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Abstract

Background: In addition to selection, the process of evolution is accompanied by stochastic effects, such as
changing environmental conditions, genetic drift and mutations. Commonly it is believed that without genetic drift,
advantageous mutations quickly fixate in a halpoid population due to strong selection and lead to a continuous
increase of the average fitness. This conclusion is based on the assumption of constant fitness. However, for frequency
dependent fitness, where the fitness of an individual depends on the interactions with other individuals in the
population, this does not hold.

Results: We propose a mathematical model that allows to understand the consequences of random frequency
dependent mutations on the dynamics of an infinite large population. The frequencies of different types change
according to the replicator equations and the fitness of a mutant is random and frequency dependent. To capture the
interactions of different types, we employ a payoff matrix of variable size and thus are able to accommodate an
arbitrary number of mutations. We assume that at most one mutant type arises at a time. The payoff entries to
describe the mutant type are random variables obeying a probability distribution which is related to the fitness of the
parent type.

Conclusions: We show that a randommutant can decrease the average fitness under frequency dependent
selection, based on analytical results for two types and simulations for n types. Interestingly, in the case of at most two
types the probabilities to increase or decrease the average fitness are independent of the concrete probability density
function. Instead, they only depend on the probability that the payoff entries of the mutant are larger than the payoff
entries of the parent type.

Background
Mutations provide a continuous source of variation in
natural populations, on which natural selection can act.
When fitness is assumed to be constant, only those muta-
tions with higher fitness values will be fixed in a haploid
population under strong selection and negligible ran-
dom drift. Thus, the average fitness of the population
would monotonically increase in evolutionary time. There
have been numerous hypotheses why this is not what is
observed in nature: for instance, environmental changes
require new adaptions [1,2] or coevolution can imply con-
tinuous adaptation without increasing the average fitness
[3-5]. However, these are not aspects that we intend to
include here. Instead, we focus on a haploid population
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in a constant environment, and explore frequency depen-
dent fitness, which can be described by evolutionary game
theory [6-11]. In this framework, the fitness of a type
depends on the frequencies of other types of individuals
in the population. We address the very general question
of how the average fitness changes when it is driven by
random mutations under frequency dependent selection.
The fitness effects of new mutations have gained sig-

nificant attention both in experimental research and the-
oretical work [12,13]. In experiments, the distribution of
fitness effects depends on several aspect of the experi-
mental setup, e.g. how well adapted the organism is to
the environment and whether only single mutants or also
double mutants (mutants differing from the wild type by
two mutations) are considered. Different shaped distribu-
tions were proposed to capture the fitness distributions
of random mutants under constant selection [14-17]. The
concrete shape of fitness distributions of spontaneous
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mutations varies between species and even within the
same species on different parts of DNA [18]. Although no
common conclusion on this has been obtained yet – and
a universal fitness distribution may as well not exist – it is
often possible to estimate some general properties, such as
the proportion of advantageous mutations and the mean
value of the fitness of the mutations [19,20].
The concept of random distributed and frequency

dependent fitness of mutations can be addressed by evo-
lutionary game theory [21], which considers evolutionary
processes under frequency dependent selection [22]. In
this framework, a population of interacting individuals
is considered. In the simplest case of linear frequency
dependence, the interactions of different types of individ-
uals are captured by a payoff matrix for a game. Those
types which are more successful in the game will have a
higher reproduction rate. We introduce a payoff matrix
with variable size to capture mutations and extinctions.
The new payoff entries introduced by mutations are inde-
pendently drawn from a probability distribution, which
corresponds to the concept of randomly distributed fit-
ness. By tracking the dynamics of the payoff matrix and
the compositions of the population, we are able to inves-
tigate several aspects of an evolving system, such as the
average fitness changes of the population, the impact of
the fitness distribution on these changes and the expected
level of diversity.

