyl adenylates [7]. It is followed by the peptidyl
carrier protein and condensation domains, the former
holding the activated amino acid and the latter making a
peptide bond between two adjacent amino acids [2]. In
addition, auxiliary enzymes may be present and have activ-
ities such as the epimerization, cyclisation, N-methylation,
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iginal work is properly cited.

mailto:kaarina.sivonen@helsinki.fi
http://creativecommons.org/licenses/by/2.0


Shishido et al. BMC Evolutionary Biology 2013, 13:86 Page 2 of 15
http://www.biomedcentral.com/1471-2148/13/86
formylation, and reduction of amino acids [1,3]. The
large variety of non-proteinogenic amino acids and
hydroxyl acids that can be incorporated and further
modified by tailoring enzymes allows the production of
highly complex peptides.
Microcystins are the most frequently reported cyano-

bacterial toxins in aquatic blooms. They are small cyclic
heptapeptides with extensive variation in amino acid
residue composition and are commonly produced by
planktonic strains in fresh and brackish water [8].
Microcystins are potent inhibitors of serine/threonine pro-
tein phosphatases (PP1 and PP2A) and can cause human
intoxication, tumor promotion, and death [9]. The general
structure of microcystin is cyclo(−D-Ala1-X2-D-MeAsp3-
Z4-Adda5-D-Glu6-Mdha7-) (Figure 1a and b). A hybrid
NRPS-PKS enzyme complex directs the synthesis of
microcystin and is encoded in the 55–55.6 kb (mcy) gene
cluster (Figure 1c) [10-13].
Phylogenetic studies indicate that the mcy gene clus-

ter has an ancient origin among cyanobacteria [14-17].
Other studies suggest that horizontal transfer, gene loss,
and recombination events in the microcystin gene clus-
ter explain the distribution and variation of the genes
among the closely related Microcystis spp. [18-20]. Re-
combination events affecting the adenylation domain have
been described in genes encoding McyA1, McyB1 and
McyC [16,18,19,21-25]. Positive selection acting on the
adenylation domains of McyB1 and McyC was reported as
Figure 1 Microcystin chemical structures and biosynthetic enzymes. (
D-erythro-β-methylaspartic acid. Adda: (2S,3S,8S,9S)-3-,amino-9-methoxy-2,6,8-tri
and Z are the highly variable positions. (c) NRPS and PKS involved in microcys
the assembly of microcystin (each position of the microcystin structure is indi
epimerization, TE. thioesterase domains are shown in white and the PCP. pep
phylogenetic analysis are indicated in grey, in addition of their respective PCP
the possible cause of the large number of microcystin vari-
ants produced by cyanobacteria [24]. Deletion of the entire
N-methyltransferase domain of mcyA in Anabaena or point
mutations in this gene in Microcystis were associated with
the absence of N-methylation in the microcystins pro-
duced by these strains [23,26]. Furthermore, recom-
bination in the same region (mcyA1) was related to the
synthesis of microcystins containing 2-amino-2-butenoic
acid (Dhb) in some strains of the genus Planktothrix [25].
Such genetic rearrangements, positive selection, and re-
combination events act to increase the chemical variability
of microcystins found in nature. However, the production
of the same rare microcystin variant in disparate taxo-
nomic lineages of cyanobacteria raises questions about the
genetic mechanism underlying this phenomenon [27-31].
Evolutionary diversification of NRPS and PKS pathways is
achieved through genetic mechanisms such as recombin-
ation, duplication, fusion or fission of genes, deletion or
substitutions of domains, circular permutations, gene loss
and horizontal gene transfer [32,33]. Here, we show that
the production of a rare [D-Leu1] microcystin (MC)
variant in three distantly related genera of cyanobacteria is
the result of three independent evolutionary events lead-
ing to convergence on the same chemical structure. There
is an interest in engineering non-ribosomal peptide bio-
synthetic pathways in order to increase the production
levels of known compounds or create new bioactive
compounds [3]. Our results suggest that the replacement
a) [D-Leu1] microcystin-LR and (b) [D-Met1] microcystin-LR. MeAsp:
methyl-10-phenyldeca-4,6-dienoic acid. Mdha: N-methyldehydroalanine. X
tin synthesis from Microcystis. The order of the enzymes corresponds to
cated under each adenylation domain). N. N-methyltransferase, Ep.
tidyl carrier protein domain in black. Regions included in the
domains.
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of entire adenylation domains might be a more successful
strategy for changing substrate specificity in the engineering
of NRPS than point mutations.

