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Abstract

Background: The evolutionary relationships of closely related species have long been of interest to biologists since
these species experienced different evolutionary processes in a relatively short period of time. Comparison of
phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal,
and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of
species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related
species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships
among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs).

Results: To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons
representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for
the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low
resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera
suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching
patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence
estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus
are monophyletic in the mtgenome phylogeny, respectively, but a H. pileatus individual falls into the H. lar Y
chromosome clade.

Conclusions: Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals
in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary
to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different
inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related
taxa, and emphasize the need for further sampling of gibbons of known provenance.

Keywords: Y chromosome phylogeny, Phylogenetic relationships, Divergence times, Mitochondrial genome,
Gene flow
Background
DNA sequences have often been used to investigate the
evolutionary relationships of populations and species
[1]. Phylogenetic trees are reconstructed using DNA
sequence data to illustrate the evolutionary relationships
of species, and the extent of evolutionary changes
(e.g. number of substitutions) recorded in DNA
sequences can be used to infer the timing of divergence
events. However, it can be difficult to use DNA sequence
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reproduction in any medium, provided the or
data to confidently resolve the evolutionary relationships
between recently diverged taxa, because too little time
may have elapsed for the accumulation of sufficient
genetic differences to provide phylogenetic resolution
among taxa [2]. Also, particularly in cases in which
population or taxon divergences have occurred over a
short space of time (i.e. short branch lengths in the
species tree), incomplete lineage sorting may cause the
patterns of their molecular divergences to be inconsist-
ent with the actual patterns of organism divergences
[3]. Mitochondrial DNA (mtDNA), as a uniparentally
inherited genomic region, has higher mutation rates, as
well as a smaller effective population size, than typical
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autosomal loci and hence has a shorter coalescence time
conducive to resolving phylogenetic relationships of
recently diverging species [4,5]. Short segments of the
mitochondrial genome (mtgenome) have long been used
for phylogenetic reconstruction, and moreover sequen-
cing of the entire mtgenome has been adopted to pro-
vide improved resolution for reconstructing robust
phylogenies of species with recent rapid evolution and
to facilitate the molecular dating of divergence events
within their phylogenies (e.g. [6-9]). However, due to
the maternal inheritance of mitochondria, the phylogen-
etic relationships inferred through mtgenomes, intrinsic-
ally, reveal matrilineal evolutionary history only. Hence,
although less commonly used, as a paternally inherited
counterpart of mtDNA, genetic data from the non-
recombining portion of Y chromosome (NRY) loci are
good candidates for extracting evolutionary information
of the patrilineal history for mammals, including pri-
mates, and in comparison with data from the mtDNA,
reveal potentially contrasting patterns of male and female
phylogeny and gene flow [10-17].
While all of the modern great apes currently exist as

distinct, geographically-discontinuous species, gibbons
are unique among the hominoids in consisting of mul-
tiple closely-related species living now or recently in
close geographic proximity to one another. Gibbons are
described as 14–19 nominal species divided into four
genera: Hylobates, Hoolock, Nomascus, and Symphalan-
gus, [18-21]. Of the four genera, Hoolock and Sympha-
langus contain just two and one species, respectively,
while Hylobates comprises some half-dozen species as
does Nomascus. The Hylobates gibbons are of particular
interest as they apparently underwent a rapid specia-
tion process and successfully colonized not only parts
of mainland Southeast Asia but also the Sundaland
(Figure 1) and are thus the most widespread group of
gibbons [6,20,22]. The systematics and evolutionary rela-
tionship of the Hylobates members have been investi-
gated using morphological characters, vocal traits of the
songs, analysis of chromosomal morphology and DNA
sequence data (e.g. [6,20,23-26]). In particular, the in-
creasing number of DNA sequence studies have enabled
molecular inferences on several aspects of the Hylobates
evolutionary history, such as phylogenetic relationships,
divergence time estimation and possible routes of disper-
sal [6,20,26-31]. The sequence data have demonstrated
that Hylobates species are monophyletic [6,20,30,31] and
suggested that their radiation began around 4 million
years ago (mya) [6,20,26]. However, the phylogenetic
relationships among Hylobates species had remained
unresolved based on DNA sequences of short mitochon-
drial segments [20,28-31], the combined sequence of
mtDNA, Y-linked and X-linked loci [26] or nuclear
sequences from autosomes and X chromosomes [32]
until a recent work depicting a well-supported Hylobates
phylogeny based on more than 15 kb-length DNA
sequences of the mitochondrial genome [6].
Although genetic studies have thus been conducive to

the understanding of the Hylobates evolutionary rela-
tionships, most of the analyses in these studies have pri-
marily relied upon mtDNA sequence data [6,20,27-30];
in other words, the most current molecular inferences
are based solely upon the matrilineal evolutionary his-
tory of the Hylobates. Therefore, sequence data from Y-
linked loci of gibbons would provide an opportunity to
compare the evolutionary histories of both sexes, as dif-
ferences arising either by chance assortment of genetic
loci or arising out of different patterns of sex-mediated
gene flow may be reflected by different branching
patterns observed in the mtDNA and Y chromosome
phylogeny trees. Thus far, phylogenetic information of
gibbon Y chromosomes has been limited to short seg-
ments (800–2630 bp in length) from a few loci (SMCY,
UTY, and ZFY) [26,33,34]. In the present study we used
information from studies of Y chromosome variation
in primates or other mammals [33,35-38], to generate
sequences of multiple NRY loci in gibbons. Our sam-
pling of 26 male individuals includes three of the
four extant genera and 10 gibbon species, including six
Hylobates species. Based on a large amount of gibbon Y
chromosomal sequence data (> 165 kb in total), we
reconstruct the gibbon Y chromosome phylogeny and
compare these results with those inferred from various
mtDNA data as well as with inferences from the pre-
vious mtgenome sequencing of the same individuals [6].

