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Abstract

Background: The correlation of genetic distances between pairs of protein sequence alignments has been used
to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of
co-evolution between interacting proteins. However, although mutations in different proteins associated with
maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors
contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared
evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic
trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for.
Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued
that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary
history; here we test this hypothesis.

Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction
proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic
distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae.
We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared
evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence.

Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group
of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed
correlations.

Keywords: Co-evolution, Correlated evolution, Protein evolution, Phylogenetic, Protein-protein complexes,
Protein-protein interactions
Background
Proteins participate in the myriad processes of the cell
requiring them to make highly specific interactions with
a range of other proteins. These processes include replica-
tion, transcription, translation, and signalling processes
[1-5]. Almost every protein is expected to interact with at
least one other protein in order to contribute to cellular
function [6]. Understanding interactions between proteins
is therefore of vital significance for the understanding of
the method of function of cellular systems.
Several high-throughput interaction assays [7-10], such

as yeast two-hybrid and tandem affinity purification,
* Correspondence: simon.lovell@manchester.ac.uk
2Computational and Evolutionary Biology, Faculty of Life Sciences, University
of Manchester, Manchester M13 9PT, UK
Full list of author information is available at the end of the article

© 2012 Swapna et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
have been developed to supplement the already exist-
ing dataset of protein-protein interactions [11,12]. In
addition various computational methods for prediction
of interaction between proteins have been developed
[13]. These methods employ a variety of techniques and
data, including evolutionary information, structural tem-
plates and protein interaction network information, to
predict whether sets of proteins interact [14].
Evolutionary information in particular has been exploited

in different ways to predict interactions between proteins.
Gene fusion [15,16], gene neighborhood information
[17,18] and phylogenetic profiling [19] utilize the large
repertoire of available genomic data. Interlog detection
[20] employs sequence similarity between proteins as
the prediction measure. Analysis of correlated evolution
employs the similarities in evolutionary distances of
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pairs of protein sequence alignments as the prediction
measure [21-23].
One of the most popular computational prediction

methods for identifying interacting proteins utilizing the
principle of correlated evolution is the mirrortree ap-
proach [21]. In this method, a set of orthologous pro-
teins from multiple species is identified for each of the
two proteins under consideration and a genetic distance
matrix constructed. Proteins are predicted to interact if
two matrices are significantly correlated. This method
has also been used to identify the domains that interact
between two proteins [24]. Several variants of this
approach exist: correcting for the underlying speciation
signal has been reported to improve accuracy [25,26],
incorporation of phylogenetic information in addition to
distance matrices has been used to aid supervised learn-
ing for prediction of protein-protein interactions [27]
and multiple interacting partners have been included
[28]. Approaches have included the use of complete gene
sequences, conserved regions and regions at the inter-
acting interface. Studies show that consideration of resi-
dues in the ‘binding neighborhood’ of a protein rather
than just the binding residues, improves prediction [29].
Although there is no question that co-evolution occurs

between interacting proteins (reviewed in [30]), the ori-
gin of the evolutionary signal detected by the mirrortree
method is a subject of some controversy [29-33]. There
are two broad hypotheses for the signal being used: (i)
site-specific co-evolution [32] and (ii) externally-induced
correlation with only minor, if any, contribution from
site-specific co-evolution [31].
In the case of site-specific co-evolution an evolution-

ary change at one site may change the selection pressure
at a second site [30]. For example, a substitution of a
large residue for a smaller one at site one may relax the
evolutionary constraint at site two, allowing a wider
range of substitutions than would be allowed otherwise.
Site two may be in a different protein if both sites are
in the interaction interface, leading to inter-chain co-
evolution. This type of co-evolution has been identified
many times, but only affects a minority of sites in a pro-
tein [34-39]. By contrast, externally-induced correlation
has the potential to affect all residues in a protein chain
or interacting set. A wide range of factors may affect the
rate of evolution of a protein sequence [40]. These
include dispensability of the protein, developmental
stage of expression, breadth of expression in different
tissues, expression level. All of these may be expected to
correlate between two proteins that interact [30], and
any or all of them may contribute to correlations be-
tween interacting partners.
In the mirrortree protocol, phylogenetic tree inference

