
Scherrer et al. BMC Evolutionary Biology 2012, 12:179
http://www.biomedcentral.com/1471-2148/12/179

RESEARCH ARTICLE Open Access

Modeling coding-sequence evolution within
the context of residue solvent accessibility
Michael P Scherrer, Austin G Meyer and Claus O Wilke*

Abstract

Background: Protein structure mediates site-specific patterns of sequence divergence. In particular, residues in the
core of a protein (solvent-inaccessible residues) tend to be more evolutionarily conserved than residues on the
surface (solvent-accessible residues).

Results: Here, we present a model of sequence evolution that explicitly accounts for the relative solvent accessibility
of each residue in a protein. Our model is a variant of the Goldman-Yang 1994 (GY94) model in which all model
parameters can be functions of the relative solvent accessibility (RSA) of a residue. We apply this model to a data set
comprised of nearly 600 yeast genes, and find that an evolutionary-rate ratio ω that varies linearly with RSA provides a
better model fit than an RSA-independent ω or an ω that is estimated separately in individual RSA bins. We further
show that the branch length t and the transition–transverion ratio κ also vary with RSA. The RSA-dependent GY94
model performs better than an RSA-dependent Muse-Gaut 1994 (MG94) model in which the synonymous and
non-synonymous rates individually are linear functions of RSA. Finally, protein core size affects the slope of the linear
relationship between ω and RSA, and gene expression level affects both the intercept and the slope.

Conclusions: Structure-aware models of sequence evolution provide a significantly better fit than traditional models
that neglect structure. The linear relationship between ω and RSA implies that genes are better characterized by their
ω slope and intercept than by just their mean ω.

Background
Substitution patterns in protein-coding genes are shaped
by the 3-dimensional structure of the expressed pro-
teins. To account for this influence of structure on
sequence evolution, evolutionary biologists increasingly
aim to combine sequence analysis with structural infor-
mation or to develop models of sequence evolution that
incorporate structural features of the expressed protein.
Some authors calculate amino-acid substitution matri-
ces as a function of protein structure [1,2] or correlate
sequence variability in alignments with structural features
[3,4]. Others subdivide proteins into broad categories by
solvent exposure (buried/exposed) or secondary structure
(α-helix, β-sheet, etc.) and then use standard maximum-
likelihood models of sequence evolution to infer evolu-
tionary rates as a function of structural features [5-9].
Some authors employ more complex methods that allow
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for non-independence among sites, and use energy func-
tions to model how substitutions at one site influence
substitutions at others [10-13]. Finally, a few groups have
attempted a variety of other approaches to link sequence
variability with protein structure [14-17].
These various analyses differ in their specific results

as well as in the approaches taken. However, one pat-
tern consistently emerges: Residues in the core of pro-
teins are more conserved than residues on the surface.
This finding agrees with our understanding of protein
biochemistry. Substitutions in the core of a protein are
more likely to disrupt fold stability than substitutions on
the surface, and the loss of the structural integrity of a
protein is frequently the underlying cause of loss of func-
tion [18,19]. Further, the observed relationship between
residue buriedness and evolutionary conservation seems
surprisingly simple. When evolutionary rate is plotted as
a function of relative solvent accessibility (RSA, a num-
ber between 0 and 1 measuring how exposed a residue
is to the solvent surrounding the protein), one finds a
near-perfect linear relationship [9,20].
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Inspired by the observed linear relationship between
evolutionary conservation and RSA, we here take the
standard Goldman-Yang model of coding-sequence evo-
lution (GY94, [21]) and introduce to it a dependency
of the model parameters on RSA. We find that the
RSA-dependent GY94 model provides a substantially bet-
ter fit to yeast sequence data than the standard, RSA-
independentmodel.We further find that for several model
parameters, a simple, linear dependency on RSA provides
the best fit. In particular, the ratio of non-synonymous
to synonymous evolutionary rates ω is a linear, increas-
ing function of RSA. Thus, we can characterize protein
evolutionary rates by the slope and intercept of the ω–
RSA relationship rather than by just a single ω value. We
show that slope and intercept of the ω–RSA relationship
vary among proteins with different structures or different
expression levels.