Results
454 Sequencing and nucleotide diversity levels
of Y chromosome loci
We used 454 sequencing technology to sequence seven
PCR amplicons from six Y chromosome loci for each of
26 gibbons. A total of 229,599 raw reads were generated
and the 56.8% of these reads with an average PHRED-
equivalent base quality score of 30 were used for subse-
quent individual barcode sorting and contig assembly.
In summary, for each individual, we obtained an average
of 4,481 assembled reads with an average length of
214 bp per read, thus yielding approximately 1 Mb of
sequence data corresponding to 146-fold coverage. The
coverage for each individual ranged from 88- to 222-
fold. After contig assembly, the consensus sequences of
each amplicon were generated and each of the 26 gibbon
individuals had seven amplicon sequences. We then
generated the datasets for each amplicon as well as the
concatenated dataset in which seven amplicon sequences
were combined, representing a total length of ~6.4 kb.
Multiple sequence alignments were carried out for
all datasets.



Figure 1 Approximate geographic distribution of Hylobates gibbons. Dotted and solid lines indicate country borders and major rivers,
respectively. Adapted from Thinh et al. [20].
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By calculating two nucleotide diversity indices (π and
θw), we found that the diversity levels varied among the
seven Y chromosomal amplicons (Table 1): the SMCY
and TSPY showed relatively high nucleotide diversity
indices, whereas the lowest diversity level was found in
the amplicon UTY. We further calculated the nucleotide
diversity of the concatenated datasets for each genus
and each Hylobates species containing multiple sampled
individuals, respectively (Table 2) and compared the Y
chromosome sequence variation observed here to that
of the mtgenome sequences from the same number of
individuals. We calculated two nucleotide diversity indi-
ces π and θw for the 26 published mtgenome sequences
[6]. We found that, overall, the values for the gibbon Y
chromosomes were more than five times lower than that
of the mtgenomes (Table 2). This lower nucleotide diver-
sity level for the Y chromosome was also observed con-
sistently in the three sampled genera as well as in the
four multiply sampled Hylobates species.
Among the three sampled genera, we found that the

genus Hylobates showed the highest diversity levels for
its mtgenome and Y chromosome DNA sequences.
However, the differing sample sizes for the various
genera and species in our study, and especially the larger
sample size for the genus Hylobates, renders it difficult
to explicitly compare the diversity indices among genera.
Therefore, we randomly resampled three species from
the six Hylobates species represented here and then



Table 1 Nucleotide diversity indices of Y chromosomal
amplicons in 26 gibbons

Sites
analyzed (bp)

S π% θw%

Amplicons

DAZ-1 1,524 62 0.923 1.006

DAZ-2 1,273 49 0.896 1.009

DBY 714 33 1.257 1.211

RPS4Y 567 23 0.916 1.063

SMCY 403 23 1.340 1.496

TSPY 725 41 1.477 1.482

UTY 875 23 0.574 0.689

S is the number of segregating sites; π is nucleotide diversity [77]; θw is
estimated from S [78].
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randomly resampled one individual from each of the
resampled species, respectively, to obtain similar sample
sizes among the three genera. We then calculated two
nucleotide diversity indices for the three resampled
Hylobates individuals and repeated this resampling pro-
cedure 10 times. We obtained: π= 0.415-0.748% and
θw = 0.415-0.742% for Y chromosome and π= 4.955-
Table 2 Nucleotide diversity indices of Y chromosomal loci an

Sequence Genus or species N

Y loci All 26 (10)

Hylobates 19 (6)

Nomascus 4 (3)

Symphalangus 3 (1)

H. agilis 3

H. lar 10

H. moloch 2

H. pileatus 2

Mtgenomea All 26 (10)

Hylobates 19 (6)

Nomascus 4 (3)

Symphalangus 3 (1)

H. agilis 3

H. lar 10

H. moloch 2

H. pileatus 2

Cytochrome bb All 85 (16)

Hoolock 5 (2)

Hylobates 39 (7)

Nomascus 37 (6)

Symphalangus 4 (1)

N is the number of individuals and in parentheses is the number of species sample
[77]; θw is estimated from S [78]. aCalculations were carried out using mtgenome se
bCalculations were carried out using 85 cytochrome b gene sequences (GenBank ID
5.819% and θw= 4.929-5.862% for mtgenome, respect-
ively and so we still observed the highest level of nucleo-
tide diversity for Hylobates. The lack of readily available
samples for the Hoolock genus and our limited number
of samples of Nomascus relative to Hylobates make it in-
appropriate for us to attempt statistical tests or draw
strong conclusions concerning comparisons of diversity
among gibbon genera. In addition, among the four Hylo-
bates species, H. pileatus showed the highest level of
nucleotide diversity in both of Y chromosome and mtge-
nome sequences.

