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Abstract

Background: The establishment of the nuclear membrane resulted in the physical separation of transcription and
translation, and presented early eukaryotes with a formidable challenge: how to shuttle RNA from the nucleus to
the locus of protein synthesis. In prokaryotes, mRNA is translated as it is being synthesized, whereas in eukaryotes
mRNA is synthesized and processed in the nucleus, and it is then exported to the cytoplasm. In metazoa and
fungi, the different RNA species are exported from the nucleus by specialized pathways. For example, tRNA is
exported by exportin-t in a RanGTP-dependent fashion. By contrast, mRNAs are associated to ribonucleoproteins
(RNPs) and exported by an essential shuttling complex (TAP-p15 in human, Mex67-mtr2 in yeast) that transports
them through the nuclear pore. The different RNA export pathways appear to be well conserved among members
of Opisthokonta, the eukaryotic supergroup that includes Fungi and Metazoa. However, it is not known whether
RNA export in the other eukaryotic supergroups follows the same export routes as in opisthokonts.

Methods: Our objective was to reconstruct the evolutionary history of the different RNA export pathways across
eukaryotes. To do so, we screened an array of eukaryotic genomes for the presence of homologs of the proteins
involved in RNA export in Metazoa and Fungi, using human and yeast proteins as queries.

Results: Our genomic comparisons indicate that the basic components of the RanGTP-dependent RNA pathways
are conserved across eukaryotes, and thus we infer that these are traceable to the last eukaryotic common
ancestor (LECA). On the other hand, several of the proteins involved in RanGTP-independent mRNA export
pathways are less conserved, which would suggest that they represent innovations that appeared later in the
evolution of eukaryotes.

Conclusions: Our analyses suggest that the LECA possessed the basic components of the different RNA export
mechanisms found today in opisthokonts, and that these mechanisms became more specialized throughout
eukaryotic evolution.

Background
Protein synthesis in all living cells involves the transcrip-
tion of DNA into messenger RNA (mRNA) and its subse-
quent translation into polypeptides. In prokaryotes,
transcription and translation are physically and tempo-
rally linked, and each mRNA molecule is translated by
the ribosomes as it is transcribed. By contrast, in eukar-
yotes transcription and mRNA processing are physically
and temporally separated from translation by the nuclear

membrane. This separation is hypothesized to have been
a major factor in the emergence of the nuclear mem-
brane [1]. As a result of the establishment of the nuclear
membrane, the different RNA species involved in protein
synthesis such as mRNAs, ribosomal RNAs (rRNAs), and
transfer RNAs (tRNAs), need to be shuttled from the
nucleus to the cytoplasm. The general model of RNA
export involves exportins as transport receptors that
carry RNA through the nuclear pore complex (NPC) in a
RanGTP-dependent manner [2]. In Metazoa and Fungi,
the nuclear export of most RNA species, such as micro-
RNAs (miRNAs), rRNAs, small nuclear RNAs (snRNAs),
and tRNAs, has been shown to follow the RanGTP-
exportin model of transport, and specific exportins are
involved with the different export pathways. However,
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nuclear export of most mRNAs does not follow the
RanGTP-exportin pathway [3-5]. The mRNA export
machinery is highly integrated with mRNA processing,
and it includes a different set of nuclear transport adap-
tors plus other mRNA binding proteins, RNA helicases,
and NPC associated proteins [4-6].
It is not known whether the proteins involved in the

different RNA export pathways are conserved among
the different eukaryotic supergroups, and which compo-
nents of the nucleocytoplasmic export of RNA are trace-
able to the last eukaryotic common ancestor (LECA).
The goal of this study was to explore the evolutionary
history of the different RNA export pathways across a
diverse array of eukaryotes, with special emphasis on
members of the supergroups Excavata and Chromalveo-
lata, in order to identify lineage-specific innovations and
make inferences regarding RNA export evolution. To do
so, we screened the genome of 65 species of eukaryotes
to explore the presence of homologs of proteins
involved in RNA export in Metazoa and Fungi. Results
from our bioinformatic comparisons suggest that the
basic components of the RanGTP-dependent RNA path-
ways are conserved across eukaryotes, whereas proteins
involved in RanGTP-independent mRNA export are less
conserved.