Results
Production of the [D-Leu1]MC variant by taxonomically
disparate cyanobacteria
We documented the production of the rare [D-Leu1]
MC variant in morphologically disparate cyanobacteria
(Figure 2). These cyanobacteria were assigned to the
genera Nostoc, Phormidium and Microcystis. Nostoc sp.
strain UK89IIa was identified based on morphology and
16S rRNA gene sequence similarity (Figures 2 and 3). The
Phormidium sp. CENA270 strain has a thick sheath,
tangled filaments and small (≤6.3 μm) cells that indicate
the presence of similar characters with Phormidium,
even though the cells in the trichomes are distinctly
wider (5–6.3 μm) than their length (1–3 μm). The 16S
rRNA gene sequence of strain CENA270 was 98% of
Phormidium sp. DVL1003c, which also produces micro-
cystin. These two strains form a clade with Phormidium,
Lyngbya, Oscillatoria and Oscillatoriales strains in the 16S
rRNA trees (Figure 3; Additional file 1: Figure S1). The two
Microcystis strains had previously been identified [27,34].
Nostoc sp. UK89IIa produced four variants of micro-

cystins, while Phormidium sp. CENA270 produced five
variants (Table 1). All of the detected microcystin variants
(a)

(c) 

Figure 2 Photomicrographs of the studied strains. (a) Microcystis aerug
Phormidium sp. CENA270.
produced by these two strains contained D-Leu, and none
of the strains produced detectable levels of microcystins
that contained D-Ala. The two Microcystis strains
produced at least twelve variants altogether (Table 1,
Additional file 1: Table S2 and Additional file 2: Table S1).
However, 97% of the microcystin variants in Microcystis
aeruginosa NPLJ-4 and 80% of the microcystin produced
by Microcystis sp. RST 9501 contained D-Leu at position 1
(Table 1, Additional file 2: Table S1). We carried out fur-
ther chemical analysis to characterize the new microcystin
variants produced by these strains.
In all known microcystin variants, the amino acid con-

figuration is D in position 1 and L in positions 2 and 4
(Figure 1a and b). Therefore, the chirality of the amino
acids in positions 1, 2 and 4 of the major microcystin
variants produced by the studied strain was investigated
by using deuterated acid hydrolysis reagents (DCl, D2O).
This confirmed that the hydrolyzed microcystins contained
D-Leu (Additional file 1: Table S2).

Production of [Met1]MC-LR by Microcystis spp.
Mass spectrometry strongly suggested that Microcystis
strains NPLJ-4 and RST 9501 produced new microcystin
variants that contained Met instead of D-Leu (Table 1,
Figure 1b). In order to confirm these results, Microcystis sp.
RST 9501 cells were grown with 32S and 34S as the sole
source of sulfur. LC-MS revealed an increase in [Met1]
(b)

(d)

inosa NPLJ-4. (b) Microcystis sp. RST 9501. (c) Nostoc sp. UK89IIa. (d)
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Figure 3 Phylogenetic analysis of the 16S rRNA gene. Maximum-likelihood tree based on the 16S rRNA gene. Bootstrap values above 50%
from 1000 maximum-likelihood bootstrap replicates are given at the nodes. The studied strains are in bold and highlighted. Symbols for
microcystin variants in position one: ● [D-Ala1]; ■ [D-Leu1]; ★ [D-Met1]; ◣ [D-Ser1].
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MC-LR protonated ion mass from m/z 1,055.5 (control
containing 32S) to 1,057.5 (34S-labelled samples), indicat-
ing the presence of a sulfur atom in the microcystin, and
the same differences could be visualized in the fragmenta-
tion analysis (Additional file 1: Figure S2). The product
ion spectra of [Met1]MC-LR could be compared with the
spectra of [D-Leu1]MC-LR and -RR (Additional file 1:
Figures S2a and S3a and b). The results confirmed the
presence of a new variant of [Met1]MC in the two
Microcystis strains NPLJ-4 and RST 9501. However,
Microcystis sp. RST 9501 produced 14 times more
[Met1]MC-LR than strain NPLJ-4. On the other hand,
Microcystis aeruginosa NPLJ-4 produced a larger diver-
sity of microcystin variants, but most of them in trace
amounts, such as [Val1]MC-LR and [Phe1]MC-LR.
Phylogenetic analysis of microcystin catalytic domains
In order to understand the order and timing of genetic
events leading to the production of the rare [D-Leu1]MC
variant, we conducted phylogenetic analysis of the mcy
gene cluster. Phylogenetic trees based on concatenated
mcyD and mcyE gene sequences and the housekeeping
16S rRNA gene were robust and found to have a similar
pattern (Additional file 1: Figure S4). Strains producing
the [D-Leu1]MC variant do not group together but
instead group with strains that produce the [D-Ala1]MC
variant in both trees (Additional file 1: Figure S4). We
constructed alignments based on the NRPS catalytic
domains encoded in each of the microcystin biosynthetic
genes (Figures 1c, 4 and 5). The condensation domains
and peptidyl carrier proteins of each module encoded in



Table 1 Chemical variants of microcystin detected in LC-MS/MS analyses

Microcystin variant [M+H]+ (m/z) Microcystis aeruginosa NPLJ-4 Microcystis sp. RST9501 Nostoc sp. UK89IIa Phormidium sp. CENA270