Phylogenetic analyses
Multiple alignments with outgroups were conducted for
each Y chromosomal amplicon and the proportions of
variable sites varied among amplicons (11.33%-21.65%;
Table 3). The highest proportion of variable sites were
observed in the TSPY dataset (160/739 = 21.65%), which
was almost twice that of the UTY dataset (103/
909 = 11.33%). We reconstructed non-partitioned max-
imum-likelihood (ML) and Bayesian inference (BI)
majority-rule trees for each amplicon dataset and found
that the branching patterns varied from amplicon to
d mtDNAs in gibbons

Sites
analyzed (bp)

S π% θw%

6081 254 1.000 1.095

6102 118 0.427 0.553

6198 24 0.231 0.221

6192 2 0.022 0.022

6111 13 0.142 0.142

6108 5 0.016 0.029

6123 2 0.033 0.033

6109 32 0.524 0.524

11846 2570 6.022 5.685

12970 1899 3.985 4.189

14095 606 2.358 2.345

15325 91 0.396 0.396

15187 367 1.613 1.611

14111 147 0.310 0.368

15414 108 0.701 0.701

15374 307 2.000 2.000

1140 429 9.030 7.505

1140 40 1.930 1.684

1140 256 5.392 5.311

1140 184 4.128 3.866

1140 23 1.140 1.100

d for each genus; S is the number of segregating sites; π is nucleotide diversity
quences excluding the control regions from the 26 individuals [6].
s of the cytochrome b genes were listed in [20]).



Table 3 Length and sequence variation of 7 Y chromosomal amplicons from 26 gibbons

Datasets Alignment
size (bp)

Invariable sites Variable
sites

Parsimony-
informative sites

DAZ-1 1,715 1,234 257 123

DAZ-2 1,337 1,052 182 74

DBY 744 590 96 44

RPS4Y 572 468 95 41

SMCY 424 320 77 39

TSPY 739 560 160 73

UTY 909 753 103 39

Concatenated 6,440 4,977 970 433
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amplicon (Additional file 1). Among these trees, we
observed that both ML and BI trees based on two ampli-
cons, namely the SMCY and TSPY, had relatively better
resolution for depicting the relationships of three
sampled genera albeit with weak support values
(Additional file 1). In contrast, the sequence data of the
other five amplicons were unable to provide information
on the phylogenetic relationship of the three genera.
Despite the low resolution of the trees of seven individ-
ual amplicons considered singly, the monophyly of the
genera Hylobates, Nomascus and Symphalangus were
well supported in all trees, except those of RPS4Y
and UTY, in which Nomascus and Symphalangus but
not Hylobates were recognized as monophyletic taxa.
Given these results, it is not surprising that we also
found inconsistent phylogenetic relationships of Hylo-
bates species among the individual amplicon trees which
lacked good statistical support values on the nodes
(Additional file 1).
Since all of the NRY loci are linked, we concatenated

the sequences of the seven amplicons to obtain single
sequences for each of the 26 gibbons as well as the out-
groups. We aligned these concatenated sequences and
reconstructed phylogenetic trees using partitioned ML
and BI analyses. The alignment was 6,440 bp in length
and 15.1% of the sites were variable while 6.7% were
parsimony-informative (Table 3). We found topologically
identical majority-rule trees from the ML and BI anal-
yses with similar support values (Figure 2). The mono-
phyly of each genus received high support (BI posterior
probability: 1.00 and ML bootstrap: 100). Two of the
three sampled genera (Nomascus and Symphalangus)
formed a weakly supported clade (BI: 0.71 and ML: 67).
Within the genus Nomascus, N. concolor was closer to N.
leucogenys than to N. gabriellae. Within the genus Hylo-
bates, sequences from H. muelleri were basal to others
with high support values followed by two groups in which
representatives of the species H. lar and H. pileatus separ-
ate from an unresolved trichotomy consisting of members
of the three remaining species (H. agilis, H. moloch and
H. klossii). Interestingly, sequences from H. lar and
H. pileatus are not reciprocally monophyletic but occur
in a single clade (BI: 1.00 and ML: 100).
The mtgenome phylogeny tree was also reconstructed

based on the 26 retrieved sequences in which most
sampled individuals were the same or the direct mater-
nal relatives of those used in the Y chromosome tree
(Figure 2, also see Methods for details). We obtained
identical topologies from the ML and BI analyses, show-
ing no basal taxon and all well-resolved nodes (BI: 1.00
and ML: ≥ 99) in the Hylobates mtgenome phylogeny.
The species H. lar and H. pileatus are reciprocally
monophyletic to each other. The Hylobates phylogenetic
relationships inferred from this subset of mtgenome
sequences were entirely consistent with the previous
highly supported mtgenome tree which featured a larger
number of individuals [6].