Results
Dynamics for populations with two types
Let us start with a population of a resident wild type (R)
and a mutant type (M). Suppose the fitness of a wild type
in a homogenous population is d. For constant selection,
the fitness distribution of a mutant is simply a one dimen-
sional distribution around d. For frequency dependent
selection, the fitness of a mutant must be defined based
on more than a single number. We can write it as an evo-
lutionary game based on a 2 × 2 payoff matrix with three
new payoff entries, a, b and c

When a mutant and a wild type interact, the mutant
obtains fitness a, and the wild type obtains c. When a
mutant meets another mutant, it obtains b. Following
the concept of randomly distributed fitness of mutations,
the entries a, b and c are defined as random variables.
We assume that a, b and c independently follow the
same probability distribution given by a probability den-
sity function f (x). While this is the simplest possibility,
it may be more realistic to assume correlations between
the payoff entries characterizing each type, i.e. between
a and b as well as between c and d (see below, section

Games with equal gains from switching). However, in the
extreme case of a = b and c = d, this would recover the
case of constant selection, so we expect that such correla-
tions would lead to results intermediate between constant
and frequency dependent selection. We discuss how this
distribution affects the changes in the average fitness dur-
ing the evolutionary process. It turns out, the probability
θ = ∫ ∞

d dx f (x) that a payoff entry is larger than the fitness
of the wild type (the parent type in the case of n types) d,
is of particular interest and determines the change in the
average fitness. Remarkably, all other aspects of the fitness
distribution turn out to be irrelevant for this observable.
The dynamics of evolving populations shows stochastic

fluctuations when selection is weak and when populations
are small. In addition, stochasticity can arise based on
environmental changes or stochastic effects due to muta-
tions. As we are interested in the effects of frequency
dependent selection, we only consider stochasticity aris-
ing from random frequency dependent mutations and use
the replicator equations to model evolutionary dynamics.
The frequency of a certain type changes deterministically
according to the difference of its own fitness to the average
fitness in the population.
Suppose x is the frequency of the mutant type and 1− x

the frequency of the wild type, respectively. We can define
the fitness of the mutant type, W1, and the fitness of the
wild type,W2, as

W1 = ax + b(1 − x),
W2 = cx + d(1 − x), (1)

where a, b, c, and d are the entries in the payoff matrix.
The average fitness of the populationW is given by

W = xW1 + (1 − x)W2. (2)

If the fitness of the mutant type is larger than the aver-
age fitness, its frequency will increase. If the fitness of the
mutant type is below the average fitness, its frequency
will decrease. We follow the usual assumption that the
change of the frequency of the mutant type is given by the
replicator equation [23-25]

ẋ = x
(
W1 − W

) = x (1 − x) (W1 − W2) . (3)

The change of the wild type frequency follows imme-
diately as −ẋ. This dynamics is fully determined by the
entries of the payoff matrix. Different constellations of
the payoff entries cause different dynamical patterns. In
the following, we discuss all generic cases of two-type
interactions and how the average fitness of the population
changes under the different situations.
First, we analyze the case where the mutant has higher

fitness than the wild type for all frequencies x. This is the
case for a > c and b > d. The wild type goes extinct and
the mutant type will be fixed in the population. Thus, the
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average fitness W in the new equilibrium x = 1 is given
by the payoff entry of the mutant type interacting with
itself, a. We are interested in the probability, that the fit-
ness of the population is increased after the fixation of the
mutant. This becomes a conditional probability of a > d
given that a > c and b > d. Applying Bayes Rule, this can
be expressed as

p(W (1) > d | a > c, b > d) = p(a > d | a > c, b > d)

= p(a > d, a > c, b > d)

p(a > c, b > d)

= p(a > d, a > c)
p(a > c)

. (4)

We assume that the random variables a, b and c are inde-
pendently derived from the same probability distribution.
Hence, b does not depend on a or on c. Thus, the prob-
ability of b > d is independent from the probability that
a > d, which is used in Eq. (4). Since a and c are sampled
from the same distribution, we have p(a > c) = 1/2 in the
denominator. For the numerator, we have

p(a > d, a > c) =
∫ ∞

d
da

∫ a

−∞
dc f (c)f (a)

=
∫ ∞

d
da F(a) F ′(a)

= 1
2

− F(d)2

2
, (5)

where F(x) is the cumulative distribution function of a
random variable with probability density function f (x).
The probability that one of the new payoff entries a, b, c is
greater than the wild type fitness d is θ = ∫ ∞

d dx f (x) =
1 − F(d). Using this expression in Eq. (5), we arrive at

p(W (1) > d | a > c, b > d) = 2θ − θ2. (6)