may be optional with only the genetic distances being
used [21]. Even if constructed, usually the Neighbor-
Joining approach is used [25,26,28,41]. However, with
Neighbor-Joining pairwise genetic distances are used
directly to infer the tree topology, and may be used to fac-
tor out any correlations that arise from shared evolution-
ary history. Thus, although the use of genetic distances to
calculate evolutionary correlations is valid, if they are used
directly or in conjunction with a Neighbor-Joining tree,
evolutionary rate and tree topology are conflated. Here
we use maximum likelihood estimation [42,43] as it per-
mits explicit hypothesis testing. With maximum likeli-
hood the tree topology is not derived directly from the
genetic distances [44]; significant similarity in tree topolo-
gies derived from protein sequence alignments are due to
shared evolutionary history [44-46].
Compensatory substitutions across interfaces could

potentially lead to correlations in both evolutionary rate
and tree topology between interacting proteins. A substi-
tution in one protein may lead to change in selection pres-
sure on an adjacent site in the interacting partner, such
that either both sites change, or neither do. Such correla-
tions in substitutions could, if common, lead to rate corre-
lations between interacting partners. In addition, when
substitutions are at phylogenetically informative sites, then
correlations in the substitutions can lead to correlations
in tree topology. Thus, the identification of the nature of
the correlation seen between pairs of interacting pro-
teins can suggest the molecular mechanism from which
it originates.
Here, we employ maximum-likelihood hypothesis test-

ing for the inference of phylogenetic trees for a range of
datasets corresponding to yeast, S. cerevisiae. As with
previous work [33] we find that there is no correla-
tion between phylogenetic tree topologies of interacting
proteins. However, there is a significant correlation in
evolutionary rates. These results, in conjunction with
previously published results, suggest that, for the dataset
studied, site-specific co-evolution cannot explain the
observed correlations in protein sequences.

Results
Datasets used
Orthologs were extracted from SWISSPROT (termed
the SP set) [47] and UNIPROT (termed the UP set) [48]
databases. Orthologs extracted from SWISSPROT have
the advantage of being manually curated, whereas ortho-
logs from UNIPROT have the advantage that all the
sequences from the proteome are available for BLAST
to identify the correct ortholog using a more complete
dataset of protein sequences. Two different cut-offs for
coverage were used: orthologs with sequence similarity
over at least 50% of their length (termed 50 L) and a
more stringently-defined set with sequence similarity
over at least 70% of their length (termed 70 L). Note, we
did not obtain a sufficient number of protein pairs in the
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datasets of interacting and non-interacting proteins
when 70% length coverage was applied for hits identified
from SWISSPROT dataset. Thus, we have three datasets:
SP-50 L, UP-50 L and UP-70 L, depending on their
source and length cut-off used (Table 1).
An important parameter in the identification of ortho-

logs is the domain composition of the protein sequences.
PSI-BLAST [49] uses local alignment algorithm and so
two proteins can be identified as orthologs on the basis
of only a single domain in common. The evolutionary
pressure on the different domains can vary [41], which
can further confound the analysis of correlated evolution
between orthologs. In the SWISSPROT and UNIPROT
ortholog datasets, ~45% and ~50% of the proteins con-
sist of multiple domains, respectively. The frequency of
such assignments is reduced by application of the length
coverage filter. Therefore the UP-70 L dataset can
be considered to contain the most reliable set of ortho-
logs of the three datasets. We assessed the effect of this
cut-off by comparing the number of common and differ-
ent Pfam [50] domain(s) assigned to two orthologous
sequences. Domain assignment was available for ~50%
of the entries in the dataset. For this subset most of the
orthologs contain the same complement of Pfam
domains (see also Additional file 1). The percentage
reduces when we consider orthologs that have between
50%-70% length coverage (see also Additional file 1).
The UP-70 L dataset appears to possess the best

balance in terms of the following parameters with
respect to the three datasets (Table 1): size of the dataset
available for study, average sequence diversity, % loss of
information after removal of gapped columns, and % of
cases with similar domain composition. However, all
three datasets are used to determine the robustness of
the conclusions.

Comparison of branch lengths
Genetic distances provide a measure of the number of
substitutions between two sequences. They are estimated
Table 1 Characteristics of the datasets used

SP-70 L
POS

Number of pairs 42

Mean (± stdev) number of sequences per alignment 15 ± 7

Median number of sequences per alignment 12

Full MSA

Mean genetic distance 1.297

Alignment Length 582

Dataset containing maximum of 20% gapped columns in a MSA

Mean genetic distance 1.198

Alignment Length 420
by using substitution models and rate heterogeneity
parameters, which correct for multiple substitutions at
a site [51]. The distributions of branch support values
are shown in Additional file 1. The branch lengths in
the tree provide a representation of the estimate of
number of sequence changes. Since the trees used in our
study are constructed using the “no-clock” model, the
branch lengths serve as estimates of genetic distance
and not time. Since branch length and genetic distance
both provide almost the same information, genetic dis-
tances were used both because they are computationally
convenient, and to allow direct comparisons with
previously-published work.
The correlation of genetic distances for each protein

pair was computed as a Pearson correlation coefficient
(PCC). The distributions of the correlations for all data-
sets are depicted in Figure 1. Genetic distances of inter-
acting proteins are correlated significantly better than
those of non-interacting proteins for all datasets. This
result is robust to the method used to calculate correla-
tions (Additional file 1).

