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Abstract

Background: The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most
rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this
subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the
self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain
(designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain
receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are
composite molecules that originated by domain fusion of the two component proteins. Here, we explored the
origin and diversification of SRLKs by phylogenomic methods.

Results: Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum
parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion
/fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic
analyses to infer the origination of SRKs by identifying the proper outgroups.

Conclusions: Two gene fusion events were inferred and the major gene fusion event occurred in the common
ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was
illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient
haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization
in the common ancestor of the Brassicaceae.
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Background
The “S domain” (SD) was initially defined by the S-locus
glycoprotein (SLG) and the S-locus receptor kinase
(SRK), which are encoded by two closely-linked genes in
the Brassica self-incompatibility (SI) determining locus,
the S locus. SLG, which was the first S locus-derived
gene identified, encodes a secreted glycoprotein, whereas
SRK encodes a transmembrane receptor kinase with an
extracellular domain that shares extensive sequence
similarity with SLG [1]. SRK is the female determinant
of specificity in “self-pollen” recognition, and in self-
incompatible species of the Brassicaceae (crucifers),
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reproduction in any medium, provided the or
the S haplotype-specific binding of SRK to its cognate
pollen-borne ligand S locus cystein rich protein/S locus
protein 11 (SCR/SP11) activates the SRK and triggers
a signaling cascade that culminates in “self-pollen”
rejection [2,3]. The extracellular S domain of SRK is
responsible for ligand binding [4,5], whereas the intracellu-
lar kinase domain (KD) is thought to translate this signal
into a cellular response by phosphorylating Arm Repeat
Containing (ARC1) protein, an E3 ligase involved in protein
ubiquitination [6,7]. With the increasing availability of
sequenced plant genomes, it has been realized that proteins
having a structure resembling SRKs, designated S-domain
receptor-like kinases (hereafter SRLKs), form one of the
largest and most-rapidly expanding subfamilies within the
plant receptor-like/Pelle kinase superfamily [8-11]. In
addition, a large group of receptor-like cytoplasmic kinases
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(RLCKs) resembling the intracellular kinase domains of
SRLKs but lacking the extracellular S-domain (designated
S-domain receptor-like cytoplasmic kinase, SRLCKs) were
also defined by their close phylogenetic relationship
to the kinase domains of SRLKs [8,12]. Interestingly,
another class of proteins resembling SLGs, designated
S-domain receptor-like proteins, SRLPs, is also ubiqui-
tous in plants [13-15], suggesting that the composite
SRLKs likely originated by fusion of the two split com-
ponent proteins. Phylogenetic analyses of the kinase
domains in Arabidopsis thaliana also suggested that
SRLKs are not monophyletic and probably arose via
independent recruitment of S domains [10].
Gene fusion is considered to be an important evolu-

tionary path to create novelty in protein architectures
(the linear arrangement of protein domains) and functions
by forming composite proteins and linking components of
extant signaling/biochemical pathways [16]. In agreement
with this notion, a number of chimeric genes generated
by gene fusions have been reported to have important
functions [17-20]. Based on the assumption that selection
favors fusions of functionally-related proteins, identification
of fusion-link (split proteins in some genomes and fused
proteins in other genomes) has initially been used to
predict genome-wide protein interactions and functions in
the extremely compact genomes of prokaryotes and yeasts
[16,21], and more recently in the more complex eukaryotic
genomes [22,23]. Based on the distribution patterns of the
composite proteins and the split proteins in either the spe-
cies trees [23] or the domain trees [24], gene fusion events
were inferred in a large number of sequenced genomes.
Furthermore, a maximum parsimony algorithm has been
established to analyze the evolution of protein architec-
tures, in particular domain fusion and fission, based on the
inferred ancestral architecture at each node in the species
trees [25] or domain trees [25,26]. In plants, because only
the Arabidopsis and rice genomes have been included in
such studies, very little is known about the evolution of
domain architecture in other plant genomes. Despite the
fact that multiple-domain proteins in super-protein families
are normally composed of abundant and versatile domains
and tend to undergo more independent gene fusion/fission
events [27], analysis of gene fusion/fission events in a large
gene subfamily such as SRLK subfamily is still lacking.
As the only members of the SRLK subfamily whose