Results
An RSA-dependent Markov model of coding-sequence
evolution
Previous works assessing the relationship between evolu-
tionary rate and RSA subdivided sites into groups with
comparable RSA and then calculated evolutionary rates
separately for each group [9,20]. This approach yields a
set of independent evolutionary-rate estimates that can be
plotted against representative RSA values for each group.
While this approach has provided valuable new insight,
it is not satisfactory from a methodological perspec-
tive. First, some model parameters (such as parameters
describing the nucleotide-level mutation process, e.g. the
transition–transversion bias) could be conserved among
groups. Yet they are estimated individually for each group.
Second, a consistent framework for hypothesis testing is
lacking. For example, in order to test whether evolution-
ary rates vary linearly with RSA, one would have to do a
regression analysis on the previously estimated rates. In
this regression analysis, sample size corresponds to the
number of RSA groups rather than to the number of sites
in the original data set. Consequently, the P value resulting
from the regression would likely be incorrect.
To resolve these shortcomings, we developed a vari-

ant of the GY94 model [21] in which model parameters
are functions of RSA. We write the infinitesimal gener-
ator Q = (Qij) of the Markov process describing the
substitution process as (for i �= j)

Qij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if more than one nucleotide change
πj, if synonymous transversion

κ(r)πj, if synonymous transition
ω(r)πj, if nonsynonymous transversion

κ(r)ω(r)πj, if nonsynonymous transition

,

(1)

where κ is the ratio of transitions to transversions, ω is
the ratio of the nonsynonymous to synonymous substitu-
tion rates, and r stands for the RSA of a site. The indices
i and j run over all 61 sense codons, and πj is the fre-
quency of codon j. (We do not estimate site-specific codon
frequencies). The finite-time transition matrix is given by

P = exp [ t(r)Q] , (2)

where t corresponds to evolutionary time, in arbitrary
units. The parameter t measures the branch length in
the phylogenetic tree; it is broadly related to the rate of
synonymous substitutions. On first glance, it might be sur-
prising that we allow t to vary with RSA. However, as
we will see below, models with site-dependent t fit the
data better than models with a single t across all sites.
The reason for the improved fit is that RSA influences
both amino-acid level processes and nucleotide-level pro-
cesses.
We implemented this model in the phylogenetic mod-

eling language HyPhy [22]. One problem we faced was
that HyPhy does not allow a continuous co-variable (such
as r) in the model matrix. To overcome this technical
problem, we binned RSA values into n bins and repre-
sented all RSA values within bin k by the bin mid-point,
which we denote by rk . In this way, we approximate
a single matrix Q(r) that changes continuously with
r by a set of n discrete matrices Qk = Q(rk), with
k = 1, . . . , n. HyPhy allows us to simultaneously fit mul-
tiple discrete matrices, and it also allows us to share
parameters among these matrices. In the limit of large
n, our discretized model converges to the model that is
continuous in r.
Our model contains three fitted parameters: ω(r), κ(r),

and t(r). For each parameter, we considered three types
of RSA dependency. First, a parameter can be constant,
i.e., not actually depend on RSA. In this case, we have
ω(r) = ω0, κ(r) = κ0, or t(r) = t0. Second, a parame-
ter can be a linear function of RSA. In this case, we have
ω(r) = ω0 + ω1r, κ(r) = κ0 + κ1r, or t(r) = t0 + t1r.
(But note that we actually use only n discrete RSA val-
ues rk , because of the binning procedure). Finally, we can
allow for separate ω, κ , and t values in each bin. (We refer
to this case as per-bin parameter estimation). In this case,
we fit n distinct ω values, one for each bin (which we refer
to as ωrk ), and likewise for κ and t. Figure 1 illustrates
the various modeling choices for ω, κ , and t, in various
combinations.

A linear RSA ependency for all estimated parameters
provides the best model fit
We fitted our model to a data set of yeast sequences
with available structural information. We identified 587
Saccharomyces cerevisiae genes with known ortholog
in Saccharomyces paradoxus and with a representative
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Figure 1 Examples of RSA-dependent sequence-evolution
models considered. All models have three parameters, evolutionary-
rate ratio ω, branch length t, and transition–transversion ratio κ . All
three parameters can be estimated as an individual value within each
RSA bin (per-bin), as a linear function of RSA (linear), or as a constant
across all RSA values (constant). The examples here are illustrated for
n = 10 RSA bins. (A) All parameters are estimated per-bin. (B) ω is
estimated as linear function, t is estimated per-bin, and κ is estimated
as a constant. (C) All paramters are estimated as linear functions.

