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Abstract

Background: Hybridization, genetic mixture of distinct populations, gives rise to myriad recombinant genotypes.
Characterizing the genomic composition of hybrids is critical for studies of hybrid zone dynamics, inheritance of traits,
and consequences of hybridization for evolution and conservation. Hybrid genomes are often summarized either by
an estimate of the proportion of alleles coming from each ancestral population or classification into discrete
categories like F1, F2, backcross, or merely “hybrid” vs. “pure”. In most cases, it is not realistic to classify individuals into
the restricted set of classes produced in the first two generations of admixture. However, the continuous ancestry
index misses an important dimension of the genotype. Joint consideration of ancestry together with interclass
heterozygosity (proportion of loci with alleles from both ancestral populations) captures all of the information in the
discrete classification without the unrealistic assumption that only two generations of admixture have transpired.

Methods: I describe a maximum likelihood method for joint estimation of ancestry and interclass heterozygosity. I
present two worked examples illustrating the value of the approach for describing variation among hybrid
populations and evaluating the validity of the assumption underlying discrete classification.

Results: Naively classifying natural hybrids into the standard six line cross categories can be misleading, and false
classification can be a serious problem for datasets with few molecular markers. My analysis underscores previous
work showing that many (50 or more) ancestry informative markers are needed to avoid erroneous classification.

Conclusion: Although classification of hybrids might often be misleading, valuable inferences can be obtained by
focusing directly on distributions of ancestry and heterozygosity. Estimating and visualizing the joint distribution of
ancestry and interclass heterozygosity is an effective way to compare the genetic structure of hybrid populations and
these estimates can be used in classic quantitative genetic methods for assessing additive, dominant, and epistatic
genetic effects on hybrid phenotypes and fitness. The methods are implemented in a freely available package “HIest”
for the R statistical software (http://cran.r-project.org/web/packages/HIest/index.html).

Background
Research on hybrids and hybrid zones offers unique
insights into several aspects of evolutionary and ecological
genetics [1-6], and natural hybridizationmight sometimes
have a key role in evolutionary diversification and inno-
vation [7-11]. Hybridization can also present a major
challenge for conservation when it involves endangered
and/or invasive species [12-16]. Therefore, accurate detec-
tion and characterization of hybridization is important for
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both basic and applied biology. Molecular genetic markers
are making such analyses accessible across a wide range
of organisms, but careful data analysis and interpretation
are required to avoid erroneous inferences or misleading
communications with non-scientists.
When describing a possible hybrid population, inves-

tigators often wish to summarize each individual’s mul-
tilocus genotype in a simple and informative way. This
usually takes the form of either a hybrid index indicat-
ing the proportion of an individual’s ancestors belong-
ing to each “parental” lineage [17-20], or a classification
as putative parental, F1, F2, or backcross [21-24]. The
hybrid index recognizes that hybrids often form a con-
tinuum rather than discrete categories, but the index
can be unsatisfactory because it summarizes only one
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dimension of the genotype. Classification emphasizes the
differences between early and later generation hybrids
(e.g., F1 and F2 hybrids have the same expected hybrid
index = 1

2 but important differences in the fraction of
heterozygous loci). This distinction is important because
parental genotypes can potentially be recovered from a
population in the early generations of admixture [25],
and absence of later generation hybrids might indicate
hybrid sterility [26]. However, analyses or management
strategies that assume discrete classification fail to recog-
nize the continuum of genotypes characteristic of most
hybrid zones in the wild, and might perpetuate mislead-
ing ideas about the existence of discrete genetic categories
[27,28].
Although no summary method is likely to satisfy all

needs, the situation can be greatly improved by adding a
single calculation so that hybrid genotypes are character-
ized by estimates of both ancestry (S, the axis that arranges
all hybrids between two ancestral extremes) and inter-
class heterozygosity (HI , the axis that distinguishes F1, F2,
and recombinant inbred lines). In fact, joint estimates of
ancestry and interclass heterozygosity include all of the
information in the typical six-type classification because
each class has a unique pair of expected values (Table 1)
[29-31]. In evolutionary quantitative genetics, early gen-
eration hybrid classes are used to study dominance and
epistasis precisely because they provide information on S
and HI , not because the classification itself contains any
other information [22,29-32].
Below, I present simple maximum likelihood methods

for estimating ancestry and heterozygosity from molecu-
lar marker data and explicitly testing the assumption that
a discrete classification adequately describes an individ-
ual or dataset. I use empirical data and simulations to
illustrate these two dimensions of hybridity and assess
the reliability of inferences about discrete vs. continuous
distributions of hybrid genotypes.

Table 1 Expected genomic proportions of early generation
hybrids

Class S HI p11 p12 p22

P1 0 0 1 0 0

P2 1 0 0 0 1

F1 1/2 1 0 1 0

F2 1/2 1/2 1/4 1/2 1/4

B1 1/4 1/2 1/2 1/2 0

B2 3/4 1/2 0 1/2 1/2

Each of the genotypic classes generated in the first two generations of
admixture has a unique pair of ancestry S and interclass heterozygosityHI
[30,31], or equivalently, a unique set of genomic proportions [33], where p11 is
the proportion of the genome homozygous for P1 alleles, p22 is the porportion
homozygous for P2 alleles, and p12 = HI is the proportion of the genome
heterozygous for alleles derived from each parental lineage.