Methods
Data Sources
We identified sixty four proteins from baker’s yeast
(S. cerevisiae) experimentally shown to be involved in
RNA export and their putative human orthologs from
Ensembl (release 54), plus PHAX, a human protein
involved in RNA export that apparently lacks a yeast
ortholog. For simplicity, proteins have been named
according to their human ortholog when present, the
full list of proteins used is provided in Table S1 (Addi-
tional File 1). Using all the proteins previously identified
to seed bionformatic searches, we interrogated the gen-
omes of 65 eukaryotic species to identify their putative
homologs. Our initial set of species included representa-
tives of five of the different eukaryotic supergroups
(Opisthokonta, Amoebozoa, Chromalveolata, Plantae,
and Excavata). The genomes of most species were
downloaded from the NCBI Reference Sequence
(RefSeq) collection except where noted (see Table 1).
The initial set included 2 or more representatives of the
genera Caenorhabditis, Entamoeba, Cryptosporidium,
Leishmania, Plasmodium, and Trypanosoma which pro-
vided taxonomic redundancy and served as consistency
controls for our protocols.

Bioinformatic searches
Bioinformatic searches were locally performed using the
BLASTP, PSI-BLAST and TBLASTN algorithms [7],

part of the NCBI C++ toolkit [8]. In the case of
BLASTP, we compared results obtained under three dif-
ferent matrices (BLOSUM62, BLOSUM45 and PAM250)
and in the case of PSI-BLAST we compared the results
obtained for 2, 3 and 5 iterations. There were no major
differences between the different search strategies imple-
mented. Thus, we report results for BLASTP with the
BLOSUM62 matrix in the manuscript. All results,
including Reciprocal Best Hit (RBH), also evaluated
using BLASTP with the BLOSUM62 matrix, are pre-
sented on Tables S2 and S3 (Additional File 1). Results
were then ranked into 5 categories (1-5; with 1 being
the most conserved) as described below. Hits with
E-values better than 10-5 were classified according to
the following criteria: category 1 [strong similarity], a
candidate homolog sequence (CHS) of similar length to
the query protein sequence (QS), showing a similarity of
60% or greater, and having a match that covers at least
80% of the QS; category 2 [similar], a CHS of similar
length to the QS, similarity higher than 50%, and cover-
ing at least 60% of QS; category 3 [weak similarity], a
CHS of similar length to QS, with similarity higher than
40%, and covering at least 45% of QS; category 4 [partial
similarity], a CHS having 30% similarity or greater, and
covering at least 30% of QS; and category 5 [very weak
similarity], a CHS with E-value better than 10-5 that did
not match any of the criteria above; candidates with
E-value worse than 10-5 were not classified (NC). In
cases where human and yeast orthologs were present,
results from the two queries were assessed together to
ensure consistency. Proteins in categories 1 and 2 were
considered as strong homology candidates to the query
sequences, proteins in category 3 were considered as
potential homologs of the query sequences, proteins in
categories 4 and 5 were considered as showing some
local homologies due to sharing conserved domains.
Exemplary alignments for each category are provided in
Additional File 2. TBLASTN only improved results by
uncovering category 5 CHS in cases where no CHS had
been identified, and the results are presented in Table
S3 (Additional File 1) but are not discussed further. It is
important to note that a negative result does not prove
the absence of a particular protein homolog, it is just an
indication that our protocols, based on sequence simi-
larity, were not able to identify a homolog candidate.

Reconstruction of RNA export pathways in LECA
Our reconstruction of the different RNA export pathways
in the LECA was based on a tree adapted from four
recent reports that group the six eukaryotic supergroups
into three separate megagroups [9-12]. The first mega-
group includes Opisthokonta and Amoebozoa, the sec-
ond one includes Chromalveolata, Plantae, and Rhizaria,
and the third one corresponds to Excavata (Figure 1).
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Table 1 List of species included in this study