structure in the Protein Data Bank (PDB). We calculated
RSA for each site as described [7]. Unless noted otherwise,
we used n = 20 evenly-spaced RSA bins.
Since we considered three different functional forms of

RSA dependence (constant, linear, and per-bin) for each
of the three parameters ω, κ , and t, we had 27 possi-
ble models. We fit all these models to our data set and
ranked them by their Akaike Information Criterion (AIC
[23,24]). Results for all models are shown in Table 1. The
top-scoring model was one in which ω and t depended
linearly on RSA while κ was estimated per bin. The dif-
ferences in AIC were quite substantial among models, and
the top-scoring model was clearly better than the next-
best model (in which all parameters were estimated as
linear functions).
In general, we found that all parameters varied signifi-

cantly with RSA. The top eight models did not contain a
single model in which even one parameter was constant
over RSA. This result shows that it is not sufficient to just
make ω a function of RSA, the transition–transversion
bias κ and the branch-length t also depend on RSA.
Among the models with constant parameters, models
with constant t ranked the highest. Models with constant
ω ranked consistently the lowest. This result highlights the
strong dependency of amino-acid substitution patterns on
RSA.
Whenever the transition–transversion bias κ was

allowed to vary with RSA, either linearly or per-bin, we
found that it generally had a negative slope (decreased
with increasing RSA). The branch length t tended to have
a positive slope (increased with increasing RSA), unless κ

was made constant, in which case t assumed a negative
slope (Table 1).
Figure 2 shows ω as a function of RSA as estimated

for the overall best model (with linear ω and t and per-
bin κ) and, for comparison, for the overall best model
with per-bin ω (with linear t and per-bin κ). We see
that the estimates from both models are highly con-
sistent with each other, and that the per-bin estimates
strongly support a linear relationship between ω and
RSA.
To assess the effect of the binning procedure on model

estimation, we re-fitted the fully linear model (with linear
ω, κ , and t) using different numbers of bins, from n = 4 to
n = 20. Parameter estimates were nearly independent of
n and varied smoothly in n (Table 2). We obtained similar
results when we used a model with linear ω and t and per-
bin κ (data not shown).
Surprisingly, the log-likelihood did not vary smoothly in

n (Table 2). For example, we observed the overall best like-
lihood score for n = 11, while n = 10 had a comparatively
poor likelihood score. We believe that the discontinuity
in likelihood scores was caused by aliasing issues. A site’s
RSA can be high or low relative to the range of RSA val-
ues within a bin. After a small change in the number
of bins (for example from n = 10 to n = 11), some
sites that previously had a relatively low RSA for their
bin will now have a relatively high RSA or vice versa. If
those sites are particularly variable or particularly con-
served, the change in their location relative to the bin
center can substantially affect the quality of the model
fit. For this reason, we do not think that it is reason-
able to select the number of bins based on the likelihood
score of the model. Instead, we opted for using a rela-
tively large bin number (n = 20), which more accurately
approximates a smooth dependency of model parameters
on RSA.

GY94model provides a better model-fit than MG94model
The GY94 model describes evolutionary rates using the
two parameters t and ω. An alternative model, the Muse–
Gaut model (MG94 [25]), uses instead the parameters α

and β . The parameter α in MG94 corresponds to t in
GY94 and the parameter β in MG94 corresponds to tω
in GY94. If we fit a model without site variability (all
parameters are constant across sites), the MG94 model
and the GY94 model are identical. However, when we
allow for site variability, the two models become dif-
ferent. The GY94 model is usually set up with a con-
stant t and a variable ω [26,27]. This set-up implicitly
assumes that the synonymous rate is constant across
sites whereas the nonsynonymous rate is variable. The
MG94 model, on the other hand, has been used to explic-
itly model both nonsynonymous and synonymous site
variability [28].
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Table 1 Fittedmodels, in order of ascending AIC