Methods
Ancestry and interclass heterozygosity for codominant
markers
Buerkle [20] developed a maximum likelihood procedure
for estimating the ancestry index S from non-diagnostic
markers. Here, I generalize his method to jointly estimate
S and HI (the interclass heterozygosity index) for individ-
ual hybrid genotypes given parental allele frequencies. It
is useful to express genotypic probabilities using Turelli
and Orr’s [33] three genomic proportions: p11 = propor-
tion of loci with both alleles derived from parental species
1, p22 = proportion of loci with both alleles derived from
parental species 2, and p12 = proportion with one allele
from each species. The system is completely specified by
two parameters (because p11 + p12 + p22 = 1), and per-
fectly represents ancestry and interclass heterozygosity
because HI = p12, and S = p11 + 1

2p12 (Table 1) [32].
The probability of a hybrid being homozygous for allele

j at locus i in terms of the allele frequencies in parental
population 1 (fij1) and population 2 (fij2), and Turelli and
Orr’s [33] genomic proportions is

Pr(j, j)i = p11 f 2ij1 + p12 fij1 fij2 + p22 f 2ij2. (1)

And the probability of being heterozygous for alleles j
and k at locus i:

Pr(j, k)i = p112 fij1 fik1+p12(fij1 fik2+fik1 fij2)+p222 fij2 fik2.
(2)

These probabilities can be generalized to consider any
number A of ancestral gene pools:

Pr(j, j)i =
A∑

a=1
paa f 2ija +

A−1∑
a=1

A∑
b>a

pab fija fijb. (3)

And

Pr(j, k)i = 2
A∑

a=1
paa fija fika+

A−1∑
a=1

A∑
b>a

pab(fija fikb+fika fijb).

(4)

These expressions assume alleles were drawn at ran-
dom from within each parental gene pool when the
initial admixture was formed, but do not assume Hardy-
Weinberg equilibrium within a hybrid population. Equiv-
alent probability statements were used by Pritchard et al.
in developing the Bayesian methods implemented in the
program STRUCTURE [19,34,35]. STRUCTURE provides
estimates of ancestry that incorporate uncertainty about
parental allele frequencies. Using site-by-site analysis [34],
it can also give Bayesian estimates of interclass heterozy-
gosity. However the latter method requires mapped mark-
ers and has been used only rarely [27,36]. Here, I use
likelihood to provide simple estimates of ancestry and het-
erozygosity that allow analysis of the relationship between
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these two fundamental dimensions of hybrid genotypes.
My estimates depend on given parental allele frequencies
(rather than incorporating uncertainty about the ances-
tral populations) and assume all markers are unlinked or
sampled at random with respect to linkage (see below).
Despite these limitations, I illustrate the usefulness of con-
sidering these two dimensions of hybridity, and hope to
encourage further development of methods.
The log-likelihood of a set of genomic proportions

for a given hybrid genotype with n loci is (following
Buerkle [20])

�(p11, p12, p22|genotype)=
n∑

i=1

{
lnPr(j, k)i heterozygous loci
lnPr(j, j)i homozygous loci .

(5)

Maximizing this function provides estimates of Ŝ =
p̂11 + 1

2 p̂12 and ĤI = p̂12. For diagnostic biallelic mark-
ers (fij1 = 1 and fij2 = 0), the joint MLE has closed form
Ŝ = x11 + 1

2x12 and ĤI = x12, where x11 is the observed
fraction of markers homozygous for species 1 alleles, and
x12 is the observed fraction of markers heterozygous for
species 1 and species 2 alleles.

Dominant Markers
The method can be extended to dominant markers (e.g.,
AFLP). Assume allele j is dominant and k is recessive (e.g.,
for the phenotype of presence/absence of a PCR product
at position i in a gel). The log-likelihood is

�(p11, p12, p22|marker phenotype)

=
n∑

i=1

{
ln

[
Pr(j, j)i + Pr(j, k)i

]
band present

lnPr(k, k)i band absent .
(6)

Implementation
For finding maximum likelihood estimates using
equations 5 or 6, I used the general purpose optimization
function optim in R [37]. The function uses a quasi-
Newton optimization algorithm that can handle simple
constraints (i.e., proportions must be in the interval
[0,1]). However, it sometimes failed for genotypes close
to the edge of the triangular sample space (Figure 1),
where the likelihood surface is discontinuous. Therefore
I implemented two simple Markov Chain Monte Carlo
approaches to more thoroughly explore the likelihood
surface. The optim function can use a built-in simu-
lated annealing (SANN) algorithm, given a function for
proposing new estimates. I also wrote a simple MCMC
algorithm using Metropolis-Hastings sampling [38]. For
both of the these approaches, I wrote a proposal func-
tion that draws new genomic proportions (p′

11,p′
12,p′

22)
from a three dimensional Dirichlet distribution centered
on the old genomic proportions and with concentration
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Figure 1 Sample space of hybrid genomic proportions. The range
of possible hybrid genomic proportions in terms of (A) ancestry and
interclass heterozygosity on a bivariate coordinate system, and (B)
Turelli and Orr’s [33] genomic proportions on a ternary coordinate
system. Labeled circles in (A) show expected HI for three distinct
hybrid types, all with S = 0.5.

parameter α. I.e., the probability density of the proposal
distribution is Dir(αp11,αp12,αp22). Larger α makes the
proposal distribution more concentrated near the cur-
rent state. For efficiency, starting values were obtained
by calculating likelihoods for 100 equally spaced pairs of
S and HI on a grid over the sample space and starting
the MCMC at the grid point with highest likelihood. For
present purposes, I ran the MCMC for 1000 steps (with
α = 100) and used the pair of estimates with the maxi-
mum likelihood as the MLE. The sample space for this
problem is simple (Figure 1) and inspection of dozens of
likelihood surfaces never suggested the existence of local
optima. The quasi-Newton algorithm was unreliable at
the edge of the sample space because it could not approx-
imate the local surface as a continuum, not because it was
getting stuck at a local optimum.