[Leu1]MC-LR 1037 76 76 96 31

[Leu1, Asp3]MC-LR 1023 19 <1 2 18

[Met1]MC-LR 1055 1 18 - -

[Met1, Asp3]MC-LR 1041 2 - - -

[Leu1, Dha7]MC-LR 1023 1 - 1 -

[Leu1]MC-HilR 1051 - 3 - -

[Leu1]MC-HphR 1085 - - 2 -

[Leu1]MC-LHar 1051 - - - 7

[Leu1]MC-RR 1080 - - - 31

[Leu1, Asp3]MC-RR 1066 - - - 13

Values given as the percentage of relative area of the peaks in the protonated molecular ion chromatograms for the main microcystins variants produced by the
studied strain. Hil, homoisoleucine. Hph, homophenylalanine. Har, homoarginine.
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the mcy gene cluster grouped together according to their
encoding gene and were placed in separate clades in the
phylogenetic tree (Figure 4a and b). A similar pattern
was also observed for the adenylation domains of McyG,
McyE, and McyB2 (Figure 5), and the epimerization do-
mains of McyA (Figure 4c). However, the adenylation
domain sequences of McyA1, McyA2, McyB1, and McyC
are mixed and do not form separate clades (Figure 5). A
phylogenetic tree was constructed using adenylation do-
main sequences of McyA2 and other NRPSs obtained from
BLASTp searches of the nr database at NCBI (Figure 6).
The McyA2 adenylation domains of the Microcystis strains
were grouped in a single well-supported clade, irrespective
of whether they produced [D-Leu1]MCs or [D-Ala1]MCs
variants. By contrast, the McyA2 adenylation domain of
Phormidium sp. CENA270 and Nostoc sp. UK89IIa did
not group together with other McyA2 adenylation domains.
Instead, the Phormidium sp. CENA270 McyA2 adenylation
domain was placed in the same clade of McyB1 adenylation
domain of Microcystis strains. The McyA2 adenylation
domain of Nostoc sp. UK89IIa grouped with adenylation
domain sequences from Nostoc punctiforme PCC73102 and
Nostoc sp. GSV224.

Substrate specificity of the McyA2 adenylation domain
Conservation of the tertiary structure of adenylation
domains makes it possible to predict amino acid bind-
ing pockets and consequently the substrate specificity.
All strains that produce the [D-Ala1]MC variants ana-
lyzed in this study have identical predicted McyA2

adenylation domain binding pocket sequences, with
the exception of Planktothrix agardhii NIVA-CYA
126/8 (Table 2). There are only two conserved residues
(D235 and K517) in the predicted binding pocket in
strains producing [D-Ala1] or [D-Leu1]MC variants.
However, Nostoc sp. UK89IIa and Phormidium sp.
CENA270 have identical predicted binding pockets,
differing substantially from those of strains producing
[D-Ala1]MC variants (Table 2). Microcystis aeruginosa
NPLJ-4 and Microcystis sp. RST 9501 have identical
predicted binding pockets, which differ by three amino
acids at positions 301, 330, and 331 in comparison to
strains that activate L-Ala (Table 2). Strains producing
[D-Ala1]MC variants have polar amino acids (Thr or Ser)
at position 330 of the binding pocket, while strains produ-
cing [D-Leu1]MC variants have hydrophobic non-polar
amino acids (Ile and Val) at this position (Table 2).

Genetic variations in the McyA2 adenylation domain
Microcystis spp. NPLJ-4 and RST 9501, Nostoc sp. UK89IIa
and Phormidium sp. CENA270 produce the same rare
[D-Leu1]MC variant [27,31]. Recombination events affect-
ing the substrate specificity of the mcyA2 gene were
detected in Nostoc sp. UK89IIa and Phormidium sp.
CENA270 by four different methods (Table 3). Breakpoints
with statistical support within the mcyA gene were identi-
fied in UK89IIa and CENA270 (Figure 7a). The identified
predicted breakpoints were visualized in a recombination
breakpoint distribution plot (Figure 7b). A lengthy region
replaced in a recombination event in the mcyA gene
in Nostoc sp. UK89IIa (1029 bp) and Phormidium sp.
CENA270 (167 and 707 bp) was observed in the present
study (Figure 7a). The predicted binding pockets respon-
sible for amino acid selection and activation were found
within this region in both cases.
No evidence for recombination was detected in the

mcyA2 gene from Microcystis aeruginosa NPLJ-4 or
Microcystis sp. RST 9501. However, the McyA2 adenylation
domain of Microcystis spp. NPLJ-4 and RST 9501 differed
by 17 amino acids residues compared to other McyA2

adenylation domains of Microcystis strains that produce
microcystins containing D-Ala (Additional file 1: Figure
S5). Five of the 17 amino acids residues were predicted to
be located within 8 Å of the substrate, and three of them
were considered to be within the binding pocket. Mutants
based on Microcystis sp. RST 9501 McyA2 adenylation