ω t κ ln L df AIC t slope κ slope

linear linear per-bin −839713.86 24 1679476 + −
linear linear linear −839736.74 6 1679485 + −
per-bin linear per-bin −839701.37 42 1679487 + −
per-bin linear linear −839722.37 24 1679493 + −
linear per-bin linear −839723.27 24 1679495 + −
linear per-bin per-bin −839707.75 42 1679499 + −
per-bin per-bin linear −839710.08 42 1679504 + −
per-bin per-bin per-bin −839694.42 60 1679509 + −
linear constant linear −839757.23 5 1679524 0 −
per-bin constant linear −839740.64 23 1679527 + −
linear constant per-bin −839742.62 23 1679531 0 −
per-bin constant per-bin −839727.25 41 1679537 0 −
linear linear constant −839825.99 5 1679662 − 0

per-bin linear constant −839809.70 23 1679665 − 0

linear per-bin constant −839817.06 23 1679680 − 0

per-bin per-bin constant −839800.41 41 1679683 − 0

linear constant constant −839867.98 4 1679744 0 0

per-bin constant constant −839856.43 22 1679757 0 0

constant linear per-bin −840468.84 23 1680984 + −
constant per-bin per-bin −840459.99 41 1681002 + −
constant per-bin linear −840479.14 23 1681004 + −
constant linear linear −840524.57 5 1681059 + −
constant linear constant −840697.41 4 1681403 + 0

constant per-bin constant −840688.35 22 1681421 + 0

constant constant linear −840738.77 4 1681486 0 −
constant constant constant −840740.37 3 1681487 0 0

constant constant per-bin −840726.86 22 1681498 0 0

Here, we have allowed both ω and t to vary with RSA,
so we have considered both nonsynonymous and synony-
mous rate variation. However, in using the GY94 model,
we have assumed that the two quantities that vary linearly
with RSA are the synonymous rate and the ratio of the
nonsynonymous to synonymous rates. A priori, it is just
as reasonable to assume that the synonymous rate α and
the nonsynonymous rate β are linear functions of RSA. In
this case,the ratio ω = β/α would of course not be linear
in RSA.
To assess whether the nonsynonymous rate β or the

ratio ω = β/α is linear in RSA, we fitted a model in
which α and β were linear functions of RSA. (κ was
estimated per-bin). The resulting relationship of ω vs.
RSA was similar but not identical to the one observed
for linear ω (Figure 3). The log-likelihood score for this
model fit was −839720.75, compared to a log-likelihood
score of −839713.86 for the model with linear ω. The

two models are not nested, so we cannot compare them
using a likelihood ratio test. However, they are compara-
ble via AIC, and the model with linear ω was clearly better
(�AIC = 14).

Effect of relative solvent accessibility on synonymous and
nonsynonymous substitution rates
The previous subsections have shown that substitu-
tion rates at both synonymous and nonsynonymous
sites are affected by RSA, and that the ratio ω =
dN/dS changes linearly with RSA. If ω is linear in
RSA and both dN and dS vary with RSA, then
we expect dN and dS individually to not be linear
in RSA.
The quantities dN and dS are not parameters that

are estimated in the model fit. Instead, they are derived
quantities that we can calculate once the model has
been fit to the data. One complication in calculating
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Figure 2 Evolutionary-rate ratio increases linearly with RSA. The
solid line shows ω = dN/dS versus RSA as estimated by the best
model (linear ω, linear t, per-bin κ). The dots show the same for the
best model with per-bin ω (which has linear t and per-bin κ). Both
models are consistent with each other and strongly support a linear
relationship between ω and RSA.

dN and dS arises, however: There are multiple defini-
tions of these parameters. For example, dS is defined
as the number of synonymous differences divided by
the number of synonymous sites in the sequence. We

obtain the number of synonymous differences by sum-
ming over appropriate elements in the matrix Q [29]. The
number of synonymous sites can be obtained in two dif-
ferent ways. First, we can simply count the number of
sites atwhich a mutation would lead to a synonymous
change, using fractional counts for sites at which muta-
tions can cause either a synonymous or a nonsynonymous
change. This method of counting gives us the physical-
sites definition of dS [30]. Second, we can weigh each
site with the probability that a synonymous mutation will
occur at this site under the fitted model. This method
of counting sites gives us the mutational-opportunity
definition of dS [30]. The same two definitions exist
for dN.
The mutational-opportunity and the physical-sites def-

initions gave nearly identical results for dN (Figure 4A).
In both cases, dN showed a strong increasing trend with
RSA, with a slight deviation from linearity for higher RSA
values. By contrast, the two definitions gave somewhat dif-
ferent results for dS. Under the mutational-opportunity
definition, dS was decreasing with RSA, whereas under
the physical-site definition it showed no obvious trend
(Figure 4B).