Simulations
Evolution of ancestry and heterozygosity in admixed
populations
To illustrate how the joint distribution of S and HI change
in the generations following admixture, I created a sim-
ple simulationmodel following Long’s “intermixture” [39].
The simulation begins with individuals from two parental
populations in relative frequencies μ and 1 − μ. A first
admixed generation of size N is formed by randomly
drawing N pairs of parents with replacement and ran-
domly drawing one gamete from each parent to form N
diploid offspring. Loci are assumed unlinked, so haploid
gametes are formed by randomly drawing one allele from
each locus within each parent. This model gives expected
frequencies of μ2, 2μ(1 − μ), and (1 − μ)2 P1, F1, and
P2 genotypes in the first generation. Each succeeding gen-
eration is formed in the same way by random mating of
pairs from the previous generation. I kept track of diploid



Fitzpatrick BMC Evolutionary Biology 2012, 12:131 Page 4 of 14
http://www.biomedcentral.com/1471-2148/12/131

genotypes to estimate S and HI through time. R code for
the simulations is available as Additional File 1.
To illustrate the effect of ongoing gene flow, I repeated

the simulations above with stochastic immigration from
unchanging parental populations (the continent-island
admixture model [40,41]). Each generation, individuals in
the hybrid population were replaced by pure parentals
with probabilitym (so the expected number of immigrants
was Nm). Each immigrant was equally likely to be a P1 or
P2 genotype.

Linkage and sampling of the genome
Linkage among markers is expected to affect the sam-
pling variance (hence reliability) of parameter estimates
because linked markers will tend to provide redundant
information. The assumption that two markers each pro-
vide independent information is violated if they are linked
(i.e., if the probability of recombination is less than 0.5).
In general this should not be a problem if loci represent
a simple random sample with respect to recombinational
distance [42]. On the other hand, systematic sampling of
a linkage map might provide more reliable estimates if
the sample covers most of the genome and the sampling
interval does not happen to coincide with some natu-
ral periodicity [42], e.g., if the sampled loci were always
located near centromeres.
To evaluate the potential effects of linkage on bias and

sampling variance, I created a simple linkage model. Each
model genome included four diploid chromosomes with
100 loci each. The loci were evenly distributed across
two chromosome arms, and one recombination event was
modeled per chromosome arm per meiosis (a minimal
rate based on mammalian disjunction [43,44]). Recom-
bination breakpoints were drawn with equal probability
at any interval on a chromosome arm. This means the
recombinational distance between adjacent loci was 2cM.
This certainly does not capture all of the complexities of
recombination in real genomes [44-46], but it efficiently
models a highly structured genome where many randomly
sampled markers will be on the same chromosomes.
Using this model, I simulated F2, backcross, and later

generation crosses (up to F10) from parental lines with
diagnostic alleles at each marker. For comparison, I simu-
lated the same series of cross types allowing free recom-
bination between all markers (400 unlinked markers). For
each simulated individual, I recorded the true values of
S and HI from all 400 loci, and then estimated S and HI
from samples of L = 3, 10, 20, 30, 40, 50 and 60 loci. For
the four-chromosome individuals, I compared estimates
using simple random sampling to estimates using system-
atic sampling where a series of L loci at regular 2cM or
10cM intervals was obtained by choosing a single random
starting locus. For each simulated individual (1000 of each
cross type), I estimated the bias and sampling variance

from 1000 random samples of markers for each genomic
sample size L and sampling regime.

Uncertainty of parental allele frequencies
My implementation of the estimators for S and HI
depends on prior estimates of parental allele frequencies
taken as known constants. To briefly illustrate the conse-
quences of inaccurate assumptions about parental allele
frequencies, I simulated ten generations of admixture in
small populations (N = 50) with different sets of actual
parental allele frequencies, and then estimated S and HI
for each individual under different assumed parental allele
frequencies. To evaluate the effect of an overall bias, I used
four scenarios: (i) parental populations with L diagnostic
markers, (ii) L diallelic markers with allele frequencies all
equal to 0.9 in one lineage and 0.1 in the other, (iii) L dial-
lelic markers with allele frequencies all equal to 0.8 in one
lineage and 0.2 in the other, and (iv) L diallelic markers
with allele frequencies all equal to 0.7 in one lineage and
0.3 in the other. For each of these sets of actual parental
allele frequencies, I performed estimation under each set
of parental allele frequencies as an assumption. I repeated
these analyses with L = 3 and L = 50 to assess how
uncertainty interacts with marker number.
To evaluate the effect of balanced inaccuracy, I simu-

lated admixture from parental lineages with 25 diallelic
markers with allele frequencies all equal to 0.9 in one
lineage and 0.1 in the other, and 25 additional diallelic
markers with allele frequencies all equal to 0.7 in one lin-
eage and 0.3 in the other, and then performed estimation
assuming all 50 markers had allele frequencies of 0.8 and
0.2. Finally, to assess the impact of having just a few known
diagnostic markers, I repeated this analysis replacing one
locus of each type with a diagnostic locus, and performed
estimation assuming those two were diagnostic but still
assuming the other 48 markers had allele frequencies of
0.8 and 0.2.