Figure 4 Conservative evolutionary history of domains surrounding the McyA2 adenylation domain in the microcystin biosynthetic
gene cluster. Maximum-likelihood tree based on amino acid sequences of the (a) condensation domain, (b) peptidyl carrier protein domain and
(c) epimerization domain within the mcy gene cluster. Phylogenetic tree inferred using MEGA 5. Bootstrap values above 50 per cent from 1000
respectively neighbor-joining, maximum parsimony and maximum-likelihood bootstrap replicates are given at the nodes. The studied strains are
in bold and indicated with *.
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Figure 5 Evolutionary history of adenylation domains of microcystin biosynthetic gene cluster. Maximum-likelihood tree based on amino
acids sequences of adenylation domain within mcy gene cluster. Phylogenetic tree inferred using MEGA 5. Bootstrap values above 50 per cent
from 1000 respectively neighbor-joining, maximum parsimony and maximum-likelihood bootstrap replicates are given at the nodes. The studied
strains are in bold and indicated with *.
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Figure 6 Independent evolutionary history of McyA2 adenylation domain. Maximum-likelihood tree based on amino acids sequences
inferred using MEGA 5. Bootstrap values above 50 per cent from 1000 respectively neighbor-joining, maximum parsimony and maximum-
likelihood bootstrap replicates are given at the nodes. The studied strains are in bold and indicated with *.
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domain were constructed to analyze the effect of these
three amino acids residues on binding of the predicted
substrate amino acids. Surprisingly, the results obtained
in the ATP-pyrophosphate exchange assay showed the
highest specificity for L-Val in all the mutants and the
wild type (Additional file 1: Figure S6). Furthermore,
the results indicated a higher activation of L-Ile instead
of the expected L-Leu and L-Ala. The high levels of
miscognate activation indicate that the catalytic efficiency
of the enzymes in recognizing nonpolar amino acid was
generally higher, although some specificity was observed
for L-Tyr (Additional file 1: Figure S6).

Discussion
Identification of the rare [D-Leu1]MC and other
microcystin variants
Microcystins form a large family of cyclic toxins charac-
terized by a highly conserved chemical structure with
an extensive amino acid composition at the two variable
positions, two and four (Additional file 1: Figure S7 and
Table S3). In this study, we detected rare [D-Leu1]MC
variants from strains of the distantly related genera
Microcystis, Nostoc, and Phormidium. Almost all
microcystins reported in the literature contain D-Ala in
position 1 [8]. Previously, microcystins containing
D-Leu [27-31], Gly [35], and D-Ser [36,37] have also
been reported. The [D-Leu1]MC variant has previously
been found from Microcystis aeruginosa NPLJ-4,
Microcystis sp. RST 9501, and water blooms from
Brazil and Canada dominated by Microcystis strains
[27-31,34]. The production of microcystins in lichen
thalli by Nostoc symbionts has previously been reported
[37,38]. Nostoc strains isolated from lichen symbiosis pro-
duce a large variety of microcystins including the [D-Leu1]
MC variant [31].
Microcystins are best known from aquatic habitats,

where they are frequently reported from blooms. Al-
though microcystins are more commonly detected in



Table 2 Predicted binding pockets of the adenylation domain of McyA2

Strain Binding pocket Score
%(a)

Predicted
(a)