Strikingly, this only depends on θ , and is independent
of the concrete choice of the probability density func-
tion f (x). In population genetics, beneficial mutation rates
are measured based on the concept of constant fitness,
where the fitness of the mutant and the fitness of the wild
type are both constant numbers. However, if we consider
frequency dependent fitness, a new parameter is needed
to represent the proportion of beneficial mutations. One
option arising from our approach is to compare the payoff
value of the mutant with the payoff value of the wild type
when they are confronted by the same opponent. Since θ

is the probability that the new payoff value of the mutant
is larger than the wild type’s payoff d, it corresponds to
the probability that a mutation is beneficial under the
constant selection scenario. If θ can be measured, the
probability that the average fitness is increased by a ran-
dom mutant is independent of the payoff distribution
according to Eq. (5). But different choices of probability

density functions f (x) will result in different values of
θ , thus leading to different probabilities to increase the
average fitness.
Next, we assume that a mutant type occurs with lower

fitness than the wild type. With frequency dependence,
there are two situations for such a mutant type. The
mutant type can either have lower fitness than the wild
type for all frequencies, or it can have a lower fitness only
for small frequencies. In both cases, the mutant will go
extinct and the average fitness will remain unchanged,
since a mutant type is supposed to arise with a small
amount.
Finally, a mutant type could be initially advantageous

compared to wild types, but turn to be disadvantageous
when it has reached a certain frequency. This occurs for
a < c and b > d. In this case neither the wild type nor
the mutant type can take over the population, but there
exists a mixed equilibrium consisting of the mutant type
at a frequency x∗ = b−d

b−d−a+c and the wild type at a fre-
quency 1 − x∗. In this coexistence equilibrium, the fitness
of the wild type subpopulation is equal to the fitness of
the mutant type subpopulation. The average fitness of the
system in the equilibrium is given by

W (x∗) = ax∗ + b(1 − x∗) = bc − ad
b − d − a + c

. (7)

Again, we ask for the probability of having a coexistence
game that increases the average fitness. This is the condi-
tional probability that W (x∗) > d given that a < c and
b > d, which can be written as

p(W (x∗) > d | a < c, b > d)

= p ((b − d) (c − d) > 0 | a < c, b − d > 0)
= p (c > d | a < c)

= p (c > a, c > d)

p (c > a)
(8)

This is identical to Eq. (4) if one exchanges a ↔ c. Since
a and c have the same distribution, we recover the result
from Eq. (6),

p(W (x∗) > d | a < c, b > d) = 2 θ − θ2. (9)

In other words, the probability to increase fitness is the
same in a coexistence game as in a game where the mutant
dominates the wild type.
Let us now combine the results and consider the

changes of the average fitness over all types of interactions.
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The probability to increase the fitness due to a new muta-
tion is given by

p(W > d) = p(W > d | a > c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a > c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | a < c, b > d)︸ ︷︷ ︸
2θ−θ2

p(a < c, b > d)︸ ︷︷ ︸
θ
2

+ p(W > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ2 − θ3 (10)

In a similar manner, we can calculate the probability
to decrease the average fitness due to a new mutation.
When the mutant dominates the wild type, the average
fitness may still decrease. This is exactly what happens
in the Prisoner’s Dilemma [26,27]. Equivalently to the
calculation above, we have

p(W (1) < d | a > c, b > d) = p(a < d, a > c, b > d)

p(a > c, b > d)

= p(a < d, a > c)
p(a > c)

= (1 − θ)2. (11)

For the probability to decrease the average fitness in a
coexistence game, we find

p(W (x∗) < d | a < c, b > d) = (1 − θ)2. (12)

Thus, using a calculation similar to Eq. (10), the overall
probability to decrease the average fitness is given by

p(W < d) = θ − 2θ2 + θ3. (13)

Also the probability to maintain a constant average fit-
ness can be calculated in this way. For continuous fitness
distributions, there are no strictly neutral mutations. As
the fitness of the wild type is a specific value of the con-
tinuous random variable, the probability of having a strict
neutral mutation, the fitness of which is equal to the fit-
ness of the wild type, is 0. Thus, the average fitness is only
maintained when the mutant goes extinct, which occurs
with probability

p(W (0) = d) = p(b < d) = 1 − θ . (14)

We discussed the changes of the average fitness in a
two-type population under frequency dependent selec-
tion above. Under constant selection, the average fitness
will increase with probability θ and decrease with prob-
ability 0. In the same way as for frequency dependent
selection, it will remain constant with probability 1 − θ .
Figure 1 illustrates these results and compares frequency
dependent selection to constant selection for all values of
θ . For frequency dependent selection, there is an intersec-
tion point θ∗, where the probability to increase the average
fitness and to decrease the average fitness are equal. Using