Hybrid Classification
Equations (5) and (6) can be used to calculate the like-
lihood of predefined genotype frequency classes, as in
Anderson and Thompson’s program NewHybrids [23].
For example, the likelihood an individual is in the parental
1 genotype frequency class is �(p11 = 1, p12 = p22 = 0|
marker phenotype), the likelihood for the F2 genotype
frequency class is �(p11 = 0.25, p12 = 0.5, p22 = 0.25|
marker phenotype), etc. This provides an instructive
comparison between the research goals of estimating
ancestry and heterozygosity vs. classifying individuals
into genealogical categories. First, as noted clearly by
Anderson and Thompson [23] among others [21,22], the
one-to-one correspondence between genotype frequency
class and genealogical class (parental, F1, backcross, etc.)
applies only to the first two generations of interbreeding,
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and arbitrarily similar classes become indistinguishable in
practice (Figure 2). Second, for most purposes, the value
of knowing the genealogical class is as an indicator of
the most likely genotype frequencies, not vice versa [22].
I.e., there is no more genetic information in the classifica-
tion“backcross to parental 1” than in the set of expected
genomic proportions p11 = 0.5, p12 = 0.5, p22 = 0.0 [31].
Finally, the pitfall of classifying samples from a wild pop-
ulation into a limited set of predefined categories is that
a best classification will be obtained even if the set of
assumed genealogical classes is not relevant (e.g., after
more than two generations of admixture).
The most valuable inference from genealogical classifi-

cation of wild samples is in identifying situations where
F1 hybrids are infertile so later generations are never
formed [26], or distinguishing brand new hybrid zones
from hybrid swarms that are several generations old and
therefore unlikely to contain any true parental or F1
individuals [27]. This can be accomplished by evaluating
whether any individuals have F1 or parental likelihoods
that are (i) sufficiently greater than their likelihoods for
other genotype frequency classes to rule those classes out,
and (ii) sufficiently similar to the maximum likelihood
ancestry and interclass heterozygosity to say the hypoth-
esized classifications cannot be rejected. One approach is
to accept a putative classification as credible if the log-
likelihood of the best-fit class is over 2 units greater than
the log-likelihood of the second best-fit class and within
2 units of the maximum log-likelihood. The first crite-
rion is based on the approximate equivalence of a 2x
log-likelihood interval to a 95 percent confidence inter-
val for some distributions [47,48]. The second is based on
the conventional penalty of two log-likelihood units for an
additional estimated parameter inmodel selection [49,50].

The classification model can be viewed as having one free
parameter (for an individual, once the best-fit class is set
to “chosen”, the other five are constrained to “not cho-
sen”), while the continuous model has two (S and HI ).
This approach has the disadvantage of effectively treating
the classification as a null model, which is not biologically
justified. A better approach is to accept the classification
only if its AIC is lower than the AIC of the MLE (in this
case, equivalent to a criterion of within 1.0 log-likelihood
units of the MLE). Note that the AIC of the best classifi-
cation cannot be less than the MLE by more than 2 (the
case where MLE is identical to the expectation for a class).
This approach avoids the pitfall of assuming that individ-
uals fall into a small set of discrete classes, and instead
directly evaluates the validity of classification relative to
the continuous model MLE.

Examples
To illustrate inferences based on S and HI , I analyzed
two published data sets. The first is a sample of hybrid
tiger salamanders from a 60-year old hybrid swarm where
we expect to find no true parental or F1 individuals
[51]. The second is from a hybrid zone between Ensatina
salamanders in southern California, where Devitt et al.
[52] inferred that a large proportion of individuals in the
hybrid zone were in fact F1 hybrids, based on analysis
withNewHybrids. To describe ancestry and interclass het-
erozygosity in these datasets and evaluate support for the
existence of true F1 hybrids in the wild, I wrote functions
in R [37] to find the joint maximum likelihood estimates of
S and HI , and to evaluate the likelihoods of the six geno-
type frequency classes typically of interest (corresponding
to the expectations for pure parentals, F1’s, F2’s and first
backcrosses in each direction). These functions and others
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Figure 2 Evolution of genomic proportions under neutral admixture. The evolution of genomic proportions under neutral admixture in a
simulated population founded by equal numbers from each parental species at t = 0. Population size was held constant at 100 diploids. Genotypes
for 100 diagnostic 2-allele codominant markers were tracked over 200 non-overlapping generations of randommating and genetic drift.
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used in this paper are available as a CRAN package called
“HIest” (for “hybrid index estimation”) at http://cran.r-
project.org/web/packages/HIest/index.html.

Introduced x native hybrid swarm in tiger salamanders
Barred Tiger Salamanders (Ambystoma tigrinum mavor-
tium) were deliberately introduced from Texas to Cal-
ifornia in the 1940’s and 1950’s [53]. They have been
interbreeding with the native California Tiger Salamander
(A. californiense) in ponds throughout the Salinas Valley
for roughly 20-30 generations. Thus, unless there has been
an unknown source of new “pure” Barred Tiger Salaman-
ders in the recent past, it is extremely unlikely that any
true F1, F2, or backcross individuals exist in the wild.
Fitzpatrick et al. [51] used 65 putatively diagnostic

markers (one allele assumed fixed in each ancestral popu-
lation) to genotype 255 salamander larvae from five breed-
ing ponds. This example is instructive because diagnostic
markers allow use of the closed-form MLE’s as bench-
marks for testing the optimization, and the large number
of markers gives high precision in evaluating how the dis-
tribution of hybrid genotypes varies across populations
and whether any populations might contain putatively
pure parentals or F1’s.