Activated

235 236 239 278 299 301 322 330 331 517

Anabaena sp. 90 D L F N N A L T Y K 100 Ala Ala

Microcystis aeruginosa NIES-843 - - - - - - - - - - 100 Ala Ala

Microcystis aeruginosa PCC7806 - - - - - - - - - - 100 Ala Ala

Microcystis aeruginosa UV027 - - - - - - - - - - 100 Ala Ala

Microcystis aeruginosa K-139 - - - - - - - - - - 100 Ala Ala

Nostoc sp. 152 - - - - - - - - - - 100 Ala Ala*

Phormidium sp. DVL1003c - - - - - - - - - - 100 Ala Ala

Planktothrix rubescens NIVA-CYA 98 - - - - - - - - - - 100 Ala Ala

Planktothrix agardhii NIVA-CYA 126/8 - - - - - - - S - - 90 Ala Ala

Microcystis sp. RST 9501 - - - - - G - I C - 70 Cys Leu, Met

Microcystis aeruginosa NPLJ-4 - - - - - G - I C - 70 Cys Leu, Met ±

Nostoc sp. UK89IIa - A W F L G N V V - 100 Leu Leu

Phormidium sp. CENA270 - A W F L G N V V - 100 Leu Leu

The adenylation domain of McyA2 is responsible for amino acid activation in position one of microcystins.
(a) Prediction obtained using the NRPSpredictor2 program [72,73]. Trace amounts of *Serine and ± Valine or Phenylalanine detected in LC-MS/MS.
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planktonic strains, terrestrial and benthic strains have also
been reported to be producers of these compounds [8,39].
Benthic environmental samples containing microcystins
have been reported from Switzerland [40], Spain [41],
Australia [42], and Antarctica [43]. Microcystin produc-
tion in isolated cyanobacterial strains from benthic envi-
ronments has been reported from Egypt [44], New
Zealand [45], and the USA [46]. It is not always clear
which cyanobacterium produces the toxin in benthic mats
of cyanobacteria. A strain of the genus Phormidium was
isolated from the walls of a reservoir in the USA and
shown to produce a range of microcystin variants, all of
which contained D-Ala (Additional file 1: Table S3) [46].
Our results demonstrated that Phormidium sp. CENA
270, isolated from a pond in the northeast of Brazil, also
produces microcystins but with D-Leu in place of D-Ala.
In the phylogenetic analysis of the 16S rRNA gene, the
two Phormidium strains cluster together with Lyngbya,
Oscillatoria, Phormidium and Oscillatoriales (Additional
file 1: Figure S1). The biomass of benthic strains can go
unnoticed to the casual observer but be massive enough
to cause animal poisonings [40,45]. Moreover, when the
strains lyse, microcystins are released into the water, which
Table 3 Recombination events affecting the substrate specific

Strain Parents*

Major Minor RDP GENECON

Nostoc sp. UK89IIa N152 M9501 1.423x10-9 5.882x10-9

Phormidium sp. CENA270 ±P1003c ±Ana90 1.242x10-6 1.793x10-1

¦P1003c ¦M027 4.209x10-3 -

Analysis was performed in the RDP3 program and breakpoint positions are indicate
recombination are associated with the lowest P-values.
* M7806 =Microcystis aeruginosa PCC7806; M139 =Microcystis aeruginosa K-139; N15
DVL1003c; Ana90 = Anabaena sp. 90; M027 =Microcystis aeruginosa UV027. Breakpo
suggests that the analysis of toxic benthic cyanobacteria is
also important in water-quality management.
The chemical structure of microcystins is highly con-

served, with variation at X and Z positions (Figure 1a and
b) resulting in over 86 reported variants [39]. In this study,
we demonstrated that Microcystis strains NPLJ-4 and RST
9501 produce new microcystin variants containing me-
thionine in addition to the rare [D-Leu1]MC variants. Met
is also present in oscillamide B [47] and in microcystin-M
(O)R and -YM [48]. Nodularia spumigena strains also
produce nodulapeptins, which commonly contain Met
[49,50]. According to analysis using the NRPS Norine
database, Met contains a methylthiol group and is rare in
non-ribosomal peptides [51]. The presence of the highly
active sulfhydryl group in the thiol group could explain
the scarcity of secondary metabolites containing Met or
Cys. If amino acid recognition by the McyA2 adenylation
domain is not strict, the incorporation of Met instead of
Leu is logical because of the similar size and hydropho-
bicity of the side chains. Here, we demonstrated that me-
thionine is incorporated in the microcystins produced by
Microcystis strains from brackish water. Microcystin
variants are constantly being discovered, making the
ity of the adenylation domain of the mcyA2 gene

Average P-value

BootScan MaxChi Chimaera SiScan 3Seq

2.306x10-3 5.938x10-12 7.331x10-3 7.789x10-16 2.192x10-24

8 3.361x10-6 6.848x10-14 1.200x10-3 7.894x10-27 2.410x10-105

- 2.274x10-5 9.115x10-4 6.746x10-12 -

d in Figure 7a. The P-value cutoff was chosen as 0.05 and the best signals for

2 = Nostoc sp. 152; M9501 =Microcystis sp. RST 9501; P1003e = Phormidium sp.
int positions: ± 432 (undetermined) to 1139 and ¦ 216 to 383 (undetermined).
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Shishido et al. BMC Evolutionary Biology 2013, 13:86 Page 10 of 15
http://www.biomedcentral.com/1471-2148/13/86
microcystin family extremely diverse, and posing a chal-
lenge for the detection of microcystins from water samples.

Convergence on [D-Leu1]MC variant chemical structure
Phylogenetic analysis of the McyA2 adenylation domains
provided evidence for independent evolutionary events
affecting the substrate specificity of the enzyme in three
disparate genera of cyanobacteria (Figures 5 and 6).
Breakpoint analysis suggests the replacement of almost
the entire substrate specificity-conferring portion of the
adenylation domain in Phormidium sp. CENA270 and
Nostoc sp. UK89IIa. These gene conversions dramatically
altered the predicted substrate specificity of the McyA2

adenylation domain in these strains and are linked to the
synthesis of the [D-Leu1]MC variant. However, point mu-
tations affecting the substrate specificity of the McyA2

adenylation domain in Microcystis strains NPLJ-4 and
RST 9501 led to the synthesis of the [D-Leu1]MC and
[Met1]MC variants.
Phormidium sp. CENA270 and Nostoc sp. UK89IIa

are not grouped together with other McyA2 adenylation
domains (Figure 6). The McyA2 adenylation domain of
Phormidium sp. CENA270 grouped with the McyB1