Eq. (10) and Eq. (13), this becomes 2 θ2∗ − θ3∗ = θ∗ − 2θ2∗ +
θ3∗ , and we have θ∗ =

√
2−1√
2
. Small values of θ are typi-

cally considered to be of biological relevance. In this case,
frequency dependent selection tends to decrease the aver-
age fitness: for θ <

√
2−1√
2
, it is more likely that the average

fitness of the population is decreased by a single random
frequency dependent mutation; for θ >

√
2−1√
2
, it is more

likely that it is increased.
Frequency-dependent selection can arise from differ-

ent mechanisms. In a haploid population, frequency-
dependent selection is caused by the interactions of dif-
ferent types. In this case, the fitness of a particular type
depends on the frequency of its own and other types
in the population. However, in a diploid population, fre-
quency dependent selection on alleles can arise also from
the interactions of two alleles at one locus [8,28,29]. Our
model can be easily extended to a diploid population in
such a case, which leads to different results for the average
change in fitness, see Appendix.

Games with n types
So far, we have discussed the change of the average fitness
of a population consisting of at most two types. How-
ever, when two types coexist in a stable polymorphism, an
additional type can enter the population and persist. To
describe the interaction of individuals in a population with
more than two types, we extend the 2× 2 payoff matrix to
a n × n payoff matrix A, where n is the number of types
in the population. The entry in the i-th row and the j-th
column, Aij represents the fitness of an i-type individual
interacting with a j-type individual. The fitness of type i
on average can be written as Wi(x) = ∑n

j=1 Aijxj, where
j = 1, 2, 3..., n, and xj is the frequency of type j, such that∑n

j=1 xj=1.
In our model, n is not a fixed number. When a type goes

extinct, the corresponding row and column are deleted
in the payoff matrix. Thus, the value of n decreases by
one. When a mutation occurs, one row and one column
are added to describe the interactions of the mutant type
and resident types, which increases the size of the payoff
matrix by one. The new entries introduced by a mutation
are generated based on the assumption that the interac-
tions between the mutant type m and any resident type
i are similar to those between the parent type p and the
resident type i. In our case, we assume amj is a ran-
dom variable which is drawn from a probability density
function f (x) and is larger than apj with probability θ .
Since the complexity of the population dynamics

increases considerably with the number of types, it would
be difficult to obtain the changes of the average fitness
in a polymorphic population of n > 2 types analyti-
cally. Therefore, we use the replicator equations to sim-
ulate the dynamics of the system with several types.
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Figure 1 Probability of increasing or decreasing the average fitness in the new equilibrium after one mutation event in an initial
homogenous population. θ is the probability that a random payoff entry of the mutant, a, b or c is larger than wild type initial fitness d. Blue
symbols and lines are simulation and analytical results under frequency dependent selection (average over 106 runs). Red lines are analytical results
under constant selection. For constant selection, the average fitness either increases or is unchanged by a new mutation, where the fraction of
mutants that increases fitness is determined by θ . However, under frequency dependent selection, the average fitness of the population in the new
equilibrium after a mutation can also decrease. The probability to increase, decrease the average fitness or maintain the same average fitness,

depends on θ , for θ >
√
2−1√
2

the probability to increase the average fitness in the new equlibrium is larger than the probability to decrease it.

We start the simulation from a homogenous popula-
tion. However, since we are interested in the average
fitness changes and other stationary quantities averaged
over a long time period, the initial number of types has
no effects on the results. The time intervals are suffi-
ciently small that at most one mutant type can appear
during one time interval. The probability that a resident
type i produces a mutant type is μxiWi (x) /W (x), where
i = 1, 2, 3, ..., n. Thus the probability that a mutant arises
from a resident type i increases with the fitness of this
type. However, for the whole population, the probabil-
ity that a mutant type appears is just the mutation rate,∑n

i=1 μxiWi (x) /W (x) = μ.
We can chose arbitrary mutation rates in our simula-

tions. However, when the mutation rate is very high, a
population might experience a new mutation when it is
still in a non-equilibrium state triggered by the previous
mutation. In this case, the fate of a mutant is not only
driven by selection, but also by the interplay of mutations.
Since we are interested in the fitness consequences of fre-
quency dependent selection, we choose the mutation rate
small enough such that a population disturbed by a muta-
tion reaches the new equilibrium before the next mutation
arises.