function is known, SRKs are well suited to investigate
the functional diversification of SRLKs. In Brassica species
but not Arabidopsis species, SRKs may be clearly divided
into two classes, class I and class II [28]. Moreover,
phylogenetic analyses of SRK kinase domains showed
that SRKs from Brassica species are not monophyletic,
having descended from only two of the lineages that were
presumably present in the Arabidopsis-Brassica ancestor,
and that diversification of the Brassica S haplotypes took
place after the separation of the two genera [29]. Further-
more, theoretical analyses have long predicted that SI could
have been first expressed in a two S-haplotype system
causing incomplete suppression of selfing, with further
differentiation among S haplotypes and enhancement
of SI expression having evolved subsequently [30,31].
This long-held hypothesis awaits further elaboration
by molecular evolution studies.
In this study, we first retrieved SRLKs from five

sequenced genomes representing the major lineages of
land plants. SRLCKs were then delineated by their close
phylogenetic relationship to SRLKs based on a maximum
likelihood (ML) kinase domain tree. On the basis of a
reconciled species-domain tree including both SRLKs and
SRLCKs, gene duplication/loss and fusion events in SRLK
evolution were inferred and dated by integrating the max-
imum parsimony ancestral architecture inference algorithm
[25,26] into the widely applied gene duplication/loss
model [32]. In addition, the origination of SRKs in the
Brassicaceae was explored by reconstruction of SRK kinase
domain phylogeny in the context of SRLK evolution.

Results
SRLKs emerged in early land plants and expanded greatly
in Angiosperms
SRLKs are composed principally of three modular domains
in a configuration of S domain (SD)-transmembrane
domain (TM)-kinase domain (KD). SDs are further divided
into three subdomains in a configuration of B_lectin-SLG-
PAN_APPLE (Figure 1). The B_lectin and PAN_APPLE
domains have been proposed to be important for protein
structure and dimerization of Brassica SRKs, while the
hypervarible SLG domain plays a key role in SCR binding
[4,5]. Transmembrane domain (TM) prediction is not
always accurate, thus TM will not be considered in our
protein architecture analyses. Proteins with stand-alone
SLG and PAN_APPLE domains are rare, whereas B_lectin
domain proteins are more abundant, particularly in the
spikemoss genome (Figure 1).
A total of 253 SRLK and 19 SRLP sequences with the

domain architecture typical of SRKs (B_lectin-SLG-
PAN_APPLE-TM-KD) or SLGs (B_lectin-SLG-PAN
_APPLE) were retrieved and are hereafter referred to
as typical SRLKs and SRLPs respectively (Figure 1 and
Additional file 1: Table S1). Other combinations of
B_lectin, SLG, PAN_APPLE, and KD domains are also
ubiquitous in different plant species (Figure 1). These
combinations may represent either the precursors of
typical SRLKs/SRLPs or the degenerated products of
the typical SRLKs/SRLPs. Our search also retrieved
stand-alone B_Lectin and PAN_APPLE sequences in
the genomes of green algae Chlamydomonas reinhardtii
and Ostreococcus tauri, whereas sequences of stand-
alone SLG domains or any combination of B_lectin,



Configurations Pp Sm Os At Pt Architectures
B_lectin-SLG-PAN-(TM)-DUF3660-KD * 0 0 1 4 2