Comparison of tree topologies
Tree topology comparison is performed using likelihood-
based statistical tests [52,53]. The basis of the test is to
determine whether the phylogenetic trees of one protein
in a pair can explain the data from the multiple sequence
alignment (MSA) of the other protein in the pair and
vice versa. If the conditions are satisfied, then the tree
topologies of the two proteins are considered to not be
statistically different. It is important to note that the
MSA is kept constant and only the topology swapped.
All factors are therefore controlled, except for the tree
topology, which is the aspect of the evolutionary model
being tested. Such tests are usually performed to test
whether multiple trees can serve as good explanations
for the same data. Extrapolating from this principle, we
consider that similarity in tree topologies of a pair of
interacting/non-interacting proteins indicates that both
SP-70 L
NEG

UP-50 L
POS

UP-50 L
NEG

UP-70 L
POS

UP-70 L
NEG

92 86 201 65 107

14 ± 4.4 32 ± 13 25 ± 12 25 ± 11 20 ± 7.8

12 33 24 23 19

1.694 1.567 1.779 1.394 1.548

687 865 1008 755 796

1.581 1.369 1.556 1.253 1.391

502 491 598 516 540



-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

<0.0001 0.0002 0.0005 0.009

All
POSNEG POSNEG POSNEG POSNEG

UP70 UP50 SP50
Figure 1 Correlation of genetic distance matrices. This figure
shows the box-plot distribution of Pearson’s correlation coefficient
for the genetic distance matrices of a pair of proteins for the
different datasets. Heavy bars represent mean values, boxes indicate
25 and 75 percentiles and bars indicate 5 and 95 percentiles. POS
indicates interacting proteins, and NEG indicates non-interacting
proteins. P-values of the Mann–Whitney tests comparing the
distributions of interacting and non-interacting protein datasets are
indicated for each pair.
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trees can explain the data describing the evolution of
both proteins.
TREE-PUZZLE was used to calculate the fit of a

phylogenetic tree to an alignment; the fit is indicated by
a log-likelihood (LL) score. In our analysis, we test the
fit of two input trees (trees of both proteins in a pair) to
the MSA of each of the proteins (Figure 2). Since there
are two MSAs in any protein pair, two “difference log-
Alignment 1

Tree 1

Likelihood that 
Tree 1 reflects data 

in Alignment 1

Likelihood that 
Tree 2 reflects data 

in Alignment 1

TREE-PUZ

Figure 2 Schematic of the tree topology comparison method: Alignm
construct the respective trees. TREE-PUZZLE computes the similarities fo
scores are compared using likelihood-based statistical tests to ascertain wh
topologies are considered to be similar.
likelihood” (dLL) values are obtained for each pair, one
for each MSA. The dLLs of two trees for the same MSA
is an indicator of how well both trees can explain the
data in the MSA. Based on the dLLs, the similarity of
tree topologies is calculated. Comparison of the tree top-
ologies by likelihood-based statistical and confidence
tests for all these pairs reveals:

1. Phylogenetic trees of both proteins explain the data
in the MSA of both proteins. This indicates that they
share similar tree topology. These pairs are indicated
by (+,+).

2. The phylogenetic tree of one protein is able to
explain the data in the MSA of the other protein but
the reverse test is negative. These pairs are indicated
by (+,-).

3. Phylogenetic trees of both the proteins in the pair
are unable to explain the data in the MSA of the
other protein in the pair. This indicates that the trees
do not share similar tree topology, and are indicated
by (−,-).

The majority of (+,-) values are distributed near (−,-)
data points indicating that the tree topologies are largely
dissimilar (data not shown). The sequence diversity of
the two proteins in the pairs was calculated from all of
the individual percentage sequence identities in the set
of homologues; they correlate as follows: (+,+), Pearson’s
R = 0.45; (−,-) category, Pearson’s R = 0.23; (+,-) category
Pearson’s R = 0.16. The data for the various categories of
tree topologies for both the interacting and non-
interacting datasets, and the analysis of their distri-
butions by chi-square test is summarized in Table 2
(see also Additional file 1). The overwhelming majority
Likelihood that 
Tree 1 reflects data 

in Alignment 2

Likelihood that 
Tree 2 reflects data 

in Alignment 2

Alignment 2

Tree 2

ZLE

ents of the two proteins under consideration are used to
r two trees given the alignment used to construct it. The likelihood
ether both trees explain the data. If they are able to do so, the tree