adenylation domain from Microcystis strains, which
produce microcystin variants containing D-Ala [10,52].
The adenylation domains of NosA1 and NosC1 from the
nostopeptolide gene cluster are placed in the same clade
with the McyA2 adenylation domain from Nostoc sp.
UK89IIa (Figure 6). They are involved in the incorpor-
ation of Ile/Leu/Val and Leu, respectively, in Nostoc sp.
GSV224 [53].
Genetic variation in the microcystin synthetases can

be visualized in the phylogenetic trees showing two dif-
ferent patterns. While the amino acids of condensa-
tion, peptidyl carrier protein, and epimerization
domain regions can be grouped according to the en-
zyme sequence (McyA, McyB, McyC, McyE, and McyG
grouped together), the adenylation domain phylogeny
clearly indicates recombination (Figures 4 and 5).
Recombination in adenylation domains has previously
been described for the adenylation and condensation
domains of McyB1 and McyC [16]. The recombination
and positive selection in the McyB1 adenylation do-
main are involved in the high variability of amino acids
incorporated at position 2 of the microcystin
[16,18,22,24,25]. These genetic events have been
related to the increase in the chemical diversity of
microcystin. Interestingly, our results show that these
different evolutionary events are involved in the con-
vergence of the [D-Leu1]MC-LR.
Nevertheless, the selective forces behind this convergent

evolution remain unclear. Competition in brackish water
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and different seasonal periods have possibly acted as se-
lective forces. The chemical diversity of microcystins could
be related to protein phosphatase inhibition as a form of
chemical defense, for example against predators. Previous
studies have indicated that microcystins can affect some
predators, acting as metal chelators, in gene regulation, or
in the inter- and intra-specific signaling [54-59]. However,
microcystins join a large number of secondary metabolites
produced by different organisms that have no assigned
biological function. According to the most accepted view,
these compounds are produced due their ecological or
physiological function and benefits for the producer or-
ganisms [60]. However, more information is still needed
concerning the advantages in the production of these
secondary metabolites. The biological role of a mixture of
different bioactive compounds produced by the same
strain would be interesting to study.

Prediction of McyA2 adenylation domain substrate
specificity
The eight to ten amino acid residues forming the
adenylation domain binding pocket are the main deter-
minants of substrate specificity [7,61,62]. In our study,
Phormidium sp. CENA270 and Nostoc sp. UK89IIa were
shown to produce [D-Leu1]MC variants and have identical
binding pocket sequences (Table 2). Such amino acids
signatures had been already described as presenting Leu
specificity [7]. The Microcystis strains NPLJ-4 and RST
9501 differ in the binding pocket positions 301, 330, and
331 from the strains producing [D-Ala1]MCs. Residues at
positions 301 and 330 are regarded to be less variable than
at position 331 [7].
The adenylation domain binding pocket of Microcystis

strains NPLJ-4 and RST 9501 has three different amino
acid residues and a broader diversity of microcystin
variants at position 1. Despite the fact that almost the
entire binding pocket of Phormidium sp. CENA270 and
Nostoc sp. UK89IIa differs from the other studied
strains, only microcystin variants containing Leu at pos-
ition 1 were detected. Re-engineering of non-ribosomal
peptides has been a challenge in order to synthesize
new peptides or to increase the activity of known com-
pounds. The engineering of NRPSs to change substrate
specificity can in some cases be achieved by point muta-
tions. However, our results suggest that the replacement
of entire domains might be a more successful strategy
for producing a single product.
Replacement of almost the entire McyA2 adenylation

domain in Nostoc sp. UK89IIa and Phormidium sp.
CENA270 resulted in specificity towards Leu. Neither
strain produced detectable levels of microcystin variants
that contain other amino acids at this position. The re-
combination detected in the mcyA2 gene of these strains
affects the substrate-conferring portion of the McyA2
adenylation domain, which is important for the selection
and activation of amino acids [7,61,62]. Previously, it has
been reported that recombination among different
adenylation domains from mcyB1 and mcyC genes has
led to a change in amino acid activation [24].
We designed an experiment in order to test whether