B_lectin-SLG-PAN-(TM)-KD* 2 2 83 26 133

B_lectin-SLG-(TM)-KD* 2 3 12 2 33

B_lectin-PAN-(TM)-KD* 0 1 3 2 7

SLG-PAN-(TM)-KD* 0 0 4 1 4

B_lectin-(TM)-KD* 2 3 23 3 26

SLG-(TM)-KD* 1 0 1 0 2

PAN-(TM)-KD* 0 0 2 0 2

B_lectin-SLG-PAN-(TM)# 0 2 7 2 8

B_lectin-SLG-(TM)# 2 1 2 0 8

B_lectin-PAN-(TM)# 0 4 0 2 7

SLG-PAN-(TM)# 0 1 1 0 2

B_lectin-(TM) 5 120 3 6 20

SLG-(TM)# 2 4 0 1 2

PAN-(TM) 0 0 1 0 2

(TM)-KD 19 21 28 9 19

Domain legend B_lectin SLG PAN_APPLE DUF3660 KD

Figure 1 Number and domain architectures of SRLKs, SRLPs and SRLCKs from the five species included. Domain configurations of SRLKs
(indicated by *), SRLPs (indicates by #) and SRLCKs (indicated by ★ ) from moss (Pp), spikemoss (Sm), Arabidopsis (At), rice (Os) and poplar (Pt) are
included in our dataset. (TM) indicates that a TM domain may or may not be predicted.
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PAN_APPLE, SLG, and KD domains were not detected.
In view of the fact that plant RLKs were likely generated
after the divergence of land plants from green algae [8],
we tentatively included sequences containing combina-
tions of at least two of the four modular domains,
adding 139 SRLK and 30 SRLP sequences with atypical
domain architectures to our dataset. Nine proteins
with stand-alone SLG, which characterize S-domains,
were also included as SRLPs. In total, our dataset
included 7, 9, 129, 38 and 209 SRLKs and 4, 12, 10, 5
and 27 SRLPs from the genomes of Physcomitrella
patens (moss), Selaginella moellendorffii (spikemoss),
Oryza sativa (rice), Arabidopsis thaliana (Arabidopsis),
and Populus trichocarpa (poplar) respectively (Additional
file 1: Table S1). In moss and spikemoss, a relatively
small number SRLKs (7 and 9, respectively) are found,
and SRLKs continued to expand immediately after the
divergence of angiosperms, since there are 23.8, 19.3 and
33.9 times (normalized by genome size) as many members
in rice, Arabidopsis and poplar, respectively, compared
with moss.

Kinase domain tree and delineation of SRLCKs
To delineate SRLCKs by the kinase-domain tree, KD
sequences from 392 SRLKs in our dataset and total 96
RLCKs of the five species from Phytozome V9.0 that
were the best hits to the members of the gene family
HOM000017 in PLAZA 2.5 database were then used to
construct a maximum likelihood (ML) phylogenetic tree
(Figure 2 and Additional file 2: Figure S1). The basal
nodes of the phylogenetic tree are composed of 17
RLCKs, while two well-supported monophylectic groups
(with a 100 bootstrap) in land plants are evident. The
first group consists of 390 SRLKs, while the second
group consists all 79 RLCKs as well as 2 moss SRLKs.
Therefore, the 79 RLCKs are hereafter designated as
SRLCKs (Additional file 1: Table S1 and Additional file 2:
Figure S1). Considering protein architectures, SRLKs are
not monophylectic but form two groups, the major group
containing 390 SRLKs and the minor group containing 2
moss SRLKs. In the major group, two large subgroups
correspond to the previously-identified SD-1 and SD-2
S-domain RLKs [8,9], which are composed of 202 SRLKs,
and 188 SRLKs, respectively.
SD-1 SRLKs are specific for angiosperms, indicating