A natural hybrid zone in Ensatina
Ensatina eschscholtzii is a classic example of the “ring-
species” pattern illustrating the gradual evolution of re-
productive isolation and distinctiveness between species
taxa [54-58]. Devitt et al. [52] analyzed a narrow hybrid
zone in southern California between the distinctive forms
E. e. eschscholtzii and E. e. klauberi using one mito-
chondrial and three nuclear loci assayed for 335 sala-
manders densely sampled from across the contact zone.
They used NewHybrids [23] and STRUCTURE [19,35]
to estimate ancestry (the Baysian Q-value estimates the
same underlying quantity as S here), and classified as
“hybrids” the 46 individuals with point estimates between
0.1 and 0.9. Of these, 22 were classified as F1 hybrids and
24 as F2 or backcrosses based on posterior probabilities
from NewHybrids. I used their nuclear data (published
as online supplementary material) to compare their infer-
ences to my joint likelihood estimation of S and HI . This
example is instructive because the small number of non-
diagnostic markers should give considerably less precision
than the tiger salamander example, and because the high
frequency of F1 hybrids is biologically significant if the
inference is credible.
The nuclear markers used by Devitt et al. [52] were not

diagnostic, so I repeated their analysis using the admix-
ture model in STRUCTURE (version 2.3.2) with standard
settings to estimate “ancestral” allele frequencies to use as
givens (fij1, fij2) for my likelihood calculations. I also saved
the Q-values estimated by STRUCTURE to compare to

my MLE’s of S (though the inferences are obviously
not independent because both depend on the parental
allele frequencies inferred by STRUCTURE). This reliance
on external estimates of parental allele frequencies is a
weakness of my implementation, but I suspect that my
approach could be integrated in a fully Bayesian analy-
sis using NewHybrids [23], STRUCTURE [19,34,35], or
Introgress [59] as a starting point. To evaluate support
for classification of Ensatina hybrids into the six standard
classes, I once again used both criteria; (i) classification
required a difference of two log-likelihood units between
the best fit class and any other, and (ii) the best fit class
had to have lower AIC than the joint MLE’s of S and HI .

Sampling and false classification
To further explore how the number of markers assayed
affects erroneous classification, I took the tiger salaman-
der data from Bluestone Pond and Toro Pond (Figure 3a
and e) and randomly subsampled markers and recalcu-
lated the likelihoods of the six hybrid classes and the joint
MLE of S and HI . I randomly subsampled three mark-
ers (without replacement) and repeated the analysis 1000
times. Then I did the same for samples from 5 to 60 (out
of the total of 65) in increments of 5. Given the history of
the tiger salamander hybrid swarm and the low frequency
of classification using the full dataset, I considered any
“successful” classification a false positive.
Because the primary value of classification is in the iden-

tification of true F1 or pure parental genotypes [25], I also
specifically assessed the frequency with which individuals
were classified as parental or F1. For diagnostic markers,
this can happen only if an individual is heterozygous at
all markers, or homozygous at all markers, respectively.
In these cases, the likelihood of the classification is equal
to the maximum likelihood, and the AIC-based test will
always favor the classification over the continuous model
because of the difference in degrees of freedom. How-
ever, for small numbers of markers, spurious inference
can be made because all markers might be heterozygous
or homozygous by chance. For example, in a true F2 or
backcross, 50% of markers are expected to be heterozy-
gous and the probability of sampling three heterozygous
markers by chance is (1/2)3 = 0.125. To avoid spurious
inference, investigators should avoid classifying individu-
als based on small numbers of markers [21]. For example,
the expected fraction of n F2’s with all heterozygous geno-
types at Lmarkers is α = n(1/2)L. So, in order to maintain
an experiment-wise error rate of α, one would need at
least

L = log n − logα

log 2
(7)

markers. Although this applies precisely only in the case
of F2 hybrids and diagnostic markers, it might be taken as
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Figure 3 Distributions of ancestry and heterozygosity in hybrid tiger salamander populations. Joint maximum likelihood estimates of
ancestry and interclass heterozygosity show variation among populations within the California tiger salamander hybrid swarm (A-E). Here, S is the
proportion of alleles derived from the introduced Barred Tiger Salamander. (F) Illustrates that the joint maximization converges on the closed-form
MLE of the ancestry index for diagnostic markers..

a rule of thumb in the absence of other criteria. In the case
of the Ensatina data with 46 putative hybrids and three
markers, we might expect 5.75 false F1’s and would have
wanted 10 markers to keep the error rate near 5%.