The effect of core size and expression level on evolutionary
rate
In yeast, the primary determinant of evolutionary rate
is gene expression level [31,32]. A second determinant
is protein structure, measured either by contact density
[7] or by core size [9]. Thus, we investigated how the

Table 2 Effect of the number of bins on parameter estimates

n ω0 ω1 t0 t1 κ0 κ1 ln L

4 0.1205 0.0106 0.7110 2.4706 -2.5487 5.3465 -839824.56

5 0.1208 0.0116 0.6967 2.4734 -2.5948 5.3547 -817178.82

6 0.1162 0.0135 0.7012 2.4828 -2.5361 5.3136 -839781.41

7 0.1149 0.0143 0.7034 2.4849 -2.5102 5.2976 -839764.54

8 0.1138 0.0148 0.7269 2.4805 -2.5336 5.2996 -839760.69

9 0.1123 0.0154 0.7062 2.4900 -2.4831 5.2759 -835407.29

10 0.1129 0.0156 0.7020 2.4898 -2.5003 5.2811 -839745.29

11 0.1132 0.0159 0.6742 2.4879 -2.4497 5.2669 -797981.33

12 0.1119 0.0161 0.6706 2.5007 -2.4451 5.2571 -837291.42

13 0.1110 0.0162 0.7114 2.4902 -2.4846 5.2703 -836692.33

14 0.1108 0.0164 0.6956 2.5005 -2.4632 5.2532 -837806.63

15 0.1115 0.0164 0.6959 2.4941 -2.4759 5.2653 -839684.07

16 0.1102 0.0167 0.7174 2.4897 -2.4858 5.2666 -839740.91

17 0.1098 0.0169 0.7146 2.4886 -2.4609 5.2562 -835852.76

18 0.1097 0.0170 0.7074 2.4942 -2.4652 5.2548 -839148.15

19 0.1100 0.0169 0.7038 2.4937 -2.4785 5.2627 -839318.45

20 0.1097 0.0171 0.7038 2.4943 -2.4732 5.2592 -839736.74
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Figure 3 Comparison of the GY94 and the MG94models. The
solid line shows ω = dN/dS versus RSA, as estimated by the GY94
model. The dashed line shows the same for the MG94 model. Under
the MG94 model, ω shows moderate curvature. The GY94 model
provides a better fit to the data (�AIC = 14).

slope and the intercept of the linear function ω = ω0 +
ω1r changed with protein core size (measured by average
RSA) and with gene expression level (measured by mRNA
abundance).
Franzosa and Xia showed that the slope of ω changed

with core size while the intercept remained nearly
unchanged. We repeated their analysis by identifying
the proteins with the 33% largest and smallest cores
and fitting a joint evolutionary model to these pro-
teins. We fitted one line each for κ and t but fitted two

separate lines for ω, one for the large-core proteins
(ωlc = ωlc

0 + ωlc
1 r) and one for the small-core pro-

teins (ωsc = ωsc
0 + ωsc

1 r), as shown in Figure 5.
We found that small-core proteins displayed a
smaller slope than large-core proteins (ωsc

1 = 0.082 vs.
ωlc
1 = 0.127). This difference in slopes was signif-

icant (likelihood ratio test, P = 6.41 × 10−9). By
contrast, the intercepts were not significantly differ-
ent (likelihood ratio test, P = 0.136), and we found
(ωsc

0 = ωlc
0 = 0.018).

The two slopes we found were more similar to each
other than the ones found by Franzosa and Xia [9].
The main difference between our data set and theirs was
that we used more stringent criteria to match sequences
to structures. To verify that we could reproduce the results
of Ref. [9], we relaxed our criteria for alignment length
to 70%, thereby increasing our dataset to 870 sequence-
structure pairs. For this larger data set, we found a similar
slope for large-core proteins as found before (ωlc

1 = 0.124),
but the slope for small-core proteins was reduced (ωsc

1 =
0.058). These slopes were consistent with the findings of
Ref. [9].
We carried out a similar analysis on high-expression

and low-expression genes, fitting a separate line to each
group of proteins (ωhe

1 = ωhe
0 + ωhe

1 r for high-expression
genes, ωle

1 = ωle
0 + ωle

1 r for low-expression genes).
We found a substantial difference in slope between these
two groups of genes (ωhe

1 = 0.047 vs. ωle
1 = 0.164).