that this group is approximately 140 million years old
[33]. In contrast to SD-1, SD-2 is a very diverse group of
SRLKs from all species with well-dissolved clades.
Given that the oldest evidence for the existence of
vascular plants is found in Upper Ordovician, SD-2
SRLKs are inferred to be more than 450 million years old
(Figure 2 and Additional file 2: Figure S1). Based principally
on the topology of the trees, clade support values and
branch length, we tentatively defined 6 (SD-1a, SD-1b,
SD-1c, SD-1d, SD-1e, SD-1f) and 7(SD-2a, SD-2b, SD-2c,
SD-2d, SD-2e, SD-2f and SD-2g) subgroups in each of
the SD-1 and SD-2 groups. Interestingly, the A. thaliana
SRK falls in the SD-1b subgroup, sharing a most recent
common ancestor with 3 Arabidopsis, 5 rice, and 2 poplar
SRLKs (Figure 2 and Additional file 2: Figure S1). More
importantly, except for the two moss SRLKs, all SRLKs or
SRLCKs cluster together, which strongly suggests that
extant SRLKs are likely derived from one major S-domain
recruitment event in land plant evolution.
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Figure 2 Distribution patterns of SRLKs and SRLCKs and classification of SRLKs. The ML phylogenetic tree (Additional file 1: Figure S1) was
displayed in circular form to show the classification of SRLKs (subgroups 1a-1f and 2a-2g are evident in each of the SD-1 and SD-2 groups) and the
distribution patterns of SRLKs and SRLCKs from five land plants (electric blue for moss; bright green for spikemoss; deep pink for rice, orange for
poplar, and blue for Arabidopsis). The roots are shown by branches in filled black lines and the aLRT bootstrap values of the major internal nodes are
indicated by numbers. Predicted two gene fusion events are labeled by branches in black, the minor fusion event is indicated by black arrow.
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Inference and dating of gene duplication/loss and fusion/
fission events in the evolutionary history of SRLKs
The gene duplication-loss model embedded in Notung
has been used to infer and date gene duplication/loss
events in RLK evolution [8]. After a reconciled species-
domain tree was generated by Notung, we inferred the
ancestral architectures of all nodes along the reconciled
tree according to our model (Figure 3 and Additional file
3: Figure S2). Gene duplication/loss and fusion/fission
events were inferred and dated. SRLKs were shown to
have a rapid gene expansion, whereas SRLCKs tended to
have undergone a decay comparing with the inferred
number of ancestors in early land plants (Figure 4). A
leap of common ancestor number from 10 in the ancestor
of land plants to 34 of angiosperms represents a critical
stage in SRLK expansion, which coincides with the
emergence of angiosperms and the rapid increase in
gene duplication events. In the past 450 million years
after the divergence of moss and the embryophyta ancestor,
two duplications of SRLKs was inferred, while as many as
172 duplications were inferred to have occurred in the
past 100 million years after the divergence of poplar and
its rosid ancestor. In Arabidopsis, the results suggest
rapid birth and death of SRLKs, and the loss of most
SRLCKs (Figure 4).
Based on the distribution patterns of SRLKs and

SRLCKs in the reconciled tree, gene fusion/fission events
in the evolutionary history of SRLKs were also inferred
(Figure 2 and Additional file 3: Figure S2). In total, 2
gene fusion events were inferred, while no fission event
was detected. The major ancient gene fusion event oc-
curred in the common ancestor of land plants and gener-
ated the ancestral gene of 390 extant SRLKs. The other
minor gene fusion event occurred after moss have diverged
from the common ancestor of land plants, generating two
extant moss SRLKs. Notably, scarcity of gene fusion and
the lack of fission events in the evolution of SRLKs sub-
family suggests that functional diversification of SRLKs is
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Figure 3 Illustration of a model for inferring the protein architecture of most recent common ancestors (MRCAs). Based on the
distribution patterns of SRLKs and SRLCKs in a kinase-domain tree, gene duplication/speciation and gene fusion/fission events were inferred. (A)
Protein architecture of SRLKs (represented by filled triangles), SRLCKs (represented by open triangles), and SRLPs. (B) When the two leaves on
bifurcating branches are of the same architecture (either SRLK or SRLCK), a duplication or speciation event is inferred. (C) When the two leaves
are of different architectures (one SRLK and one SRLCK), the ancestral architectures at the inner nodes were inferred by the leaf architectures of
the deeper branch as illustrated.
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principally driven by sub-or neo-funtionalization of dupli-
cated genes.

Origination of brassicaceae SRKs in the context of SRLK
evolution
The A. thaliana SRK falls within the SD-1b group, a small
monophyletic group in angiosperms that includes 10 non-
SRK members, which are good candidates to investigate
the functional diversification of SRLKs (Figure 2). We thus
performed phylogenetic analysis of SRKs by including KD
sequences of 47 SRKs from the Brassica/Raphanus and
Arabidopsis/Capsella lineages as well as SD-1b members
(Additional file 4: Table S2 and Figure 5A). A functional
SRK from self-fertile A. thaliana accession Wei was in-
cluded to replace the ΨSRK (At4g21370), because its func-
tion in SI has been demonstrated [34]. In addition, a likely
functional SRK sequence (CruSRK) from the newly-evolved
self-fertile species Capsella rubella is also included [35].
The topology of our rooted ML kinase domain tree is

similar to that of an unrooted ML kinase domain tree
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also retained in all characterized S haplotypes of A.
lyrata (Figure 5B).