point mutations at positions 301, 330, and 331 could
change the substrate specificity of the adenylation do-
main. However, single amino acids changes did not have
the expected results. All the constructs and the wild type
were found to activate valine in ATP-pyrophosphate
(PPi) exchange assays. A previous study [7] demon-
strated that in the case of single or multiple mutations,
the specificity of the wild type is not lost, but there is an
increase in new substrate specificity. A comparison of
adenylation domains from Microcystis strains that acti-
vate Ala and Leu reveals that several amino acid residues
differ between them (Additional file 1: Figure S5). Of
these different amino acid residues, five are 8 Å or less
distant from the substrate and only three belong to the
binding pocket. Although it is predicted that amino acid
residues in the binding pocket are involved in selectivity,
the catalytic efficiency could also be affected by the ter-
tiary structure and proteinogenic surrounding area of
the adenylation domain [63]. Promiscuity of the en-
zymes, allowing them to activate different substrates,
could also be involved in the high variability of
microcystin variants. Promiscuous activation of amino
acids with a hydrophobic side chain by TycA, involved
in the synthesis of the antibiotic tyrocidine A, has been
reported [64]. Moreover, adenylation domains activating
multiple substrates have been described from the
fengycin [65], lychenysin [66], nostopeptolide [53], and
cyanopeptolin [67] biosynthetic pathways.
Conclusion
Our study revealed that independent gene conversion
events and point mutations led to the production of the
same microcystin variant by strains belonging to three
different cyanobacterial orders. The large chemical
diversity of microcystins is proposed to be mostly the
result of genetic rearrangements, positive selection, and
recombination acting to increase structural diversity.
Furthermore, the replacement of the entire adenylation
domain seems to result in a more specific change in
non-ribosomal peptides than point mutation. New vari-
ants of [Met1]MCs were detected in Microcystis strains
NPLJ-4 and RST 9501. Our study also revealed a new
cyanobacterial strain (Phormidium sp CENA270) produ-
cing a rare variant of the potent hepatotoxic microcystin.
This finding expands on the recent increase in the detec-
tion of microcystin-producing terrestrial and benthic
cyanobacterial strains.
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Methods
Studied strains and culture conditions
Phormidium sp. CENA270 was isolated from a pond during
the rainy season in Paulista (Paraiba, Brazil) and maintained
in BG-11 medium [68], but supplemented with half the de-
scribed amount of combined nitrogen. Nostoc sp. UK89IIa
was isolated from the lichen Peltigera neopolydactyla sam-
pled in Laukaa (Finland) and maintained in Z8 medium
[69] lacking a source of combined nitrogen. Microcystis
strains NPLJ-4 and RST 9501 were respectively isolated
from the brackish water of Jacarepaguá Lagoon, Rio de
Janeiro [34], and the Patos Lagoon estuary, Rio Grande do
Sul [27], in Brazil and maintained in Z8 medium [69] with
and without a source of combined nitrogen. The biomass
for chemical and molecular analysis was obtained by
growing the strains in 2 x 3 L of culture medium under
constant light of 3–8 μmol m-2 s-1 and a temperature
of 24 ± 1°C. Microcystis sp. RST 9501 was grown in
Z8 medium replaced with stable isotope 34S-labeled
MgSO4.7H2O (catalogue no. IS7080; 90 atom % 34S;
Icon) for the detection and identification of sulfur-
containing microcystins.

Sequencing and phylogenetic analysis
Freeze-dried cells (6–50 mg) were used for DNA extrac-
tion with a DNeasy Plant mini kit (Qiagen). Two different
sizes of glass beads (180 μm and 425–600 μm, Sigma-
Aldrich) were added and the cells were disrupted by
shaking at 6.5 m s-1 for 60 seconds in 3 batches using a
FastPrep (M.P. Biomedicals). An additional 1 h incubation
at 100°C was necessary in order to extract Phormidium sp.
CENA270 genomic DNA due the thick sheath sur-
rounding the trichomes of this strain. PCR reaction
conditions are described in Additional file 3. The PCR
products were cloned in pCRW2.1-TOPO (TOPO TA
Cloning, Invitrogen) with the following modifications
from the manufacturer’s instructions: the entire cloning
reaction was used for transformation in 25 μL of TOP10
competent cells, 100 μL of SOC medium was added to
the mixture after heat shock and incubated for 20 min
in shaker (160 RPM) at 37°C, and the entire reaction
volume was plated in LB plates containing 150 μg mL-1

of ampicillin.
Plasmid extraction was performed using the QIAprep

Spin Miniprep kit (Qiagen) and cycle sequencing was
carried out using an ABI PrismW BigDyeW Terminator
v3.1 cycle sequencing kit. The oligonucleotide primers
used to sequence PCR products are given in Additional
file 1: Table S4. Sanger sequencing was performed in an
ABI PRISM 310 Genetic Analyzer. Contigs were aligned
in the program Phred/Phrap/Consed (Philip Green,
University of Washington, Seattle, USA), accepting bases
with quality >20. BLASTn was used to search the nr
database at NCBI for related strains to be included in
phylogenetic analysis. GenBank accession numbers are
indicated in Additional file 1: Table S5. Maximum-
likelihood trees were constructed in MEGA 5.0 [70]. The
best substitution model for each sequence was chosen
based on analysis in MEGA 5.0 (K2 +G for the small tree
of 16S rRNA; GTR +G + I for mcyD concatenated with
mcyE; K2 + G + I for long tree of 16S rRNA; JTT +G + I
for condensation, adenylation, and epimerization domains
sequences of McyA; and JTT +G for peptidyl carrier
protein domain sequences of McyA). Neighbor-joining
and maximum parsimony trees were constructed using
the respective methods: JTT + G and CNI on random
trees. The domains present in the McyA amino acid
sequences were detected in the program PKS/NRPS
Analysis [71]. Adenylation domain substrate specifi-
city prediction was performed using the program
NRPSpredictor2 [72,73].