Results and Discussion
Evolution of ancestry and heterozygosity in admixed
populations
Figure 2 shows S and HI from a single random simulation
for N = 100 with 100 diagnostic codominant markers.
The case is typical in showing clear genotypic clusters
corresponding to parentals, F1’s, F2’s, and backcrosses
in the first two generations, followed by a few genera-
tions with high variance of S, effectively looking like a
continuum between backcross-like and F2-like genotypes
(0.25 < S < 0.75, HI near 0.5). By N/10 generations
almost all individuals are clustered around S = HI = 0.5,
and the population slowly becomes more homozygous as
alleles are lost by drift (S remains roughly constant while
HI declines toward zero).
Figure 4 illustrates the effect of ongoing immigration

from parental gene pools. With N = 100 and m = 0.10,
a stationary distribution was reached at generation 3. The
distribution fluctuates from generation to generation, but
a wide range is consistently observed. With lower immi-
gration (Nm ≤ 1), results were similar to the no-gene-flow
scenario in Figure 2, but HI remained moderate instead
of dropping toward zero. With Nm = 1, the population
settled in a steady state similar to t = 50 or t = 100 in
Figure 2.
The same basic patterns can be seen when the loci are

not entirely diagnostic (e.g., parental allele frequencies of

0.9 vs 0.1). However, when estimates were based on fewer
markers, or less informative markers, it was often impos-
sible to discern discrete genotype clusters by generation 2
(e.g., see Figures 5 and 6).

Codominant markers
Maximum likelihood estimates of S and HI appear con-
sistent and unbiased for known codominant genotypes
(Figure 5). Precision depends on the number of markers
and how ancestry-informative they are (how different the
known parental allele frequencies are). The simplicity of
the triangular sample space makes it easy to visualize the
likelihood surface for any individual and get a feel for the
uncertainty around an estimate. Figure 5 illustrates that
a large number of highly informative markers are needed
for precise inference about any single genotype.

Dominant markers
Maximizing the log-likelihood for dominant markers also
gives unbiased estimates of S and HI (Figure 6). With
the inherently lower information content of dominant
markers, more markers are needed for precision, as seen
in other methodological studies [24,60,61]. These mark-
ers are less informative about heterozygosity, hence the
oval ellipses in Figure 6. The method works well as long
there is a mixture of loci for which the dominant allele
is more common in ancestral species 1 and other loci for
which the dominant allele is more common in ancestral
species 2. The validity of the estimates depend on the
validity of homozygous recessive genotypes as informa-
tion about p11 and p22. If, for example, the absence of PCR
product or particular band on a gel cannot be interpreted
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Figure 4 Evolution of genomic proportions under neutral admixture and immigration. The evolution of genomic proportions under neutral
admixture with ongoing gene flow. The simulated population as founded by equal numbers from each parental species at t = 0. Population size
was held constant at 100 diploids. Each generation, resident adults were replaced by pure parental genotypes with probability 0.10 (average gene
flow was Nm = 10 each generation. Offspring genotypes (before dispersal) for 100 diagnostic 2-allele codominant markers were tracked over 200
non-overlapping generations of immigration, randommating, and genetic drift.

as a homozygous recessive genotype, the marker system
should not be used for this or any other method relying on
typical population genetic assumptions.

Linkage and sampling of the genome
Markers sampled at random from a structured genome
were indistinguishable from truly unlinked markers in
terms of bias and sampling variance of Ŝ and ĤI
(Additional File 2: Figures S1-S4). Average bias was
indistinguishable from zero for all sampling regimes
(Additional file 2: Figures S1, S2), and sampling variance

decreased with larger numbers of markers, as expected
(Additional file 2: Figures S3, S4). Systematically sampling
linked markers affected sampling variance in a manner
consistent with statistical intuition [42]. Estimates based
on small numbers of tightly linked markers had high sam-
pling variance (i.e., a different sample of markers was
likely to give substantially different estimates). However,
when coverage of the genome was very good, systematic
sampling resulted in lower sampling variance (Additional
file 2: Figures S3, S4). For example, given the modeled
genome structure (four 200cM chromosomes) 60 markers
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Figure 5 Likelihood surfaces for codominant markers. Likelihood surfaces of ancestry (S) and interclass heterozygosity (HI) for 10 (A-C) and 40
(D-F) codominant biallelic loci with parental allele frequencies of 0.9 and 0.1. (A) and (D) are F1 hybrids with S = 0.5 and HI = 1.0; (B) and (E) are F2
hybrids (S = 0.5, HI = 0.5); (C) and (F) are homozygous recombinants (S = 0.5, HI = 0.0). Each level of shading covers two units of log-likelihood, so
black is within 2 log-likelihood units of the maximum.
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Figure 6 Likelihood surfaces for dominant markers. Likelihood surfaces of ancestry (S) and interclass heterozygosity (HI) for 100 (A-C) and 300
(D-F) dominant markers for the same three hybrid genotypes as in Figure 5. Dominant allele frequences in the parental species were set to 0.9 for
half of the markers and 0.1 for the other half in species 1 and vice versa for species 2. The F1 (A and D) had the dominant phenotype for all markers,
the F2 (B and E) was homozygous recessive at 1

4 of the markers, and the Fn (D and F) was homozygous recessive at 1
2 of the markers. Each level of

shading covers two units of log-likelihood, so black is within 2 log-likelihood units of the maximum.

at 10cM intervals spans 75% of the genome and leads to
more reliable estimates of S and HI than a simple random
sample of 60 markers. Thus, for systematically sampled
genomes with good coverage, support intervals based on
my likelihood calculations will be somewhat conservative.