Discussion and conclusions
The architecture of the SRLKs was likely established
after the divergence of land plants from green algae
approximately 1000 million years ago, but before the
divergence of vascular plant lineage from the moss lineage.
Consistent with their predicted function in perceiving
various external signals, the SDs of SRLKs are very variable
in both sequence and architecture. Because of the highly
variable nature of the SDs and the resulting poor sequence
alignments, it was difficult to use these domains for in-
vestigating the trajectory of SRLK evolution. In contrast,
kinase-domain sequences are more conservative likely due
to constrains imposed by the requisite interactions with
other signaling partners, and were thus used in our study
to simplify the interpretation of SRLK evolution.
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By integrating the ancestral architecture inference
algorism [26] into the widely applied gene duplication-loss
parsimony model [8,32], we established a maximum parsi-
mony model suitable to infer and date gene duplication/loss
and fusion/fission events in SRLK evolution (Figure 3). Our
results suggest that almost all (except for 2 moss SRLKs)
SRLKs of land plants are derived from a single ancient
domain fusion event. Continuous expansion of SRLKs by
gene duplication has played pivotal roles in shaping the
phylogenies of extant SRLKs. In contrast with previous in-
terpretations based merely on topology of the phylogenetic
trees [8-10], we show that SD-1 and SD-2 group SRLKs
were generated by the same ancient gene-fusion event that
likely occurred in the common ancestor of land plants.
Mis-annotation of genomic sequences, however, may be
accounted for the inconsistence between our results and
the published papers [8-10]. When the poplar genome of
Phytozome v6.0, in which only 10% annotated gene models
are supported by full length cDNAs, were used for
detecting fusion/fission events, we could detect 5 fusion
events and 23 fission events occurred in poplar. However,
no fusion or fission event was found using the updated
poplar genome of Phytozome v9.0, in which 218 out of
228 SRLKs/RLCKs were supported by assembly ESTs
(Additional file 1: Table S1). As in all other such studies,
we assigned an equal cost for gene fusion, fission, du-
plication, loss, or speciation in order to avoid prior bias
stemming from uncertainties relating to the relative
frequency of these events [26] and their dependence
on the particular genomes investigated [22,23]. Since
the distribution patterns of the composite SRLKs and
the split SRLCKs on the reconciled tree are critical for
our analysis, expansion and high-rate retention of both
the composite SRLK and split SRLCK genes is essential.
We might have underestimated the actual number of
gene fusion/fission events in our analyses because the
domain architectures (composite or split) of the most
recent common ancestors (MRCAs) at the leaf nodes
with lost genes can only be inferred by the parsimony
principle (Additional file 3: Figure S2). Similar requirements
can be largely fulfilled in most RLK subfamilies such as
Lysin motif-type RLKs [40]. We thus propose that our
method could be extrapolated to analyze gene fusion/fission
events in other multiple-domain super-protein families.
Functional diversification following the origination of