Estimation of divergence times
We used the concatenated Y chromosome sequence
dataset and implemented a Bayesian MCMC approach
with the relaxed clock model in the program BEAST to
estimate divergence times in the gibbon Y chromosome
phylogeny. Beyond giving two monophyletic groups
(Macaca-apes and human-chimpanzee) as the two fossil
calibration points, we did not constrain the phylogeny
with an a priori fixed topology. The maximum-clade-
credibility tree generated by the BEAST analysis showed
the same topology as produced in the ML and BI trees,
respectively. The estimates of divergence times with 95%
highest posterior densities (HPD) suggest that the initial
split within gibbons occurred 5.21 mya (Table 4). The Y
chromosome sequences of Hylobates spp. diverged at
about 2.56 mya, followed by a split between two species
groups, the clade (H. lar+H. pileatus) and the trichot-
omy (H. agilis/H. moloch/H. klossii) at 2.04 mya. The
estimated time to most common ancestor (TMRCA) of
Y chromosomes for the clade (H. lar+H. pileatus) was
1.55 mya and the TMRCA of the trichotomy (H. agilis/
H. moloch/H. klossii) was 1.45 mya. Moreover, we
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Figure 2 Bayesian majority-rule trees of gibbon phylogenies. The trees were constructed using the sequences from the partitioned
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inferred a recent divergence at approximately 0.6 mya of
Y chromosomes between N. concolor and N. leucogenys
(node t11).

Discussion
Nucleotide diversity of gibbon Y chromosomes
Based on sequence data of Y chromosome loci examined
here, we found that the sequence diversity of the exam-
ined segments of the Y chromosome was at least five-
fold lower than that of the mtgenome (Table 2). This
lower nucleotide diversity of Y chromosome sequences
relative to mtDNA diversity is not specific to gibbons but
appears to be a common pattern in mammals [39-46].
The large difference in diversity between Y chromosome
and mtDNA is probably due to the much higher substitu-
tion rate of mtDNA compared to nuclear DNA causing
a high rate of evolution in mitochondria [47], as well
as strong selection on sex-limited chromosomes
(e.g. background selection and selective sweeps) that could
contribute to the relatively low sequence variability
observed on mammalian Y chromosomes [48].
We further examined nucleotide diversity levels for

each of the three sampled genera. In spite of the lim-
ited sample sizes, we found that Hylobates apparently
has a higher level of nucleotide diversity than Nomascus
and Symphalangus for both the mtgenome as well as
the Y-chromosome (Table 2). This inference is supported
by a recent examination of the mtDNA cytochrome b
sequences using fairly comprehensive sampling of extant
gibbon taxa [20] which provides estimates consistent
with those based on our mtgenome and Y chromosome
datasets of relatively small sample size (Table 2). More-
over, their data with the inclusion of sampling of
Hoolock species showed the highest π and θw for genus
Hylobates (Table 2) and suggested that Hylobates may be
the most genetically diverse gibbon genus.
Owing to the limited samplings of the six species and

lack of samples from the H. albibarbis species, we were



Table 4 Bayesian estimates of divergence times inferred
from the concatenated dataset of seven Y chromosomal
amplicons

Node Divergence Mean 95% HPD

t1* Macaca-apes 29.51 25.21-33.73

t2 gibbons-human/chimpanzee 16.88 13.74-20.05

t3* human-chimpanzee 5.40 4.45-6.30

t4 gibbons 5.21 4.01-6.44

t5 Nomascus-Symphalangus 4.87 3.76-6.06

t6 Hylobates 2.56 1.90-3.27

t7 2 groups of Hylobates spp. 2.04 1.49-2.61

t8 H. lar+H. pileatus 1.55 1.06-2.08

t9 H. agilis/H. moloch/H. klossii 1.45 0.99-1.91

t10 Nomascus 0.84 0.50-1.25

t11 N. concolor-N. leucogenys 0.60 0.28-0.93

The estimated divergence dates are in million years before present. MRCA
denotes the most recent common ancestor. HPD, highest posterior density
*Nodes used for calibration.
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unable to extensively compare nucleotide diversity levels
among Hylobates species. However, we found that
H. pileatus showed 1.25 times the nucleotide diversity
levels of H. agilis on the mtgenome but exhibited nearly
four times the nucleotide diversity of H. agilis on the Y
chromosome. This relatively high Y chromosome diver-
sity in H. pileatus was consistent with its paraphyletic Y
chromosome lineage, in which the sequences derived
from two different lineages (Figure 2 and Table 2). While
our results provide some indication of the relative levels
of sequence diversity present in the various gibbon taxa,
we caution that comparisons of diversity must be con-
sidered provisional until the adoption of widespread
sampling and analysis of individuals of known geo-
graphic provenance.

Dating divergences in gibbon evolutionary history
Different molecular inferences of divergence times may
be derived from the paternally-inherited Y-chromosome
and the maternally-inherited mtDNA, and such differ-
ences may reflect the different evolutionary histories of
maternal and paternal lineages as well as simply the in-
fluence of chance on the coalescent history of these two
single loci. We find that the molecular divergence times
inferred from the two loci are largely consistent with
broad confidence intervals, but that the coalescence
times inferred from the mtDNA data tend to be older
than those from the Y-chromosome. Specifically, the
divergences of Y chromosomes among the three sampled
gibbon genera began around 5.2 (4.0-6.4) mya (Table 4),
in comparison to the 8.7 (5.3-12.5) mya [6] or the 8.0
(6.6-9.7) mya [22] inferred from mtgenome data from
these same genera (Hylobates, Nomascus and Sympha-
langus). Within the genus Hylobates, the first divergence
of Hylobates paternal lineages began around 2.6 (1.9-
3.3) mya, involving the divergence of H. muelleri
lineage from others. Mtgenome data [6] suggested
that the first divergence of Hylobates maternal
lineages occurred relatively earlier around 4.2 (2.5-
6.1) mya and the large confidence interval of this
time estimate overlaps with the interval of Y chromo-
some estimate.
Comparatively older mitochondrial and younger Y