The difference was significant (likelihood ratio test, P =
1.75 × 10−62). We also found a difference in intercept
(ωhe

0 = 0.011 vs. ωle
0 = 0.023) and this difference was

significant as well (likelihood ratio test, P = 6.05 ×
10−12). Similar results were found when we used codon
adaptation index as a proxy for gene expression level
(data not shown).
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Figure 4 Evolutionary rates dN and dS. (A) The nonsynonymous rate, dN, correlates strongly with RSA under both the mutational-opportunity
definition and the physical-sites definition. (B) The synonymous rate, dS, shows a moderate negative correlation with RSA under the
mutational-opportunity definition and no slope under the physical-sites definition. The fitted model had linear ω, linear t, and per-bin κ .
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Figure 5 Dependency of ω = dN/dS on protein core size and expression level. (A) Core size affects evolutionary rate on the surface of the
protein but not in the core. (B) Expression level affects evolutionary rate both on the surface and in the core. However, it has a bigger effect on the
surface of the protein. In both figures, the solid lines were estimated jointly from the data using a linear dependency of ω on RSA. Points for
individual bins are shown for illustration purposes only. They were estimated using a per-bin model for ω. The dashed black line represents the
genome-wide trend, as shown in Figure 2, and is provided as a reference.

Finally, we carried out a joint analysis of core size and
expression level by extracting four groups of proteins
from our data set: proteins with (1) high expression level
and large core, (2) high expression level and small core,
(3) low expression level and large core, and (4) low
expression level and small core. Figure 6 shows the result-
ing model fit. Clearly, expression level plays a larger role
in determining evolutionary rate than core size. However,
the model with core-size-dependent slope showed a bet-
ter fit than a model in which the slope depended only on

Relative Solvent Accessibility
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Figure 6 Joint analysis of the effects of both core size (small or
large) and expression level (low or high) on the relationship
between ω = dN/dS and RSA. Only the fitted lines are shown.
Surprisingly, for low-expression genes, small-core proteins evolve
faster than larger-core proteins. This relationship is reversed in a larger
dataset obtained with less-stringent criteria (see text).

expression level (likelihood ratio test, P = 5.33 × 10−4).
Surprisingly, the effect of core size on slope was reversed
for high- and low-expression genes. For high-expression
genes, proteins with larger core size showed a larger slope
in ω than did proteins with smaller core size, consistent
with prior results. By contrast, low-expression proteins
with larger core size showed a smaller slope than did pro-
teins with smaller core size. However, this unexpected
pattern disappeared when we repeated the above analy-
sis on our expanded data set with 870 sequence-structure
pairs. There, the large-core-size proteins had the larger
slope in all cases, consistent with prior results (data not
shown).

Discussion
We have developed a method that models the evolution-
ary rate of a coding sequence within the context of the
protein’s 3-dimensional structure. Our method is a sim-
ple extension of the standard GY94 model, modified such
that all parameters are functions of relative solvent acces-
sibility (RSA). We have found that the evolutionary-rate
ratio ω = dN/dS, the branch length t, and the transition–
transversion bias κ all depend on RSA. The overall best
fitting model had a linear relationship of ω and t with
RSA, while κ showed small deviations from strict linear-
ity. In the second-best model, all parameters had a linear
relationship with RSA.
Our method presents a unified statistical framework for

comparing RSA-dependent model parameters among dif-
ferent groups of proteins. Using this framework, we have
shown that protein core size affects only the slope of ω as
a function of RSA, but not the intercept. The most buried
residues have—on average—the same ω value regardless
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of protein core size. By contrast, expression level affects ω

even for the most buried residues.
We have found that the variation in ω with RSA is

substantial; for the most exposed residues, ω was on aver-
age 5-10 times larger than it was for the most buried
residues. This observation highlights the importance of
incorporating protein structure into models of coding-
sequence evolution. Traditional models of rate varia-
tion [27,29,33] cannot distinguish between rate variation
caused by protein structure and rate variation caused
by other factors (e.g., positive or negative selection on
sites of functional importance). As an obvious exten-
sion to the work presented here, we can combine the
present model with more traditional models of rate vari-
ation by allowing for additional rate variation among
sites with similar RSA. This work will be presented
elsewhere [34].
Our findings here are broadly consistent with the find-