multiple-domain proteins is a common theme in studies of
protein family evolution [41-43]. Although great efforts
have been devoted to investigate the diversification of SRKs
by reconstructing their phylogeny, such studies are limited
by the lack of suitable outgroups [29]. Utilizing SD-1b
members as outgroups, we show that in the Brassicaeae,
SRKs do not form a monophyletic clade. More intriguingly,
ARK1/ARK2/ARK3 are confidently clustered with Brassica
class-II SRKs, forming a distinct orthologous group in the
Brassicaceae (Figure 5B). This orthologous relationship
between ARK1/ARK2/ARK3 and class-II SRKs has not
been previously revealed because S-domain trees were used
in most studies [28,38,39]. Even in studies that used the
kinase-domain trees, neither ARK1/ARK2/ARK3 [29] nor
Brassica SRKs were included [37,38]. Furthermore, A.
thaliana SRK confidently clustered with most SRKs of
Arabidopsis/Capsella species, forming another distinct
orthologous group in the Arabidposis/Capsella lineage
(Figure 5B). Since SRK and ARK3 are arranged in tandem
in the S haplotypes of Arabidopsis species, we propose the
following model on the origins of SRKs. An ancient
duplication in the common ancestor of Brassicaceae
produced two tandemly-arranged paralogous genes, desig-
nated as ancestor of SRKI (A_SRKI) and ancestor of SRKII
(A_SRKII). Subsequently, random neo-fuctionalzation and/
or sub-funtionalization of A_SRKI and A_SRKII produced
two ancient S haplotypes, from which SRKs might have
been derived by further diversification (Figure 6). This
model provides a mechanism for the establishment of the
long-proposed ancient two-S haplotype SI system in the
common ancestor of the Brassicaceae [30,31]. However, the
clustering of Arabidopsis/Capsella SRKs with Brassica/
Raphanus class-I SRKs in the same orthologous group
remains ambiguous because of the relatively low support
value. The different gene orders of SLGs and SRKs in
known class-I and class-II S haplotypes (Figure 7) and the
inference that SLGs were derived from an ancient dupli-
cated copy of SRK [1,36,44], support the notion that class-I
and class-II SRKs might also be derived from two tandemly
duplicated paralogous genes. Similar examples of the evolu-
tion of functional orthologous genes from ancient paralogs
have been reported for AGAMOUS and PLENA [45] as well
as SRnases in diploid strawberry [46]. Paralogs produced by
tandem duplications such as A_SRKI and A_SRKII might
be prone to this random evolution, because they are free
from constrains of different genomic contexts. Regulatory
neo-functionalization is the most likely evolutionary sce-
nario for paralogs produced by tandem duplications [47].
However, no overlap in the expression domains of ARK3
and SRKa in self-incompatible A. lyrata has been observed
in either vegetative or floral tissues (Figure 8), suggesting
that regulatory sub-functionalization played a significant
role in SRK evolution. Nevertheless, certain SRK variants
are expressed in leaf tissue [48], indicating that regulatory
neo-functionalization also played a role. Together with the
fact that Arabidopsis ARK3 is orthologous to Brassica
class-II SRKs, our findings indicate that the biochemical
functions of SRKs and ARK3, and probably other SRLKs in
the SD-1b group, are likely the same or very similar. This
conclusion is in line with the existence of a conserved DUF
3660 motif between SDs and KDs in ARK1, ARK2, ARK3,
and all SRKs, and particularly with the findings that
ARK1, ARK2, and ARK3 interact with and phosphorylate



Diversification

Sub-/neo-functionalization

A_SRKI A_SRKII

Duplication

SRKI A_SRKII

Two-haplotype system

SRKIIA_SRKI
A_Brassicaceae

A_SRK

Figure 6 Proposed model for the evolution of the ancient two-haplotype SRK system. The duplication and diversification of the common
ancestor of Brassicaceae SRKs, A_SRK, generated two tandem duplicate genes A_SRKI and A_SRKII. Random sub-/neo-functionalization of A_SRKI
and A_SRKII produced the postulated two-haplotype system of two ancient SRK haplotypes SRKI and SRKII.
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a number of the Arabidopsis plant U-box/ARM-repeat
(AtPUB-ARM), ARC1 homologs of A. thaliana [49]. In
view of that ARKs and other SRLKs may be involved in
plant innate immunity responses [50-53], the overlap of
SRK signaling with that of plant immunity mediated by
ARK3 and other SD-1b group SRLKs suggested by our
molecular evolution study is intriguing and should be
pursued by further experimental investigations.

Methods
Sequence retrieval
Physcomitrella patens (moss), Selaginella moellendorffii
(spikemoss), Oryza sativa (rice), Arabidopsis thaliana
(Arabidopsis), and Populus trichocarpa (poplar), which
represent the major lineages in land plant evolution, were
used in this study. The annotated protein sequences of the
5 sequenced genomes were downloaded (http://www.
phytozome.net). To identify SRLK and SRLP sequences,
an HMMer search was performed by the standard profiles
SRK