Table 2 Results of Chi-square test for different datasets

Dataset Total pairs Num pairs Num pairs Num pairs P-value
(POS | NEG) (+,+) (+,-) (−,-)

(POS | NEG) (POS | NEG) (POS | NEG)

SP50L 40 | 91 5 | 4 9 | 16 26 | 71 0.161

SP50L-20p 39 | 91 8 | 3 5 | 17 26 | 71 0.005

UP50L 86 | 201 4 | 7 15 | 48 67 | 146 0.454

UP50L-20p 86 | 201 5 | 6 12 | 57 69 | 138 0.022

UP70L 63 | 106 6 | 6 15 | 27 42 | 73 0.636

UP70L-20p 63 | 106 4 | 9 14 | 32 45 | 65 0.412

UP70L-20p25s 62 | 105 4 | 9 22 | 31 36 | 65 0.685

UP70L-20p35s 64 | 107 5 | 9 16 | 30 43 | 68 0.888

The table lists the number of pairs belonging to the 3 categories obtained after tree topology comparison (+,+) (+,-) (−,-) for the variants of the datasets:
20p – MSA with maximum of 20% gapped columns. 20p25s – MSA containing a maximum of 20% gapped columns and a maximum of 25 sequences,
20p35s – MSA containing a maximum of 20% gapped columns and a maximum of 35 sequences. Statistically significant p-values are highlighted in bold.
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of the pairs in both the positive and negative data-
sets do not share similar tree topologies (Table 2,
Figure 3). The general pattern of variation in tree
topology is similar in both the positive and negative
datasets.
For the UP-70 L dataset, the distributions of tree top-

ology similarity categories for positive and negative data-
sets are similar for the variants used, ranging from usage
of complete MSA to MSA containing only ungapped
columns (data not shown). This dataset arguably con-
tains the most reliable set of orthologs and the statistical
tests indicate that there is no difference in tree topology
between interacting and non-interacting proteins. Simi-
larly, in the other datasets – UP-50 L and SP-50 L, the
distributions are found to be similar when the complete
MSA is used for building the trees. However, tree
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Figure 3 Similarities in tree topologies. The output of tree topology com
(−,-).The distribution of results for tree topology comparison analysis in the
represented for the 20p version of the datasets used in this analysis. POS –
proteins.
topology comparisons of data from alignments contain-
ing a maximum of 20% gapped columns in the UP-50 L
and SP-50 L datasets indicate that there is a statistically
significant difference between the tree topologies of
interacting and non-interacting proteins. Both these
datasets have a relaxed length coverage cut-off (≥50%)
and so may have dubious ortholog assignment. When
we consider the major contributors to the difference be-
tween the distributions, they differ. In case of the SP-
50 L dataset, the major contributor is the (+,+) category.
There is a higher occurrence of (+,+) members than
expected in the interacting proteins dataset and lower
occurrence of (+,+) members than expected in the non-
interacting dataset. However, this result applies to a
small proportion of the dataset. In the case of the UP-
50 L dataset, the major contributor is the (+,-) category.
,-) (-,-)

parison tests can be summarized as 3 categories – (+,+) (+,-) and
3 different categories describing similarity in tree topologies is
dataset of interacting proteins, NEG – dataset of non-interacting
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There is a lower occurrence of (+,-) members than
expected in the interacting protein dataset and higher
occurrence of (+,-) members than expected in the non-
interacting proteins dataset. Based on an earlier observa-
tion that (+,-) data are mostly closer to (−,-) data points,
this observation indicates that there are significantly
more non-interacting proteins with dissimilar tree top-
ologies than interacting proteins. However, it is import-
ant to note that ~42% information was lost in the
maximum 20% gapped dataset in comparison with the
complete MSA.