ings of Franzosa and Xia [9].We have confirmed the linear
relationship between dN/dS and RSA in an independently
derived data set; we have also confirmed that proteins
with larger core size show a faster increase of dN/dS
with increasing RSA than proteins with smaller core size.
Our work goes beyond Franzosa and Xia’s findings by
demonstrating that the evolutionary rate of fully buried
residues is independent of protein core size, that expres-
sion level affects evolutionary rate at all RSA values, and
that the GY94 model provides a better model fit than the
MG94model when RSA-dependent evolutionary rates are
considered. Our work also suggests that nucleotide-level
processes vary systematically with protein structure.
In our joint analysis of core size and expression level,

we made the unexpected observation that the effect of
core size on the slope of ω is reversed for genes with low
expression level. However, this observation disappeared
in a larger data set obtained under slightly less strin-
gent criteria for matching sequences to PDB structures.
We can offer no good explanation for this observation.
It could be a statistical fluke. The number of genes in
each of the four groups (low expression and small core
size, low expression and large core size, high expression
and small core size, high expression and large core size)
is relatively small in this analysis, so a few unusual pro-
teins could skew the analysis. What exactly is the cause
of this unexpected observation may have to be clarified in
future analyses, either using expanded data sets—as more
structures become available—or using data from different
organisms.
Our approach is conceptually related to other recent

works attempting to combine protein structure with
sequence evolution [10-13]. These works imposed struc-
tural constraints on sequence evolution via sophisticated
energy functions describing how protein fold stability
changes as amino acids are replaced. In comparison, our

approach is much more simplistic. However, we believe
that this simplicity has substantial benefits. First, our
approach is simple and fast. All the models we have
used here can be fit within 10–15 minutes on an off-
the-shelf laptop. Second, our approach yields results that
can be interpreted easily. Instead of a single ω value per
gene, we obtain two values, an intercept and a slope.
The intercept tells us to what extent selection constrains
the most buried residues; the slope tells us by how
much selection relaxes as we move towards more exposed
residues. Third, our approach can be implemented with
relative ease in existing modeling frameworks such
as HyPhy [22].
Following Franzosa and Xia [9], we used a model that

fit a single rate ratio ω, regardless of which amino acids
were substituted into which other ones. A recent study
has shown that such models can always be improved
upon with amino-acid dependent transition rates, even if
amino acids are grouped into exchangeability categories at
random [35]. This finding is not entirely surprising, con-
sidering that amino-acid substitution matrices have con-
sistently been found to depend substantially on the amino-
acid identity (e.g. Refs. [36-38]). Therefore, it would be
desirable to develop codon-level substitution models that
accurately capture this rate variation, without adding too
many additional parameters. Approaches that have been
suggested include automatically grouping amino acids
into exchangeability categories [39,40] and decompos-
ing amino-acid substitution rates into components corre-
sponding to biophysical properties of amino acids (LCAP
model, Ref. [41]). Yet substitution rates also depend on
protein structure [1,2,6,42], and thus one would want to
incorporate structure into these models as well. One study
developed a variant of the LCAP model where parame-
ters were fit separately to buried and exposed sites and
found to be significantly different [17]. Since we have seen
here that substitution rates seem to depend continuously
(and linearly) on RSA, it might be worth it to investigate
a variant of the LCAP model in which rate parameters
are linear functions of RSA. Such a model would have
the same number of parameters as the model in Ref. [17]
but would quite possibly provide a better fit to the data.
Alternatively, one could attempt to incorporate an RSA-
dependence into models that automatically group amino
acids [39,40].
We found that in our model, both t and κ varied with

RSA. We believe that this finding reflects the effect of
selection on nucleotide-level processes. First, equilibrium
amino-acid frequencies vary with RSA [20,43], and this
variation will have some effect on equilibrium codon fre-
quencies. Second, protein structure also seems to exert
a direct selection pressure on synonymous codon choice
[44-50], most likely through an interaction between the
translation process and protein folding. A more realistic
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model could represent this relationship between protein
structure and the nucleotide-level substitution process
more accurately, for example via a structure-dependent
variant of the FMutSel model [51] or by extending models
such as the LCAP model [17,41] to contain structure-
dependent terms for nucleotide-level processes.
The challenge in developing any such models will be to