chromosomal estimates of molecular divergence dates
also have been observed in other primates, including
African colobine monkeys (the split of Pilicolobus-
Procolobus [49]), macaques [50], odd-nosed monkeys
[49], chimpanzees [45,51,52] and humans [46,53].
Sex-biased dispersal or other demographic processes
have been suggested to explain the differences between
mitochondrial and Y chromosomal divergence times in
macaques and humans [46,50,53]. For example, Tosi
et al. [50] suggested that the relatively recent Y chromo-
some relative to mitochondrial divergence time estimates
in macaques could be explained by sex-biased dispersal
(i.e. female philopatry and frequent male dispersal). In
gibbons, individuals of both sexes exhibit natal dispersal
[54], and although the dispersal age and distance may
vary between females and males [55,56], little data exist
on the patterns exhibited by most gibbon species. With
regard to demographic processes, Tang et al. [53] sug-
gested that an unequal generation length between males
and females may contribute to the difference in Y and
mtDNA coalescence times in human populations while
Wilder et al. [46] suggested the skew in human breeding
ratio (e.g. reduced male effective population size due to a
polygynous mating system) may explain the more recent
time to coalescence of human Y chromosomes. The so-
cial and breeding systems of gibbons, although often
comprising a breeding pair of adults and their offspring,
also features small groups with multiple male or female
adults, extrapair copulations, and extra pair paternity
[54,57-62].
The complexity and variability of the flexible mating

strategies and sex-specific dispersal patterns in gib-
bons make it difficult to readily elucidate their effects
on the divergence time estimates. If the pattern of
molecular dating inferred from mtDNA and Y
chromosome data is a true reflection of gibbon matri-
lineal and patrilineal histories, the delayed divergences
occurred among paternal lineages might raise specula-
tion of prolonged male-biased gene flow. It has been gener-
ally agreed that the genus Hylobates originated on the
Southeast Asia mainland [6,20,26,27,31]. The two northern-
most distributed species (H. lar and H. pileatus) may have
diverged first and then the southern species (H. agilis, H.
klossii, H. moloch and H. muelleri) migrated southward to
the Sundaland area [6,26,31]. During the dispersal, the
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Hylobates maternal lineages gradually genetically differen-
tiated from each other and then have diverged into six
monophyletic lineages whereas the gene flow mediated
through males might have lasted much longer than those
through females. This prolonged gene flow may lead to
slower fixation of species-specific variation on Y chromo-
somes, and therefore may result in uncertainty of phylogeo-
graphic inferences concerning Hylobates based upon Y
chromosome data.
Molecular dating makes it possible to estimate the

divergence times of populations and species, especially
for species without adequate fossil record such as chim-
panzees and gibbons [63,64]. Our dating results of Y
chromosomes, together with mtDNA estimates [6,20],
offer an opportunity to compare the time window of
divergence events in gibbon evolution with inferred bio-
geographical events in the Sundaic region, a topic that is
outside the scope of the present study but well described
recently [20]. However, we must emphasize that the
dates of actual population or species divergences are
necessarily more recent than dates of molecular diver-
gences [65,66].

Monophylies of gibbon genera
The consequence of the relatively low level of sequence
variation of the Y chromosome amplicons is apparent in
a comparison of the results of phylogenetic analysis
of the Y chromosome and mtgenome data. Unlike the
strongly supported branching pattern depicted by the
mtgenome phylogeny [6], our Y chromosome phylogeny
features some weakly supported nodes; however, most of
the nodes in the tree were well-supported and provide
information relevant to the history of gibbon paternal
lineages (Figure 2). Importantly, our Y chromosome tree
depicted each of the three sampled genera as monophy-
letic clades. The consistency of the genus level mono-
phyly inferred from the Y chromosome and mtDNA data
[6,20,22,27-31], as well as from the 14 kb-length com-
bined sequences of mtDNA, Y-linked and X-linked loci
[26] and the 27.5 kb-length autosomal DNA sequences
[34], is concordant with expectations based upon the
marked differences among genera in chromosomal
numbers and structures [19,67]. Nonetheless, some cases
of intergeneric hybridization in captivity have been
documented and involve Hylobates×Nomascus [68] and
Hylobates × Symphalangus [69]. However, these hybrids
were all induced by captive conditions and intergeneric
hybrids never have been reported in the wild [68]. Fur-
thermore, the hybrid offspring are expected to be sterile
due to the errors of meiotic pairing during gametogen-
esis [68,69]. Based on the strongly supported genus
level monophylies inferred from the Y chromosome
(the present study), mtDNA [6,20,30,31,70,71] and auto-
somal [34] studies, we would suggest that the genetic
differentiation at the genus level have been completed
in gibbons and the dramatic chromosomal dissimilarity
and rearrangements among genera have likely acted as
major barriers driving the intergeneric divergences [68].