Robustness of tree topology comparisons
The effect of the following parameters on tree topology
comparison was analysed with respect to the different
categories: number of sequences per MSA, alignment
length, average genetic diversity and correlation of
branch lengths (Figure 4). The three different categories
(+,+) (+,-) (−,-) follow a similar trend with respect to
alignment length and average genetic distance per
MSA. However, there is moderate correlation (Table 3,
Figure 5) between the difference in log-likelihood values
and number of sequences per MSA. The distribution of
-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(+,+)
POS NEG POS NEG POS NEG

(+,-) (-,-)

10
20

30
40

50
60

(+,+)
POS NEG POS NEG POS NEG

(+,-) (-,-)

N
um

be
r 

of
 S

eq
ue

nc
es

 p
er

 M
S

A

A

C

Figure 4 Distribution of parameters for the 3 categories summarizing
(+,+) (+,-) (−,-) and for interacting (POS) and non-interacting (NEG) proteins
a pair of proteins B). Average genetic distance per MSA C). Number of seq
the number of sequences per MSA is skewed for the 3
different tree topology similarity categories. Entries in
(+,+) category mostly come from alignments with 10–20
sequences. Entries in the (+,-) category can be seen from
10–40 sequences. Entries in (−,-) category are spread
throughout the spectrum. This probably indicates that
although similarity or dissimilarity in sequences is well
captured by the tree topology comparison when a small
number of sequences are used (<25 sequences), it is
difficult to capture similarity when a large number of
sequences are used.
The two aspects of phylogenetic trees, tree topology

and branch length, are compared in Figure 4A. Both
parameters provide similar results. The peak PCC values
for (+,+) and (+,-) categories are in the range 0.8-0.9.
The values for the (+,+) category range between 0.5-1.0
whereas the values for (+,-) category spreads between
0.2-1.0. The (−,-) category spreads across the entire
spectrum with the peak being around 0.65-0.85. In the
case of the positive dataset, the PCC for the (+,+) cat-
egory ranges between 0.75-0.95, in contrast to the range
of 0.5-0.9 for the negative dataset. The values for (−,-)
category are very low for the negative dataset (< 0.1). It
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Table 3 Correlation of difference in log-likelihood values
with number of sequences per MSA

SCC P-value

SP50L_20p_POS 0.343 0.007

UP50L_20p_POS 0.584 0.000001

UP70L_20p_POS 0.697 5.96E-10

SP50L_20p_NEG 0.393 0.00001

UP50L_20p_NEG 0.665 1.51E-16

UP70L_20p_NEG 0.504 5.04E-09

The abbreviations used are: SCC – spearman correlation coefficient,
POS - Dataset of interacting proteins, NEG – Dataset of non-interacting
proteins, 20p – The version of the dataset containing a maximum of 20%
gapped columns.
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is noteworthy that the category (+,+) is associated with
larger PCCs but vice versa is not observed, indicating
that although tree topology may be an indicator of cor-
related evolution, it captures this signal only when it is
very strong and so is not robust.

Effect of evolutionary divergence on tree topology
comparison
The large proportion of cases showing dissimilar tree
topologies between the trees of interacting proteins
could either be a reflection of the actual dissimilarity
present or of methodological problems. It is known that
phylogenetic tree inference is dependent on several tech-
nical factors, mainly the number of sequences [54], and
quality of the MSA [54,55]. The quality of the MSA gen-
erated is influenced by the evolutionary divergence
between the sequences used [54]. The dataset of ortho-
logs collated from UNIPROT contains several members
with high evolutionary divergence that could decrease
the quality of MSA. To assess whether lower evolution-
ary divergence among orthologs increases the similarity
of tree topologies, MSAs for each protein pair in the
positive and negative datasets of UP70L-20p were
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20p version of the 3 datasets SP-50 L, UP-50 L and UP-70 L are shown.
constructed from closely-related fungal orthologs
belonging to the division Ascomycota (UP70L-20p-Asc).
The orthologous sets of UP70L-20p-Asc show lower

evolutionary divergence, characterized by average gen-
etic distance per MSA, than their counterparts in the
UP70L-20p dataset (Figure 6A). The correlation of
branch lengths is also better for protein pairs from the
UP70L-20p-Asc set in comparison to their correspond-
ing members in the UP70L-20p dataset (Figure 6B). The
correlation (Pearson’s R > 0.83 for 75% of data points)
for the set of interacting proteins from this dataset indi-
cates that the signal of correlated evolution is present
even in case of orthologous proteins that have not
undergone large evolutionary divergence. This result fur-
ther confirms that branch lengths carry the signal of cor-
related evolution. However, comparison of the tree
topologies of protein pairs in these datasets also follows
the pattern of dissimilar tree topologies in the majority
of cases as seen for the UP70L-20p dataset (Figure 6C).
This result indicates that even at low evolutionary diver-
gence, the tree topologies of both interacting and non-
interacting protein datasets are largely dissimilar.