We first look at the transition probability between dif-
ferent levels of diversity under mutation and selection.
Once a mutation occurs it can coexist with all resi-
dent types, replace one resident type, outcompete some
resident types, or go extinct. The transition matrix T
describes this dynamics. Suppose the number of types
in the current population is n. The element Tni denotes
the transition probability from n to i coexisting types,
where i = 1, 2, 3, ..., n + 1, see Figure 2. We obtain the
values in the transition matrix from numerical simula-
tions. Every transition event triggered by a mutation is
recorded and the probability to go from a certain num-
ber of types to another number of types is averaged over
many realizations. These transition probabilities show
some interesting properties. The probability to keep the
current diversity (the element in the main diagonal in a
row) is always higher than the probabilities to decrease or
increase the diversity (all the other elements in the same
row), see Figure 2 and Ref. [30]. Interestingly, for a pop-
ulation consisting of less than 4 types, the probability to
increase the diversity Tii+1 is higher than the probability
to decrease the diversity

∑i−1
j=1 Tij in the parameter regime

of Figure 2. Once the population reaches the threshold of
4 types, this pattern reverses. Thus in the long run the
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0.020 0.798 0.182 0.0000.000 0.000

0.750 0.250 0.000 0.000 0.0000.000

Figure 2 Transition probabilities between different levels of
diversity. The entry in row i and column j is the transition probability
from a stable coexistence of i types to a stable coexistence of j types,
numbers are also color coded. The mutation rate is so low that the
transitions between different states are caused by the appearance of
a single mutation. The higher the number of coexisting types is, the
more difficult the state is to be reached. Here we show the transition
for up to six co-existing types (θ = 0.5, averages obtained over 500
independent realizations and 20000 mutations per realization).

population tends towards an intermediate level of diver-
sity. Furthermore, we observe the ranking, T12 > T23 >

T34 > T45. This suggests that the probability to reach
higher levels of diversity decreases with increasing diver-
sity even for larger number of initial types. The transition
probability from one type to a two-type coexistence can be
calculated analytically based on the comparison of payoff
entries, see above. Thus, T12 = p(a < c)p(b > d) = θ/2,
which is confirmed by our simulation results of T12 under
different θ for the n-type model.
For a population with n types, the changes of the average

fitness are more complicated, as the interactions between
different types are much more diverse than in a two-type
population. Even a classification of different types of inter-
actions in such a population is difficult and of limited
value to understand the change in average fitness. Instead,
we evaluate the changes of the average fitness between
these states numerically.
A mutation can increase, maintain, or decrease the

diversity level of the population. We present the changes
of the average fitness in these three scenarios, see Figure 3,
for those transitions which happen most frequently (see
Figure 2). For small θ , mutants are more likely to obtain
lower fitness than their parents type does, in the inter-
actions with the same resident type. This can cause the
decrease of the average fitness in all three situations. If
θ is sufficiently small, the average fitness will decrease

all the time. When θ becomes larger, the average fitness
can increase. The larger θ is, the larger the increase is.
Thus, our results under the replicator dynamics provide
not only the change of the average fitness under a constant
θ , but also the direction and magnitude of the average
fitness changes. In real systems, one may expect that θ

decreases during the adaption of the population. However,
e.g. environmental changes could also increase it.

Games with equal gains from switching
So far, we have assumed that the payoff of the mutant
interacting with another resident type is derived from the
payoff of its parent interacting with the same resident
type. In a population with only two types, this leads to the
case where the three random payoff entries, a, b and c, are
all related to d. As a null model, we have assumed that a, b
and c are uncorrelated. While this is the simplest possibil-
ity, it may not be the case for concrete biological systems.
Therefore, we analyze a different case here which focuses
on particular cases of frequency dependence, but includes
such correlations.
We focus on an evolutionary game with the payoff

matrix

where ε and δ are independent random variables with
probability distributions fε(x) and fδ(x) respectively. ε rep-
resents the effect of a mutation on the mutant type, and
δ represents the effect of a mutation on those who inter-
act with the mutant type. This game has the property of
“equal gains from switching”, where the sum of the pay-
off values in the main diagonal is equal to the sum of the
payoff values in the other diagonal [31]. It can arise from
the assumption that the two types are close to each other
in a continuous phenotype space [32]. The case of δ = 0
corresponds to constant selection. Note that there are no
coexistence games when we assume such payoff matri-
ces. If ε > 0, the mutant will take over the population
(d+ ε + δ > d+ δ and d+ ε > d), and the new aver-
age fitness becomes W = d+ ε + δ. Compared with the
former average fitness d, the average fitness increases if
ε+δ > 0, and decreases if ε+δ < 0. If ε < 0, the mutant
will be outcompeted by the wild type (d+ ε + δ < d+ δ