Y chromosome and mtDNA phylogenies of Hylobates
species
Compared to other gibbon genera, Hylobates diverged
within a relatively short period of time [6,20]. The diver-
gence of the six Hylobates species sampled here
has been estimated to occur over an interval of only
~1.5 million years [6]. The low sequence variation of
Y chromosome loci produced the inferred phylogenetic
trees with weak support values on the nodes (Additional
file 1). The resolution of trees based on the concatenated
dataset showed relatively high resolution compared to
the trees of individual amplicons but an unresolved
trichotomy within Hylobates remains (Figure 2). In our
Y chromosome tree, we depict H. muelleri as basal spe-
cies of the genus Hylobates, but this placement is incon-
sistent with other studies which place H. pileatus
[30,31], H. moloch [27] or H. klossii [20] as the basal
Hylobates taxon with strong or weak supports. Although
the identity of the basal taxon is still debated, the group-
ing of four Hylobates species with geographic distri-
bution restricted to the Sundaic inlands (H. agilis,
H. klossii, H. moloch and H. muelleri) has been consist-
ently depicted in several studies [6,30,31]. Moreover, as
shown in our mtgenome tree of the 26 retrieved
sequences (Figure 2), the gibbon phylogeny based on
51 mtgenome sequences recently suggested that the
Hylobates divergence started with two clades which are
further divided into three species pairings: H. lar-H.
pileatus, H. klossii-H. moloch and H. agilis-H. muelleri,
and thus the absence of a basal species in the Hylobates
phylogeny [6]. In sum, these results suggest that the
sampling of large amounts of sequence variation, as was
done using entire mtgenomes, is necessary to resolve
divergence events within Hylobates. While sequencing
the Y chromosome loci benefits the understanding of
Hylobates patrilineal history, the sequence variation of
the loci sampled here was not sufficient for clarifica-
tion of phylogenetic relationships among these rapidly
diverged gibbon species.

Gene flow between Hylobates species
Although Hylobates species have been recognized as dis-
tinct taxa, three hybrid zones have nonetheless been
described within Hylobates [23]. These occur between H.
lar and H. pileatus in Thailand, between H. lar and H.
agilis in peninsular Malaysia, and between H. albibarbis
and H. muelleri on Borneo [23]. Of these zones, natural
hybridization between H. lar and H. pileatus has been
documented in Khao Yai National Park of Thailand
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where mating between representatives of the two species
or their hybrids and backcross individuals were observed
[23,72]. These hybrids were apparently fertile based
on identification of the offspring of the first or second
generation backcrosses according to pelage and song
features [23,72]. Though the currently reported natural
hybrid offspring between H. lar and H. pileatus are lim-
ited to the narrow range of the contact zone [72,73], the
evidence of these field observations may imply the
ongoing gene flow between these two species after their
divergence. Moreover, genetic information could be
helpful to corroborate this inference of gene flow and
genetic data based on the mtDNA and Y chromosome
will benefit the detection of possible sex-mediated gene
flow [74]. In the present study, we found one of the
sampled H. pileatus (J16) individuals falling within the
H. lar clade in our Y chromosome tree, but the mtge-
nome sequence of this individual was sorted into mono-
phyletic clade of H. pileatus [6]. Possible explanations
for this paraphyly of H. pileatus Y chromosome were
misleading inference due to our small sample size or
incomplete lineage sorting in the short time since these
two species had shared a polymorphic common ances-
tral population [6]. Alternatively, the individual J16
having a H. pileatus mitochondrial genome but a H. lar
Y chromosome may represent an instance of recent
male-mediated gene flow between H. lar and H. pileatus.
Information concerning this individual is extremely
limited. Individual J16 was described as H. pileatus
when was collected in the 1980s and also was judged
as a pure H. pileatus but not a F1 hybrid by two research-
ers familiar with gibbon morphological characteristics
recently independently from several of its photographs
(T. Geissmann and A.R. Mootnick, personal communica-
tion). However, the unclear origin and unknown parentage
of this captive individual makes it difficult to provide fur-
ther information about gene flow.
Potential gene flow between gibbon species is not sur-

prising in light of what we know from genetic data about
hybridization between closely related lineages in other
apes: orangutans, gorillas, bonobos-chimpanzees, Nean-
derthals-humans, and primates in general [75,76].
Gibbons live in small groups and the social unit consists
typically of a breeding pair, and immature presumptive
offspring, although groups with multiple adults have
been reported [54,57,59,62]. Because both males and
females typically leave their natal groups upon reaching
maturity and establish new social groups [54], there is
the potential for both male and female-mediated gene
flow across taxonomic boundaries. The natural hybridi-
zations occurring between Hylobates species at the
present time [23] motivates future investigation of what
role gene flow may play in the evolutionary history of
Hylobates speciation, and insights are likely to be gained
by sequencing of multiple autosomal loci in addition
to mtDNA and Y chromosome sequences. Particularly
important would be the sampling of individuals of
known geographic provenance and subspecies affinity.
Although feasible, the sampling of gibbons in the wild
is challenging and often limited to the acquisition of
fecal samples [20], which tend to produce DNA in low
concentration and quality that can impede analyses,
though new developments in sequencing technologies
can improve the ability to use such samples [77].