Comparing phylogenetic trees of interacting and
non-interacting proteins with the species tree
The ‘species tree’ is the evolutionary history representing
the branching pattern occurring during the process of
speciation. Several systems, for example, small-subunit
ribosomal RNA [56], cytochrome c [57], whole-genomes
[46], consensus trees and concatenated proteins [58]
have been used in the inference of phylogenetic trees,
which are used as representative species trees. Small-
subunit ribosomal RNA has been used as the reference
system for generating species tree [25] in many studies
because of the central role it holds in the fundamental
process of translation and also due to it slow rate of evo-
lution [56]. We have used 18S rRNA (small-subunit
s per sequence alignment
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Figure 6 Features of control datasets. Asc: homologues of fungi
belonging to the division of Ascomycota, 18SRNA: Dataset of 18S
rRNA sequences. A). The distribution of sequence divergence for the
control datasets and the reference dataset of UP-70 L-20p. B). The
distribution of correlation coefficients between genetic distance
matrices for the control and reference datasets. C). The percentage
occurrence of the 3 different categories describing similarity in tree
topologies is represented for the control datasets and the reference
dataset of UP-70 L proteins.
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ribosomal RNA of eukaryotes) to construct the species
tree, which is compared with the phylogenetic trees of
the set of interacting and non-interacting proteins, con-
structed from their nucleic acid sequences to ensure that
the metric of comparison remains common.
Comparison of genetic distances of both interacting

and non-interacting proteins with that of 18S rRNA
shows a similar correlation (Figure 6B). The basal level
of correlation observed (equivalent for both interacting
protein – 18S rRNA and non-interacting protein – 18S
rRNA) indicates that speciation does contribute to the
observed signal of correlated evolution [25]. One of the
reasons for the poor correlation may be the large dispar-
ity in the average genetic distances of 18S rRNA and the
protein dataset (Figure 6A). However, comparison of tree
topologies of interacting (non-interacting) protein – 18S
rRNA pair indicates that they are very rarely similar
(Figure 6C).

Discussion
Compensatory mutations across interaction interfaces,
i.e., inter-chain co-evolution, have the potential to lead
to correlations of evolutionary rates depending on its
frequency and location. It has been proposed that such
co-evolutionary changes will also influence the tree top-
ologies of interacting proteins [25,28]. Our results, based
on the inference of maximum-likelihood phylogenies,
show that between pairs of interacting proteins, the evo-
lutionary rates correlate, but the tree topologies of both
interacting and non-interacting protein pairs are often
dissimilar. A similar result has been reported by Kelly
and Stumpf [33].
At least two other factors, aside from site-specific coe-

volution, can contribute to the signal of correlated evo-
lution observed over the whole sequence: shared
evolutionary history and influence of external factors.
Shared evolutionary history has also been postulated as
a probable cause of the observed correlated evolution
[33]. Comparison of tree topologies of interacting pro-
teins with non-interacting proteins and of both with 18S
rRNA tree topology addresses this hypothesis. Since tree
topology also represents the evolutionary history of the
protein, it is surprising that in a majority of cases the
tree topologies for both interacting and non-interacting
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proteins differ from the species tree. It is known that
gene trees of different genes are often topologically dif-
ferent [45]. Some of the previously described reasons for
variation of the tree topologies of gene trees are lineage
sorting, and gene duplication/extinction [44,46]. Other
reasons include phylogenetic reconstruction artefacts due
to saturation of substitutions, long-branch attraction, or
base-compositional bias. An important methodological
parameter is the correct identification of orthologs. If
paralogs are identified as orthologs due to either gene du-
plication/extinction events, or due to incompleteness of
data, there could be major differences introduced in the
tree [45]. Our UP-70 L dataset with its stringent criteria
for identification of orthologues indicates that this is
not the case.
Another methodological difficulty affecting compari-

sons of tree topologies is the total number of sequences
used in tree inference. In our analysis, trees with >20
sequences never return a positive result. To account for
this bias, we performed the analysis after restricting the
maximum number of sequences per MSA to 25. This
comparison indicates that the evolutionary histories
of interacting proteins have marginally higher correl-
ation than those of non-interacting proteins (with
UP-70 L-25seqs and SP-50 L datasets). However, even
in these datasets, tree topologies of both interacting
and non-interacting proteins do not mirror the species
tree, ruling out shared evolutionary history as the signal
of correlated evolution. By contrast, the significant
correlation observed between branch lengths (genetic
distances) of interacting proteins in all the variant
datasets demonstrates correlation between evolution-
ary rates.
Co-evolution requires a change in one species, individ-