S flanking region 1

SCRB SCRA
B.oleracea S-15

B.rapa S-60

B.napus S-A14

B.napus S-910

B.rapa S-9

B.rapa S-46

Figure 7 Different gene order of SRKs relative to SLGs in Brassica class-
class-II S haplotype (B. rapa S-60 and B. oleracea S-15) and 4 class-I haplotypes
arrangement of the S loci was determined by molecular markers in the S-locu
of the modular domains of S-domains [5], the B_lectin,
SLG, and PAN_APPLE domains. After searching the
sequences of primary screening against the Pfam database
with the established “trusted cut off”, we detected in the
moss, spikemoss, rice, Arabidopsis, and poplar genomes,
respectively, 13, 136, 134, 47, and 244 B_lectin containing
proteins; 9, 13, 111, 36, and 194 SLG-containing proteins;
as well as 2, 10, 102, 37 and 167 PAN_APPLE-containing
proteins (Additional file 1: Table S1). Because proteins
belonging to the same homologous group are readily
and confidently retrieved from PLAZA 2.0 database
(http://bioinformatics.psb.ugent.be/plaza/), we thus re-
trieved RLCK sequences from the homologous group
(HOM000017, which contain all SRLKs identified from
Phytozome 9.0 ), and then updated each RLCK se-
quence with the best hit from Phytozome v9.0 using
BLASTP. At last, these hits filtered for only one kinase
domain using Pfam, were used as candidates for
SRLCKs (Additional file 1: Table S1).
Class I

S core region

SLGA SLGB

S flanking region 2

Class II

I and class-II S haplotypes. The gene order of SRKs and SLGs from two
(B. rapa S-9 and S-46; Bnn napus S-A14 and S-910) is compared. The
s flanking region 1 and region 2 (modified from [54]).

http://www.phytozome.net
http://www.phytozome.net
http://bioinformatics.psb.ugent.be/plaza/


AlSRKa

ACT2

R       S      L       Sta     Sty     Sti

AlARK3

Figure 8 Complementary expression domains of AlSRKa and
AlARK3 in A. lyrata. Expression of AlARK3 and AlSRKa were analyzed
in root (R), stem (S), leaf (L), stamen (Sta), style (Sty), and stigma (Sti)
tissues by RT-PCR using gene-specific primers. ACT2 was included as
the loading control.
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Sequence alignment and phylogenetic analysis
The composite SRLKs and their split component proteins,
SRLCKs and SRLPs (Figure 3A), are ubiquitous in plants
suggesting the occurence of fusion and/or fission events.
To explore the trajectory of SRLK evolution, a kinase
domain tree including both SRLKs and SRLCKs was
constructed. The amino-acid sequences of the kinase
domains of 392 SRLKs and 96 RLCKs were aligned using
ClustalX (Version 2.0) with Gonnet 250 protein weight
matrix and the pairwise parameters of gap opening 10 and
gap extension 0.2 [55] (Additional file 6: Sporting dataset
1) Arabidopsis homologs of Right Open Reading 1 (RIO1)
family kinase (At 5 g37350 and At 2 g24990) were used as
outgroups [11]. ProtTest v2.4 [56] was used to select the
best-fit model of protein evolution for the alignment.
Then, according to the best-fit model predicted by
ProtTest v2.4, a rooted maximum likelihood (ML) tree
was constructed with the JTT substitution model using
the PhyML v3.0 online program, and the support of interior
branches was assessed with the aLRT bootstrap method
[57]. Finally, the phylogenetic tree was displayed and edited
using MEGA v5.0 [58].
According to this phylogenetic tree, the A. thaliana SRK

(At4g21370), ARK1 (At1g65790), ARK2 (At1g65800), and
ARK3 (At4g21380) sequences as well as 7 SRLKs from rice
and poplar form a well-supported subgroup. Kinase domain
sequences from these 11 proteins and Brassicaceae 47 SRK
sequences (Additional file 4: Table S2 and Additional file 7:
Supporting dataset 2) were retrieved from Uniprot and
were included to construct another ML tree using PhyML
v3.0 online program. We included SRKs from as many
Brassicacea species as possible, including Brassica oleracea,
B. rapa, B. napus, and Raphanus sativus in the Brassica/
Raphanus lineage and A. thaliana, A. lyrata, A. halleri,
Capsella grandiflora, and C. rubella in the Arabidopsis/
Capsella lineage.