Uncertainty of parental allele frequencies
Effects of systematic over- or under-estimating differenti-
ation between parental lineages predictably biased hybrid
index estimates toward intermediate or extreme values
respectively (Additional file 2: Figures S5-S8, Tables S1-
S4). For example, if markers are assumed to be diagnostic
but actually have frequencies of 0.8 in a parental popu-
lation, then we would estimate that most pure parental
individuals have ancestry Ŝ = 0.8 and are heterozygous for
foreign alleles with probability ĤI = 2(0.8)(0.2) = 0.32.
In contrast, if allele frequencies are assumed to be more
intermediate than they truly are in parental lineages (e.g.,
if parental allele frequencies are estimated from intro-
gressed populations), then estimates will tend to be more
extreme than the true values. This situation might result
in population samples appearing to have excess F1 hybrids
(high HI ) and/or parental-like genotypes (high or low S).
When an equal number of parental allele frequencies

were over- and under-estimated, estimates of S were very
accurate, but estimates of HI had increased variance and
were slightly biased toward extreme values (Additional
file 2: Figure S9, Table S5). Adding two known diagnos-
tic loci to the set made negligible difference. Presumably
a Bayesian method that could account for uncertainty in
parental allele frequencies would ameliorate the slight bias

in ĤI and take better advantage ofmarkers where the qual-
ity of information is better. Nevertheless, the simple like-
lihood approach used here is pretty robust to small errors
in the assumed parental allele frequencies, especially if the
errors are unbiased.

Examples
Introduced x native hybrid swarm in tiger salamanders
The distributions of individual estimates of ancestry and
interclass heterozygosity from the tiger salamander data
are illustrated in Figure 4. Populations vary considerably
in their joint distributions of S and HI . The patterns for
Bluestone, PondH, and Sycamore are consistent with gene
flow between populations differing in allele frequencies
(Figure 4).Melindy is surrounded by predominantly native
populations. Toro is relatively isolated and resembles the
simulations of neutral admixture with little immigration
(Figure 2). For all except Toro, there seems to be a high
concentration of estimates near the maximum possibleHI
given S (the legs of the triangle), which is consistent with
the earlier observation of hybrid vigor in this system [14].
For these diagnostic markers, MLE’s found via MCMC
agreed perfectly with the closed form MLE’s (Figure 4f ).
Only a small fraction of the sampled tiger salamanders

would be classified into one of the six standard genotype
frequency classes using the stringent criteria of (i) the best
fit of the six had to differ from the others by at least two
log-likelihood units, and (ii) the best fit of the six had to
have lower AIC than the continuous model MLE. By these
criteria, 21 of the 255 larvae would be classified as F2-
like (p11 = 0.25, p12 = 0.5, p22 = 0.25) and one as like a
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backcross to California Salamander (p11 = 0.5, p12 = 0.5,
p22 = 0.0). As expected, no larvae would be classified as
F1 hybrids or “pure” parental genotypes. In this case, the
low level of classification is entirely due to criterion (ii); in
233 of 255 cases, theMLEwas a significantly better fit than
the best fit of the six classes. Three examples of the very
sharply peaked likelihood surfaces typical for this dataset
are illustrated in Figure 7.
Thus, with sufficiently high-resolution data, this kind

of analysis can show that admixture has been ongoing
for more than two generations and the simple hybrid
classification scheme of F1, F2, and backcross is clearly
inadequate to describe the distribution of genotypes in the
wild. Even for Toro Pond, where 14/52 would be classified
as F2, the joint distribution of S andHI is inconsistent with
two generations of admixture because random mating is
expected to produce the full array of parental, F1, F2, and
backcross genotypes in a population (Figure 2).

A natural hybrid zone in Ensatina
My analysis corroborates the inference that the dis-
tribution of genotypes in the Ensatina hybrid zone is
unusual, but cautions against making strong inferences
about hybrid classes based on so few markers. My MLE
estimates of the ancestry index S are virtually identical
to the Q-values estimated by STRUCTURE (Figure 8a,b);
this is not surprising, as both are based on the clusters
inferred by STRUCTURE. Using the same strict crite-
ria as above, my likelihood analysis would classify 112 of
their 115 putative E. e. eschscholtzii as such and 172 of
their 174 putative E. e. klauberi as such. My criteria would
support F1-like classification for 17 of their 22 putative
F1 hybrids. However, even these classifications should be
viewed with suspicion in light of the small number of loci
used. The remaining 34 salamanders could not be classi-
fied as any of the six standard classes. In two cases this
was because the MLE was superior to the best classifi-
cation, but the other 32 genotypes were consistent with
more than one class. Because of the uncertainty in the
data from these individuals, we cannot confidently accept

nor reject the validity of the 2-generation classification vs.
later generation hybrids.
The likelihood surfaces fitted to the Ensatina data are

rather flat (Figure 8d-f ). All but three of the 46 putative
“hybrids” had maximum likelihood estimates of interclass
heterozygosity at the maximum possible value given their
MLE values of S (Figure 8c). Intuitively, this distribution
of genotypes seems consistent with a narrow hybrid zone
structured by ongoing immigration of homozygous E. e.
eschscholtzii and E. e. klauberi genotypes (corroborated by
other analyses in [52] and [62]). Even so, the extreme con-
centration of estimates at the edges of the sample space
might not hold up with the inclusion of more than three
markers (see below), or if there is substantial inaccuracy
in the estimates of parental allele frequencies. For exam-
ple the effective sample size for either parental lineage
might be small ormany generations of introgressionmight
have made the contemporary populations more similar
than the true ancestral lineages. It is important to note
that the key conclusions about differential introgression of
mtDNA across a narrow hybrid zone [52] are not affected
by the validity of the hybrid classification in this case.