Conclusions
Our study generated a total of over 165 kb sequence
data of gibbon Y chromosomes from 26 individuals
representing 10 different species. These paternally inher-
ited Y chromosomal sequences confirm the monophyly
of the respective gibbon genera as previously suggested
using data from maternal mtDNAs, biparental auto-
somal loci and chromosomal analyses [6,19,20,22,27-
31,34,67]. Furthermore, in comparison with mtDNA
analyses [6,20,27,30,31], we show different branching
patterns in the Y chromosome phylogeny tree (Figure 2)
and somewhat more recent estimates of Y-chromosome
divergence time (Table 4). Although the results from
the small sample sizes of our study limit our interpreta-
tions of possible gene flow between Hylobates species,
we suggest that this gene flow may have occurred
recently or be ongoing between closely distributed spe-
cies, and suggest that the incorporation of autosomal
data and a larger sample set is necessary for elucidating
any such patterns of gene flow.

Methods
Gibbon DNA samples and PCR amplification of
Y chromosome loci
All DNA samples used were not acquired specifically for
this study and derive from the long-term sample collec-
tions of the authors. The samples were originally col-
lected in the course of routine veterinary examinations
of captive gibbons. We used high-quality genomic DNA
samples from 26 male individuals representing 10 gib-
bon species, comprising H. agilis (n = 3), H. lar (n = 10),
H. muelleri (n = 1), H. klossii (n = 1), H. moloch (n = 2),
H. pileatus (n = 2), S. syndactylus (n = 3), N. leucogenys
(n = 1), N. gabriellae (n = 2) and N. concolor (n = 1)
(Additional file 2). An additional eight DNA samples
from females were used to test the male-specificity of
the primers as described below. We performed whole
genome amplification (WGA) on all genomic DNA sam-
ples using the multiple displacement amplification
procedure implemented in the GenomiPhi HY DNA
Amplification Kit (GE Healthcare). The WGA products
were purified by ethanol precipitation following manu-
facturer’s instructions. We quantified the purified WGA
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products using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Inc.) and used them as templates for
subsequent polymerase chain reactions (PCRs) for the
amplification of Y chromosomal loci.
From the literature we identified loci on the non-

recombining portion of Y chromosome (NRY) and tested
16 published primer pairs (Additional file 2) for male-
specific amplification using 10 males (one individual per
species), along with eight female individuals (no female
individuals were available from H. klossii and N. conco-
lor). These primers were reported to be capable of amp-
lifying the NRY loci of gibbons or great apes. The
primer pairs were considered male-specific when the
expected PCR products were obtained in males but not
in females. Of the tested primers, seven primer sets were
then used to amplify segments from six NRY loci from
all male individuals. Sixty or 120 ng of the purified
WGA products were used in 50 μl PCR reactions.
Detailed information concerning the primer sequences,
the PCR conditions and the PCR mix are listed in
Additional file 2.

Sequencing of Y chromosome PCR amplicons
We used the high-throughput 454 sequencing technol-
ogy with the parallel tagged sequencing approach [78,79]
to sequence the seven PCR amplicons from gibbon Y
chromosomes following the manufacturer’s instructions
(GS FLX platform, Roche). In brief, we pooled the seven
purified PCR amplicons by individual in equimolar ratios
and then sheared the individual pools by sonication.
Individual-specific barcoding adapters were ligated to
the DNA fragments in each individual pool so that each
of the 26 gibbons had a unique tag. After tagging, the 26
individual pools were mixed together in equimolar ratios
and the 454 adapters were ligated to the tagged frag-
ments in the mix pool to produce the sequencing library.
We estimated the DNA concentration of this library
with quantitative PCR and then sequenced it using the
standard GS FLX sequencing procedure. The raw reads
were filtered, trimmed and base-called using GS Run
Processor application of Genome Sequencer FLX System
Software (454 Life Science, Roche). For raw data proces-
sing, the 454 read sequence data were sorted according
to individual-specific barcode sequences and then classi-
fied into the 26 subsets (26 individuals). De novo assem-
bly of the reads for each subset was carried out using
runAssembly command of GS De Novo Assembler 2.0
software (454 Life Science, Roche) to create consensus
contigs for each PCR amplicon.