make them realistic yet sufficiently simple so they can be
fit to moderately sized data sets. An alternative, simpler
strategy could be to calculate equilibrium codon frequen-
cies in an RSA-dependent manner. We considered calcu-
lating codon frequencies per bin and found that doing so
generally improved AIC scores but did not eliminate the
need for RSA-dependent t or κ , nor did it alter any of our
other results in a substantive way (not shown).
Our method requires a solved crystal structure to cal-

culate RSA values. Although the Protein Data Bank (PDB)
has been growing rapidly over the past decade, the num-
ber of available structures is still small compared to the
number of available sequences. For example, many of the
yeast sequences we used in our analysis did not have a
corresponding structure. For those sequences, we relied
on homologous protein structures solved in related organ-
ism. Homology mapping performs relatively well in pre-
dicting relative solvent accessibility [49] but clearly it is
not perfect. Further, certain proteins or regions of pro-
teins, such as membrane proteins or intrinsically disor-
dered regions, can usually not be crystalized. Thus, our
method cannot be applied to such proteins or regions of
proteins.
Our method assumes that RSA remains constant

throughout evolution. Yet every amino-acid replacement
will cause some distortion in the protein structure [52],
and RSA values at homologous sites will slowly diverge
with increasing sequence divergence [49]. In the future, if
either the number of available PDB structures increases
drastically or if atom-level computational modeling of
protein structures becomes sufficiently reliable, we will
able to study how changes in structure correlate with
evolutionary rate.

Conclusions
Our work has shown that the evolutionary rate ratio ω,
the branch length t, and the transition–transversion bias
κ all vary significantly with relative solvent accessibility
(RSA). All three parameters show an approximately linear
RSA dependency. In general, both the slope and inter-
cept of the ω–RSA dependency differ according to the
specifics of individual genes, such as protein structure and
gene expression level. Our work demonstrates that protein
structure can be an important ingredient in comparative
sequence analysis. Our work further suggests that a tighter
integration of structural and sequence data will improve
the performance of comparative analysis methods.

Methods
Homology mapping and categorization of genes
In order to construct a large data set of sequences
with corresponding structures, we obtained open read-
ing frames (ORFs) of the yeast Saccharomyces cerevisiae
from the Saccharomyces Genome Database [53] and
aligned them with orthologous Saccharomyces paradoxus
sequences using MUSCLE [54]. Each ORF was translated
and searched against the Protein Data Bank (PDB) [55]
using the PSI-BLAST algorithm [56] and then paired with
the structural chain with the lowest alignment E-value. To
ensure that enough of the yeast protein was represented
in the chain and that the PDB structure was a reasonable
homology model, we only considered pairs with > 80%
alignment length and > 40% sequence identity for analy-
sis. Our final data set had 587 sequence–structure pairs.
A data set with relaxed criteria used > 70% alignment
length and > 40% sequence identity. This data set had 870
sequence–structure pairs.
The percent solvent-accessible surface area (ASA) for

each aligned residue was calculated using DSSP [57]. We
obtained relative solvent accessibility (RSA) by normal-
izing ASA values with the surface areas of an extended
Gly-X-Gly peptide [58].

Calculation of evolutionary rates
The codons from the yeast alignments were binned by
the RSA value of their respective residues, as described
[9]. Protein core size was estimated by the average RSA
value over all residues in a protein. We considered a struc-
ture to have a large core if its average RSA ranked within
the bottom third of all average RSA values and to have
a small core if ranked within the top third of all average
RSA values [9]. Yeast expression data measured in mRNA
abundance per cell was obtained from [59]. Codon adap-
tation index (CAI), a measure of the strength of codon
usage bias, was used as an alternative for expression level,
since the latter may be biased by laboratory growth con-
ditions of the yeast cells [60]. Both expression level and
CAI were ranked and divided into thirds with the top third
representing high-expression genes and the bottom third
low-expression genes.
We implemented the model described by Eq. (1) in the

HyPhy batch language [22]. We estimated codon frequen-
cies (πj) using F3×4 model.
We calculated synonymous (dS) and nonsynonymous

(dN) substitution rates according to the mutational-
opportunity and the physical-sites definitions, as
described [29,30].

Statistical analysis
We used the Akaike information criterion (AIC) [23,24] to
rank models by their quality of fit. For pairwise compari-
son of nested models, we also carried out likelihood-ratio
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tests. All statistical analyses were performed using the
statistics software R [61].
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