Sampling and false classification
When the continuous MLE was compared against classi-
fication (using the 2x log-likelihood or AIC criteria), false
classification was most common when about 10 markers
were subsampled from the tiger salamander data. False
classification dropped off for smaller numbers of markers
because there was low power to discriminate alternative
classes, and dropped off at larger numbers because the
increased resolution allowed all six of the classes to be
rejected in favor of the MLE (Figure 9). As expected, if
only the first criterion was used (i.e., we assume the six
standard classes comprise an exhaustive set of possibilities
and ignore theMLE), the false classification rate increased
monotonically as the number of markers made it easier to
reject all five alternatives in favor of the single best-fit class
(Figure 9). These analyses show how an investigator’s prior
belief in the six category system can affect inference. This
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Figure 7 Example likelihood surfaces for individual tiger salamander hybrids. Joint maximum likelihood surfaces for three hybrid tiger
salamanders from Bluestone Pond (Figure 3A). (A) and (B) are the individuals with the lowest and highest estimated interclass heterozygosity,
respectively. (C) is a random draw from the few individuals classified as “F2-like” because the MLE is consistent with S = HI = 0.5. Each level of
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Figure 8 Estimates of ancestry and heterozygosity in an Ensatina hybrid zone. Joint maximum likelihood estimates of S and HI largely
corroborate the inferences of Devitt et al. [52] for the Ensatina hybrid zone. The MLE ancestry index S agrees with the Bayesian Q-value from
STRUCTURE (A and B). Here S is the proportion of alleles derived from E. e. klauberi. (C) The distribution of individual estimates is concentrated at
S = 0 and S = 1 (putatively un-admixed individuals). The points labelled “d”, “e”, and “f” correspond to the likelihood surfaces illustrated in (D), (E),
and (F). There are 20 coincident points at the top vertex (“d”), 17 of which were “confidently” assigned as F1-like. The point estimate for (e) is almost
perfect for an F2-like genotype class (S = HI = 0.5), but it cannot be statistically distinguished from a klauberi backcross. Simple classification was
rejected for (F) because the continuous model MLE had the lowest AIC.

study adds yet another cautionary note that it takes rather
large numbers of ancestry-informative markers to ensure
against false inferences about discrete hybrid classification
[21,22,24].
False classification in subsamples of the tiger sala-

mander data was largely attributed to the difficulty of
distinguishing F2 and backcross categories from later
generation hybrids. Misclassification of later generation
hybrids from these populations as parental or F1 was a
problem only for small numbers of markers (Figure 9c
and d). In Bluestone, with its more dispersed distribution
of S and HI (Figure 3), a substantial fraction of hybrids
could be mistaken for parentals when 10 or fewer mark-
ers were used. The tighter distribution of genotypes in
Toro Pond made this less of a problem, but a fraction of
the Toro Pond animals were consistently classified as F2.
Both ponds showed means of ca. 10% F1 misclassification
when three markers were used, slightly below the 12.5%
that would be expected for a population of F2’s or back-
crosses, and substantially below the 37% putative F1’s in
the Ensatina dataset .

Conclusions
Hybrids are generally conceived as the genetically mixed
descendants of two or more distinct ancestral populations
[63]. The mixed genomes of hybrids can be character-
ized in terms of ancestry (S, the fraction of alleles derived
from each ancestral group), and interclass heterozygosity
(HI , the fraction of loci heterozygous for alleles from each

ancestral group). Heretofore, interclass heterozygosity has
been used only rarely in analyses of hybridization in the
wild, but to great effect [14,27,36,64]. I present an effective
method for jointly estimating S and HI . The joint likeli-
hood is efficiently expressed in terms of Turelli and Orr’s
[33] genomic proportions given information on ances-
tral allele frequencies. A future improvement would be
to jointly estimate ancestral allele frequencies along with
individual ancestries and heterozygosities for a sample.
This might be achieved in a Bayesian MCMC framework
[19,41].
Joint consideration of S and HI provides considerably

more biological insight than a single ancestry index or
classification of hybrids into the limited categories gener-
ated in the first two generations of admixture [14,29,32].
My analysis illustrates how reliance on the simple clas-
sification scheme (parental, F1, F2, backcross) can be
misleading. Classification is appropriate only for study
systems in the first two generations of admixture. Even
with modest numbers of markers, false acceptance of
discrete hybrid classes is likely. More stringent criteria
for accepting a classification might be used, but in all
cases investigators should carefully consider whether clas-
sification of individuals into discrete categories is both
realistic and of interest given their research questions.
With large numbers of markers (such as the tiger sala-
mander example), the validity of discrete classification
can be evaluated and rejected for populations with over
two generations of admixture. This might be of biological
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Figure 9 False classification rates. False classification rate for subsamples of markers for the Bluestone Pond (a) and Toro Pond (b) tiger salamander
data peaked at 10 markers when the typical six category system (limited to parental, F1, F2, and backcross genotypes) could be rejected by the MLE
of S and HI . Shaded symbols show results for classification based on 2 log-likelihood units; black symbols show results for the AIC criterion. However,
with a priori limitation to the six categories (open symbols), large numbers of markers invariably lead to a single confident classification for all
individuals in the dataset. Points illustrate medians and bars the 0.25 to 0.75 interquartile range (covering 50% of the subsampled data sets for each
number of markers). False classification rates specifically for F1 and parental categories (c and d) decline with the number of markers.

interest in some cases. In other cases, investigators might
be more interested in the MLEs of S and HI than in
the likelihood that an individual is truly an F2 hybrid
[22].
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Additional file 1: Simulations with gene flow. R code for simulating
neutral admixture.
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illustrating effects of linkage and inaccuracy of parental allele frequencies
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