Inference and dating of gene duplication/loss and fusion/
fission events
A reconciled species-domain tree was generated using the
Notung program, which offers a unified framework for
incorporating duplication-loss parsimony into phylogenetic
analysis [32]. After reconciling the ML domain tree with
the species tree of the five land plant species constructed
using the NCBI Taxonomy Browser (http://www.ncbi.
nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi), gene
duplicate- on/loss and fusion events were inferred and
dated. Based on the reconciled tree, the ancestral protein
architectures were inferred by a modified maximum
parsimonious protein ancestral architecture inference
algorithm [25,26]. The extant protein architectures at the
leaves are used to initialize the tree. Instead of traversing
the whole tree, we infer the ancestral protein architecture
of MRCA at each node sequentially from the leaves to the
root. To avoid prior bias, gene duplication/loss, gene
fusion/fission, and speciation were assigned an equal cost
of 1. However, when a gene fusion/fission event occurred
at a node, a gene duplication/speciation event must also
have occurred, thus the node is assigned a cost of 2. In the
bifurcating terminal branches of the reconciled species-
domain tree, three configurations could be detected
(Figure 3B and 3C). When both leaf nodes are of the same
domain architecture (SRLK or SRLCK), we inferred that
the internal node has a MRCA of the same architecture.
The two proteins could be paralogs derived from a dupli-
cation event or orthologs generated by speciation events
(Figure 3B). When the two leaf nodes are of different
domain architectures (one SRLK and one SRLCK), the
architectures of the MRCAs were inferred by those of the
deeper branches. The trees were traversed twice and the
ancestral architectures yielding the lowest cost were
selected (Figure 3C). After the architectures of these outer
nodes were inferred, they were treated as leaves to initiate
another round of ancestral architecture-inferring process
until the ancestral architectures at all inner nodes were
inferred, after which gene duplication/loss and fusion/loss
events were inferred and dated.

RNA extraction and reverse transcription polymerase
chain reaction (RT-PCR)
RT-PCR was used to examine the spatial expression of
AlSRK and AlARKs in A. lyrata organs. Total RNA from
root, stem, leaf, stamen, style, and stigma tissues of A. lyrata
was isolated using the Trizol reagent (Invitrogen, USA)
according to the manufacturer’s instructions. The residual
genomic DNA in the total RNA was removed by treatment
with RNase-free DNaseI and the total RNA was further
purified with phenol chloroform-isoamyl alcohol. RT-PCR
was performed using SuperScript™II RNase HI Reverse
Transcriptase (Invitrogen, USA) using the following
primer pairs: 50-GACAACGCGTGTGAGACCTAT-30

and 50-CATTAGG AGCTGCAGTTGCTC-30 for AlSRKa,
and 50-GACCAATGCGATGATTACAAAG -30 and 50-
CAGTAGCTGTTTCAATTAGT-30 for AlARK3. The PCR
conditions of AlSRKa/AlARK3 were 94°C for 3 min

http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
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followed by 40 cycles of the following: 94°C for 30 s, 58°C/
52°C for 30 s, and 72°C for 40 s. The amplification products
were then analyzed with agarose gel electrophoresis.

Availability of supporting data
The data sets supporting the results of this article are
included within the article (and its additional files)

Additional files

Additional file 1: Table S1. List of SRLK and SRLP sequences retrieved
from Phytozome v9.0 and homologous RLCK sequences retrieved from
Plaza v2.5 databases.

Additional file 2: Figure S1. A maximum likelihood (ML) phylogenetic
tree of KD sequences from 392 SRLKs and 96 homologous RLCKs. The
distribution patterns of SRLKs (filled triangles) and SRLCKs (open triangles)
from five plants are shown in the same color scheme as in Figure 2. The
domain fusion events are also shown in the same color scheme as in
Figure 2.

Additional file 3: Figure S2. Inference of gene duplication/loss and
fusion events in SRLK evolution. The architectures of leaves are indicated
by the minus sign for SRLCKs. Gene fusion events are indicated by filled
circles at internal nodes. Gene duplication events are indicated by filled
rectangles at internal nodes and gene loss events are indicated by “LOST”
at the leaves.

Additional file 4: Table S2. List of Brassicaceae SRKs sequences
retrieved from UniProt.

Additional file 5: Figure S3. A ML S-domain tree constructed by
including 7 SRLK members in SD-1 g group and 47 full length SRKs from
Brassicaceae species as in Figure 6. The aLRT bootstrap values of the
major internal nodes are indicated by numbers. Three main clusters of
Brassica class-I, Brassica class-II, and Arabidopsis/Capsella as well as out
groups are shown.

Additional file 6: Supporting dataset 1. Alignment of KD sequences
from 392 SRLKs and 96 homologous RLCKs.

Additional file 7: Supporting dataset 2. Alignment of KD sequences
from 47 Brassicaceae SRK sequences.
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