and d + ε < d), and the average fitness of the popula-
tion remains the same. The probability to increase the
average fitness becomes p(W > d) = (1− θε) · 0+ θε ·
p(ε + δ > 0 | ε > 0), where θε is the probability that ε

is larger than 0, and p(ε + δ > 0 | ε > 0) is the condi-
tional probability that the sum of ε and δ is larger than 0
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Figure 3 Changes in the average fitness when a population evolves between different levels of diversity under various probabilities that
a mutant payoff values is larger than the parent’s θ . The symbols are simulation results based on replicator dynamics. The number of different
types can either stay the same, increase by one or decrease by any number, because at most a single mutation enters the population. Note that the
average fitness of the population in the new equilibrium decreases for small θ in all three cases after a transition. Thus even if a mutant takes over a
population, the average fitness can decrease. With increasing θ , the average fitness will increase over time, but the fitness gain reduces with
increasing diversity. The difference among results under Gaussian distribution and uniform distribution with the same variance, shows that the
absolute changes of the average fitness also depends the concrete shapes of the probability distribution (every symbol is averaged over 500
independent realizations and 20000 mutations per realization. The probability distribution f (x) is Gaussian (left) or uniform (right) with variance 1).
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given ε is larger than 0. This conditional probability can
be written as

p(ε + δ > 0 | ε > 0) = p(δ > −ε, ε > 0)
p(ε > 0)

=
∫ ∞
0 dx

∫ ∞
−x dy fδ(y) fε(x)

θε

. (15)

The values of θε and p(ε + δ > 0 | ε > 0), which deter-
mine the probability that the average fitness increases,
depend on the concrete choice of fε(x) and fδ(x). The
integrals can only be carried out in special cases.
It is worth to mention there is a difference between

games with equal gains from switching and games with
independent random payoff entires on the population
dynamics. In an infinite population, where genetic drift
has no effect on the population dynamics, the resulting
dynamics under positive frequency dependent selection
and under constant selection are similar, as there are no
stable coexistences. Successful mutants will invade and
take over the population sequentially. The diversity will
only increase if the mutation rate is high enough. On
the contrary, when different kinds of interactions, espe-
cially negative frequency dependent selection, are allowed
(for example, the case with independent random payoff
entires), diversity can increase even for lower mutation
rates (see above).

Discussion and conclusion
Mutants with high individual fitness do not necessarily
increase the average fitness of the population under fre-
quency dependent selection. Similarly, the mutants which
maximize the average fitness of a population are not
necessarily those leading to a stable equilibrium in this
scenario. An example for a two-type population is that
a mutant interacts with the wild type in a game like the
Prisoners’ Dilemma [7,26]. This is a special case of a domi-
nance game, where the defector (themutant) outcompetes
the cooperator (the wild type) and causes a reduction in
the average fitness. For example, in the RNA phage φ6, the
competitive interactions among the highmultiplicities-of-
infection phage (the defector) and the low multiplicities-
of-infection phage (the cooperator) in the same host cell
are studied, which conforms to the Prisoners’ Dilemma
[33]. In this experiment, when the defector invades with a
low frequency, it has higher fitness than the residents (c >

a), but the average fitness decreases when the defector
becomes fixed (d > a).
Since natural selection works on an individual level

rather than a population level, it does not always lead to
an increase of the average fitness. Our random mutant
games model accommodates mutations under frequency-
dependent selection, which can result in an increase or

decrease in the average fitness, not only for the sim-
plest case of two types but also for an arbitrary num-
ber of mutant types. An interesting aspect of our model
is that even though it allows for an infinite number of
mutant types, it does not result in a continuous growth
of diversity in a population, but leads to an intermedi-
ate level of diversity [30]. We assume that the payoffs
are constant in time and identical for individuals of the
same type. If individuals vary in their payoffs despite
being of the same type, the results are altered by this
additional source of randomness [34,35]. In a popula-
tion with two types, we calculate a particular value θ∗,
where the probability that the average fitness increases
is equal to the probability it decreases. The exact value
of θ∗ depends on the concrete implementation of the
payoff matrix. An interesting result of our model is that
the probability to decrease or increase fitness depends
only on a particularly simple property of the fitness dis-
tribution. While this may not be of direct relevance to
a concrete biological system, it illustrates conceptually
that a decreasing fitness may not be counterintuitive even
under the simplest possible assumptions of frequency
dependence.
We have discussed the changes in the average fitness