ual or locus that leads to a reciprocal change in an inter-
acting species, individual or locus [30,35,59]. Thus it is
possible that change in evolutionary rate in one mol-
ecule may give rise to a reciprocal change in evolution-
ary rate in a second (in this case, physically interacting)
molecule. This possibility has been explored by Agrofioti
et al. [60]. They were able to control for factors that
affect evolutionary rate that are external to the interact-
ing proteins, such as expression and similarities in func-
tion, and also for the number of interactions made.
Once these factors are eliminated, there is little or no
correlation in evolutionary rate between interacting pro-
teins, indicating that, although evolutionary rates correl-
ate between interacting proteins, barely any of that
correlation can be directly ascribed to the protein-
protein interaction. Similar results have been reported
by Wang and Lercher [61]. Since this observation has
been made on two different yeast data sets and one
C. elegans data set [60,61], we assume that it is general
to proteins, at least for these organisms.
The observation by [60,61] that the observed correla-
tions in evolutionary rates are not directly attributable to
the interaction implies that they do not arise solely from
compensatory mutations across the binding interface.
Other pieces of evidence support this suggestion. For ex-
ample, Hakes et al. [31] and Juan et al. [28] found that
non-interacting proteins of macromolecular complexes
showed levels of correlated evolution similar (or better)
than their physically interacting counterparts. Only obli-
gate protein complexes were used by Hakes et al. [31],
and so co-evolution of non-interacting chains cannot
occur through the transient binding of other proteins
through a single interface. Coordinated chains of co-
evolutionary changes are possible [62], but are rarely
long enough to span whole subunits. Moreover, function-
ally linked proteins, such as the ones present in the same
pathway, are also co-evolving [63], even when they do
not interact, either directly or through an intermediary.
With regard to the effect of compensating mutations

on tree topology, we find, in agreement with, Kelly and
Stumpf [33], that any effect is so weak as to be undetect-
able. Since compensatory mutations are unlikely to give
rise to much, if any, of the signal resulting in correla-
tions in evolutionary rate between interacting proteins,
and there are no detectable correlations in topology, we
conclude that compensatory substitutions, although
clearly important in interface evolution [64-66], do not
give rise to any of the correlations observed by whole-
sequence methods such as mirrortree.
To date, the only other mechanism that has been pro-

posed to account for the observed correlations in evolu-
tionary rate between interacting proteins are factors
such as correlations in expression level, dispensability,
functional similarities, the number of interactions made
and, in multicellular organisms breadth and timing of
expression [30,31,60]. Indeed, correlations in mRNA
abundance levels have similar predictive power to evolu-
tionary correlations, with evolutionary correlations being
either slightly less [31] or slightly more accurately pre-
dictive of interactions [67] depending on the details of
the method used. All of these factors have been shown
to affect evolutionary rate, and we show that they do not
have a measurable affect on tree topology. Furthermore,
all can operate on whole protein complexes and path-
ways. Thus, external factors such as expression correla-
tions are the strongest candidates to account for the
observed correlations.

Conclusions
Our results suggest how methods for predicting protein-
protein interactions may be improved. The co-evolutionary
signal that arises from compensatory mutations is localised
to a few specific sites. By contrast wide-spread sequence
correlations in rate are likely to be observed in much larger
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numbers of residues, potentially all sites that are not under
some other form of stronger selection. To improve meth-
ods a viable strategy would be to include as many sites as
possible that are likely to be under the same common con-
straint, regardless of functional or structural role, or indeed
location within a specific protein chain. Indeed, this
approach has already been shown to lead to more accurate
prediction of protein-protein interactions [28] than other,
smaller-scale methods.

Methods
Positive and negative dataset
The positive dataset of interacting proteins consists of
111 interacting protein pairs from Saccharomyces cerevi-
siae, which have been shown to interact by at least three
independent high throughput methods [68,69]. The
dataset consists of 140 proteins. Most of these proteins
form single clusters; 6 clusters containing 2–4 proteins
are formed at a sequence identity of 30% or higher. The
negative dataset of non-interacting proteins was also
generated from Saccharomyces cerevisiae proteins, con-
sidering all those pairwise protein-protein combinations
which are localized to non-adjacent sub-cellular orga-
nelles based on GFP labelling studies [70]. The dataset
consists of 297 pairs and is non-redundant, as evidenced
by the absence of any clusters at a sequence identity
of 30%. The positive and negative sets contain 14
common proteins.