Sequence data analysis
Homology analyses were applied to the contig sequences
of every subset (individual) using BlastN from NCBI
(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). For each
individual, seven consensus contigs of the amplicons
were entered in BlastN for searching for the sequence
matches with high identities under the database Nucleo-
tide collection (nr/nt). All contig sequences showed high
similarities to the corresponding homologous sequences
of human or other great apes as expected. The Y
chromosomal contig sequences were then edited to
remove the primer sequences using BioEdit 7.0.5 [80]
and the seven edited contig sequences from the same
individual were concatenated using DnaSP 5.10.01 [81].
Multiple sequence alignments for each of the amplicon
datasets (DAZ-1, DAZ-2, DBY, RPS4Y, SMCY, TSPY and
UTY) and for the concatenated dataset were carried out
using ClustalW 2.0 [82]. We used DnaSP to calculate
two indices of nucleotide diversity: π [83] and θw [84],
where π is the average number of nucleotide differences
per site between two sequences and θw is the proportion
of number of segregating sites in the sample. All
obtained gibbon Y chromosomal sequences have been
deposited in Genbank under the accession numbers
shown in Additional file 2. For comparison between the
nucleotide diversity levels of Y chromosome and mtge-
nome for gibbons, we retrieved the mtgenome sequences
from the same number of 26 individuals to also calculate
two indices of π and θw, in which the control regions of
these sequences were excluded due to the consideration
of the missing data contained [6]. Of these 26 retrieved
sequences, 17 individuals are exact same ones used in
the Y chromosme dataset and three are the mothers of
the individuals T03, T05 and T09, respectively (Figure 2,
Additional file 2). Since there is no mtgenome sequence
available for the remaining six individuals (23, 103, 1138,
1228, T03 and T08), we used the mtgemone sequences
(26, 502, 1135, J10, J12 and J24, shown in Figure 2) of
six other individuals which represent the same species.
This enabled us to have the same sample sizes for both
the Y chromosome and mtgenome datasets used here. Gen-
Bank IDs of these mtgenome sequences are: HQ622758,
HQ622760-HQ622761, HQ622763-HQ622767, HQ622769,
HQ622771, HQ622773- HQ622774, HQ622777-HQ622778,
HA622782-HQ622783, HQ622785-HQ622786, HQ622788,
HQ622791, HQ622795, HQ622798, HQ622802, HQ622806-
HQ622808.

Phylogenetic analyses
The homologous Y chromosomal sequences of three pri-
mate species (human, chimpanzee and macaque) were
used as out groups (Additional file 2) for the following
phylogenetic reconstructions. We aligned the out group
sequences with the datasets of the individual amplicons
separately as well as the concatenated dataset. The vari-
able, invariable and parsimony-informative sites in these
alignments were identified using DnaSP. We recon-
structed Y chromosome phylogenies of gibbons using

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
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two different approaches, maximum likelihood (ML) and
Bayesian inference (BI). We generated partitioned BI
and ML analyses by separating the concatenated dataset
into seven partitions (seven PCR amplicons), while non-
partitioned BI and ML analyses were applied to the
individual-locus datasets. Non-partitioned and parti-
tioned ML analyses were performed using RAxML 7.2.8
[85,86] with independent GTR (general time reversible)
substitution models applied to seven datasets/partitions.
We conducted non-partitioned and partitioned BI ana-
lyses using MrBayes 3.1.2 [87]. The best-fit nucleotide
substitution models were assessed using the Akaike
information criterion (AIC) by Model-Generator 0.85
[88]. The GTR+ I model was used for the datasets/
partitions of DAZ-1 and TSPY, GTR+ Γ for DBY, GTR
for DAZ-2 and SMCY, and HKY for RPS4Y and UTY.
Four Metropolis-coupled Markov chain Monte Carlo
(MCMC) analyses were run twice for 1 × 106 genera-
tions for individual-locus datasets and for 5 × 106 gen-
erations for the concatenated dataset and sampled every
100 generations with a burn-in of 25%. For comparison
between Y chromosome and mtgenome phylogenies, we
used the 26 retrieved mtgenome sequences (as used in
the calculation of nucleotide diversity levels) to recon-
struct mtgenome phylogeny tree using partitioned BI
and ML analyses as described in Chan et al., in which
the sequences of 22 tRNA genes, 2 rRNA genes and 13
protein-coding genes were used for tree reconstruc-
tions [6].

Estimation of divergence times
We estimated divergence times in the gibbon Y chromo-
some phylogeny using a Bayesian approach implemented
in the program BEAST 1.6.1 [89]. We used two fossil-
based calibration points as normal priors to obtain the
posterior distribution of the estimated divergence times:
the split of hominoids-cercopithecoids (~26.5 mya ±
2.5 mya, [90,91]) for the node Macaca-apes, and the
divergence between Homo and Pan (~6.5 mya ± 0.5 mya,
[92-94]) for the human-chimpanzee node. The concate-
nated dataset was used and divided into seven partitions
as described above for the BEAST analysis. Different
substitution models were assigned to the partitions as
described in the phylogenetic partitioned BI analysis.
Two independent BEAST runs were carried out using
uncorrelated lognormal relaxed clock model [95] with-
out an a priori fixed reference topology, along with fol-
lowing settings: Yule speciation process in tree prior, 4 ×
107 generations of MCMC steps, and sampling every
4000 generations. Convergence was assessed in Tracer
1.5 [96] after excluding the first 8 × 106 generations as
burn-in. We combined the log output files from two
individual BEAST runs using LogCombiner 1.6.1 [89].
The effective sample size (ESS) values exceeded 550 for
all parameters. The combined tree log files were anal-
yzed using TreeAnnotator 1.6.1 [89] to calculate the
maximum-clade-credibility topology and mean node
heights from the posterior distribution of the trees. We
visualized the tree results using FigTree 1.3.1 [97].

Additional files

Additional file 1: Supplementary Figure S1. Phylogeny trees of
individual Y chromosomal amplicons.

Additional file 2: Supplementary Tables S1 to S4. This file includes
the information of gibbon samples, primer sequences and PCR
conditions used in the present study. The list of GenBank IDs for
outgroup sequences and newly obtained sequences of gibbons is also
included.
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