for an infinite asexual population under mutation and
selection. Additional effects occur when the population
size becomes finite and genetic drift is not negligible
[30]. However, our main observation is that the average
fitness at equilibrium can only increase or remain con-
stant by random mutations under constant selection, but
also decrease under frequency-dependent selection. This
can shed new light on problems in evolutionary biology
and leads to the exciting question on the dynamics of
the average population fitness in real biological popula-
tions. In an asexual finite population, random genetic drift
leads to the accumulation of deleterious mutations and
an continuous decrease in the average fitness, which is
well known as Muller’s ratchet [36]. Without any forms
of recombination and epistasis, beneficial mutations are
the only source to compensate the average fitness decline.
Since the probability of increasing the average fitness by
random mutations is lower under frequency-dependent
selection (see Figure 1), we must conclude that asexual
populations face an even bigger challenge to maintain
their average fitnesses under frequency dependent selec-
tion than under constant selection in a finite population.
This is particularly striking when θ is small, a case that
is typically thought of as the biologically most relevant
case.
In population genetics, the change of the average fitness

has also been studied in diploid systems [37,38]. However,
our approach starting from a different point of view, not
only allows the interplay of mutation and selection, but
also a wider interpretation of the fitness of heterzygotes.
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Suppose A and B are two alleles at the same locus. In pop-
ulation genetics, the fitness of genotype AB and BA is usu-
ally considered to be identical, which is a special case in
our model called symmetric diploids. However, this does
not hold in asymmetric diploids where the maternal allele
and paternal allele are not equally expressed. Our model
and our analysis allow both cases. In the framework of
a well-mixed symmetric diploid population (correspond-
ing to random mating), our result that the average fitness
never decreases is consistent with the former statement in
population genetics (see Appendix).
Frequency dependent interactions can lead to a

decrease of the average fitness of a population during
the process of evolution despite natural selection. This
is because natural selection works on individual fitness
instead of the average fitness of a population.

Methods
We explore the population dynamics driven by random
mutations under frequency dependent selection based on
the replicator dynamics. For populations with only two
types, we obtain analytical results by analyzing the change
of average fitness between two equilibria of the replica-
tor equations. For a population with more than two types,
we simulate the evolutionary dynamics numerically. The
current group of replicator equations and the current pop-
ulation composition determine the equilibrium that the
population moves to. Once the population reaches this
equilibrium, a new mutation occurs. In our model, every
mutation brings a new game and consequently an addi-
tional replicator equation. Our approach corresponds to
low mutation rates, where the time a population needs to
reach an equilibrium is shorter than the waiting time for
the next mutation.

Appendix
Diploid populations with two alleles
The impact of Mendelian inheritance on the population
dynamics has been discussed in the framework of evolu-
tionary game theory before [25,39-41]. In a diploid popu-
lation, the combinations of two alleles at a given locus on a
pair of homologous chromosomes, can be interpreted by
a special two player game. Suppose there are allele A and
allele B. The fitness of different genotypes,WAA,WAB and
WBB can be described by a 2 × 2 matrix

This is mathematically identical to the game with two
types discussed above. Here, WAA corresponds to a, WAB
to c = b, and WBB to d. For a population initially only
with homozygotes BB, the probability of increasing the

average fitnessW caused by a random new alleleA, can be
calculated by setting c = b in Eq. (10). This becomes

p(W > WBB) = p(a > d | a > b, b > d)︸ ︷︷ ︸
1

p(a > b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(
b2 − ad

2b − d − a
> d | a < b, b > d)

︸ ︷︷ ︸
1

p(a < b, b > d)︸ ︷︷ ︸
θ− θ2

2

+ p(d > d | b < d)︸ ︷︷ ︸
0

p(b < d)︸ ︷︷ ︸
1−θ

= 2 θ − θ2 (16)

The probability that the average fitness decreases in
such a population is 0, because the diploid AB and the
diploid BA is indistinguishable, c = b. In asymmetric
diploids, where the maternal alleles and paternal alleles
are not equally expressed, the average fitness changes are
exactly the same as shown in a general case of haploid
populations.
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