Ortholog selection and tree inference
Orthologs for each of the proteins in the positive and
negative datasets were identified by a reciprocal top hit
PSI-BLAST [49] search against the sequences of eukar-
yotes from two databases, SWISSPROT (April 2009)
[47] and UNIPROT (April 2009) [48]. The search was
for three rounds at an E-value cut-off of 10-5 with the
low complexity regions masked. Further, only the recip-
rocal orthologs which covered ≥50% (in case of ortho-
logs from SWISSPROT and UNIPROT) and ≥70%
(in case of orthologs from UNIPROT) of the length of
each other were considered, to remove any similarity
arising due to presence of small domains. For the ortho-
logs obtained from UNIPROT, clustering was performed
at 80% sequence identity using BLASTCLUST to remove
very similar sequences. The datasets are designated as
SP-50 L, UP-50 L and UP-70 L, respectively. Orthologs
from species common to both proteins in a pair were
retained. Only pairs with at least 10 orthologous
sequences were taken up for further processing. Multiple
sequence alignments of the orthologous sequences were
generated using CLUSTALW [71] using default para-
meters. Since the multiple sequence alignments in our
analysis are generated in an automated manner and
some variable regions may not be aligned correctly, we
removed such columns based on the percentage of gaps
in a column [72]. Two kinds of datasets were generated:
an alignment with only columns containing a maximum
of 20% gaps (designated X-20p dataset), and an align-
ment containing all columns in the complete MSA
(designated X-CM dataset). These datasets were used to
construct phylogenetic trees using PHYML [73], which
constructs a maximum likelihood tree for the aligned
columns. Rate heterogeneity at different positions in the
alignment was assumed and modelled using a gamma
distribution consisting of 8 categories [74]. The model of
evolution was based on the LG model [75], which uti-
lizes the capability of maximum likelihood estimation
and incorporates the concept of rate heterogeneity
at different sites in the construction of the amino acid
substitution matrix.

Comparison of tree topologies
The likelihood of the data in the aligned columns of pro-
tein 1 in a pair to be explained by both the phylogenetic
trees (protein 1 and protein 2 of the pair), and vice
versa, was calculated using TREE-PUZZLE [76]. Two
likelihood based statistical tests [53], two-sided Kishino-
Hasegawa test, Shimodaira-Hasegawa test and a confi-
dence test based on expected log-likelihood [52] are
employed by TREE-PUZZLE to ascertain whether the
tree topologies are similar. The flowchart for compar-
ison of tree topologies is shown in Figure 2. The tree
topology comparison is performed for all pairs in the
positive and negative dataset. The distribution of the
results in the two cases is compared using chi-squared
test to assess statistical difference.

Correlation of genetic distances
Genetic distances of n x n orthologous sequences used
in each multiple sequence alignment was computed by
the method of maximum likelihood based on the
selected model of substitution and rate heterogeneity
using TREE-PUZZLE. The similarity between genetic
distance matrices of a pair of interacting proteins (or
non-interacting proteins) is calculated using Pearson’s R.
To assess the significance of the correlation coefficient,
the observed correlation coefficient value was evaluated
against values from a random distribution. For the
randomization, values in two columns of one of the pro-
teins in the pair were changed 1000 times. After this,
the correlation coefficient between the randomized dis-
tances in the protein pair was determined again. The
randomization was performed 1000 times to obtain a
distribution of correlation coefficients.

Control datasets
Two control datasets were generated with the idea
of studying the effect of other parameters. The UP-70 L-
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20p dataset serves as the reference dataset for both
control sets.
The first control set consists of orthologs collected for

each of the proteins in the positive and negative datasets
from a set of closely related fungal proteomes, belonging
to the division of Ascomycota, from UNIPROT. The rest
of the procedure for ortholog selection and tree infer-
ence is the same as followed for positive and negative
datasets. This control set (Control-Asc) was generated
to identify if there is any effect of evolutionary diver-
gence on phylogenetic tree inference.
The second control set was generated to compare

phylogenetic trees of interacting and non-interacting
proteins with their corresponding species tree (Control-
18SrRNA). Since 18S rRNA trees have been extensively
used to ascertain the geneology of species [56], we con-
sidered 18S rRNA trees as species trees. For every inter-
acting/non-interacting protein pair, 18S rRNA sequences
for the set of species whose orthologs are used in the
construction of MSA are culled from the ENA database
[77]. All members containing ≥10 18S rRNA sequences
are aligned using CLUSTALW to generate the MSA.
After removing all columns containing >20% gaps, the
resulting MSA is used to generate phylogenetic tree
using PHYML. To enable comparison of the 18S rRNA
phylogenetic tree with the interacting/non-interacting
protein’s phylogenetic tree, the nucleotide sequence of
the orthologous protein sequences was extracted from
ENSEMBL (www.ensembl.org) for the same set of spe-
cies. These sequences are aligned using CLUSTALW
and the MSA pruned further to remove columns con-
taining >20% gaps. The phylogenetic tree generated
using PHYML is compared with the 18S rRNA phylo-
genetic tree using TREE-PUZZLE.
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