Recombination test
The nucleotide sequences of 13 cyanobacterial strains
(Additional file 1: Table S5) corresponding to second
adenylation domain of mcyA (mcyA2) were aligned in
ClustalW (MEGA 5.0). The recombination analyses were
performed in the program RDP3 [74,75], which imple-
ments different methods to detect recombination. The
methods used in this study were: original RDP [76],
BOOTSCAN [77], GENECONV [78], MAXCHI [79],
CHIMAERA [80], SISCAN [81] and 3Seq [82]. Default
parameters were used and a P-value cutoff was chosen as
0.05. Nucleotide sequence comparison was performed
in BLASTn (NCBI database). A breakpoint distribution
was plotted, allowing the visualization of recombination
hotspots [74]. The phylogenetic compatibility matrix was
calculated by TreeOrder scan in the program SSE [83].

McyA2 adenylation domain mutation and heterologous
expression
A fragment containing the mcyA2 adenylation domain
was obtained from Microcystis sp. RST 9501 by PCR
using the primers RSTPETF and RSTPETR (Additional
file 1: Table S6). The PCR reaction conditions are described
in Additional file 3. The 1,646 bp DNA fragment was
cloned in pET101/D-TOPO (Invitrogen) and transformed
in TOP10 chemically competent Escherichia coli cells.
Mutants were obtained by site-directed mutation with
PCR mutagenesis using specific primers (Additional
file 1: Table S6). Detailed information on mutagenesis is
presented in Additional file 3. Mutant G301A contains an
Ala instead of Gly at position 301, mutant I330T a Thr
instead of Ile at position 330, mutant C331Y a Tyr instead
of Cys at position 331, and mutant G301A, I330T, C331Y
has all three mutations. The presence of the desired mu-
tation was verified by sequencing. Mutated and wild
type adenylation domains were cloned into pFN18A
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(HaloTagW 7) T7 FlexiW vector (Promega, WI, USA) and
transformed in Escherichia coli KRX competent cells
(Promega) following the manufacturer’s instructions.
The adenylation domain was heterologously expressed
and purified using the HaloTagW Protein Purification
System (Promega). The ATP-pyrophosphate exchange
assay was performed as previously described [49].
Chemical analysis
Identification of microcystin variants was performed using
an Agilent 1100 Series LC/MSD Trap XCT Plus high-
performance liquid chromatograph mass spectrometer
(Agilent Technologies). Freeze-dried biomass was extracted
with 1 mL of methanol in a FastPrep homogenizer (M.P.
Biomedicals). The supernatant was injected to a Luna C18
(2) column (150 × 2.1 mm, 5 μm, Phenomenex) for the
LC-MS analysis. Electrospray ionization in positive mode
was used and the product ion spectra of protonated
microcystins were analyzed to identify the structure of
the variant.
The remains of the methanol extracts were mixed with

water and dichloromethane in equivalent proportions
(1:1:1). The hydrophilic upper phase was diluted with water
and passed through a preconditioned SPE column (strata
8B-S100-UBJ, Phenomenex). Microcystin-containing frac-
tions were recovered in 1 mL of methanol. Microcystins
were isolated and purified by HPLC (HP 1100 Series modu-
lar chromatograph, Agilent Technologies). The microcystin
fractions were hydrolyzed with 200 μL of 6 M deuterium
chloride (catalog no. 543047; 35 wt % solution in D2O, 99
atom % D, Sigma-Aldrich) and prepared for enantiomeric
amino acid analysis using FDAA (Pierce) as a Marfey
reagent, as described previously [84]. Chiral analysis of the
amino acids alanine, leucine, arginine, and homoarginine
was carried out using LC-MS. Amino acids from the
common [D-Ala1] MC-LR and -RR variants produced
by Anabaena sp. 90 were analyzed as references. De-
tailed information on the chemical analysis is provided
in Additional file 3.
Additional files

Additional file 1: Table S2. Chiral analysis of microcystin amino acids.
Table S3: Amino acids incorporated by each adenylation domain of
microcystin biosynthetic enzymes for the studied strains. Table S4:
Primers used in this study. Table S5: Access number of strains compared
in this study. Table S6. Primers designed for PCR mutagenesis. Figure S1:
Phylogenetic analysis of 16S rRNA gene focusing in Phormidium sp.
CENA270. Figure S2: Product ion spectra of [Met1] MC-LR of Microcystis
sp. RST 9501 in the labeling experiment. Figure S3: Product ion spectra of
protonated [Leu1]microcystins of Phormidium sp. CENA270. Figure S4.
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synthetase genes. Figure S5: Comparison of McyA2 adenylation domain
sequences from Microcystis strains. Figure S6: ATP-PPi exchange assay.
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