Species Code Lineage Supergroup Data Source

Homo sapiens Hsa Metazoa Opisthokonta NCBI RefSeq

Mus musculusa Mmu Metazoa Opisthokonta NCBI RefSeq

Rattus norvegicusa Rno Metazoa Opisthokonta NCBI RefSeq

Gallus gallusa Gga Metazoa Opisthokonta NCBI RefSeq

Xenopus tropicalisa Xtr Metazoa Opisthokonta NCBI RefSeq

Danio rerioa Dre Metazoa Opisthokonta NCBI RefSeq

Takifugu rubripes Fru Metazoa Opisthokonta Fugu Genome Project

Ciona intestinalis Cin Metazoa Opisthokonta NCBI RefSeq

Anopheles gambiaea Aga Metazoa Opisthokonta NCBI RefSeq

Drosophila melanogaster Dme Metazoa Opisthokonta NCBI RefSeq

Apis melliferaa Ame Metazoa Opisthokonta NCBI RefSeq

Caenorhabditis briggsae a Cbr Metazoa Opisthokonta NCBI RefSeq

Caenorhabditis elegans Cel Metazoa Opisthokonta NCBI RefSeq

Monosiga brevicollis Mbr Choanoflagellate Opisthokonta NCBI RefSeq

Saccharomyces cerevisiaea Sce Fungi Opisthokonta NCBI RefSeq

Candida glabrata Cgl Fungi Opisthokonta NCBI RefSeq

Ashbya gossypiia Ago Fungi Opisthokonta NCBI RefSeq

Kluyveromyces lactis Kla Fungi Opisthokonta NCBI RefSeq

Debaryomyces hansenii Dha Fungi Opisthokonta NCBI RefSeq

Yarrowia lipolytica Yli Fungi Opisthokonta NCBI RefSeq

Magnaporthe oryzaea Mor Fungi Opisthokonta NCBI RefSeq

Neurospora crassaa Ncr Fungi Opisthokonta NCBI RefSeq

Fusarium oxysporuma Fox Fungi Opisthokonta NCBI RefSeq

Aspergillus fumigatus Afu Fungi Opisthokonta NCBI RefSeq

Schizosaccharomyces pombe Spo Fungi Opisthokonta NCBI RefSeq

Cryptococcus neoformans Cne Fungi Opisthokonta NCBI RefSeq

Ustilago maydisa Uma Fungi Opisthokonta NCBI RefSeq

Encephalitozoon cuniculi Ecu Fungi Opisthokonta NCBI RefSeq

Dictyostelium discoideum Ddi Mycetozoa Amoebozoa NCBI RefSeq

Entamoeba dispar a Edi Archamoebae Amoebozoa NCBI RefSeq

Entamoeba histolytica Ehi Archamoebae Amoebozoa NCBI RefSeq

Arabidopsis thaliana Ath Streptophyta Plantae NCBI RefSeq

Oryza sativa Osa Streptophyta Plantae NCBI RefSeq

Populus trichocarpa Pop Streptophyta Plantae NCBI RefSeq

Physcomitrella patens Ppa Streptophyta Plantae NCBI RefSeq

Chlamydomonas reinhardtii Cre Chlorophyta Plantae NCBI RefSeq

Volvox carteri Vca Chlorophyta Plantae NCBI RefSeq

Ostreococcus lucimarinusa Olu Chlorophyta Plantae NCBI RefSeq

Cyanidioschyzon merolae Cme Rhodophyta Plantae U. of Tokyo

Guillardia thetab Gth Cryptophyta Chromalveolata NCBI RefSeq

Bigelowiella natansb Bna Cercozoa Rhizaria NCBI RefSeq

Emiliania huxleyic Ehu Haptophyta ? Joint Genome Institute

Theileria parva Tpa Alveolata Chromalveolata NCBI RefSeq

Plasmodium berghei a Pbe Alveolata Chromalveolata NCBI RefSeq

Plasmodium falciparum Pfa Alveolata Chromalveolata NCBI RefSeq

Plasmodium knowlesi a Pkn Alveolata Chromalveolata NCBI RefSeq

Plasmodium vivax a Pvi Alveolata Chromalveolata NCBI RefSeq

Plasmodium yoelii a Pyo Alveolata Chromalveolata NCBI RefSeq

Toxoplasma gondii Tgo Alveolata Chromalveolata ToxoDB

Cryptosporidium hominis a Cho Alveolata Chromalveolata NCBI RefSeq

Cryptosporidium parvum Cpa Alveolata Chromalveolata NCBI RefSeq
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Despite significant advances in our understanding of
eukaryotic phylogeny, no consensus has emerged regard-
ing the placement of the root of the eukaryotic tree (see
[12-14] for a discussion). To err on the side of caution,
we have based our inferences on an unrooted tree
(Figure 1), and set relatively stringent criteria in order to
reconstruct the different RNA export pathways in the
LECA. Proteins inferred as likely to be present in the
LECA had to have matches in categories 1 or 2 in mem-
bers of the three megagroups. For example, a protein
with strong homology matches in Opisthokonta or
Amoebozoa, strong homology matches in Chromalveo-
lata or Plantae, and strong homology matches in Excavata
would be considered as likely to have already been pre-
sent in the LECA. In turn, proteins with matches in the
top 3 categories in members of the three megagroups
were inferred as probably present in the LECA.
Three additional sets of proteins were included for

validation purposes. Firstly, we included members of the
SAGA transcription complex (Table S2 and S3, Addi-
tional File 1), which is specific of fungi lineages [15,16].
As an additional test, we included the proteins that make
the U5snRNP spliceosomal complex as reported by Col-
lins and Penny [17] and checked that our results were
consistent with those reported previously (Table S4,
Additional File 1). Finally, we compared our inferences
with those of two previous studies that focused on the
components of the NPC [18,19], and found that results
are similar for all overlapping proteins, suggesting
that the search protocols are comparable (Table S5,
Additional File 1). Importantly, our analysis broadened
the number of proteins analyzed and cover a much wider
portion of eukaryotic diversity.

Results and discussion
In this study, we examined conservation of the proteins
involved in RNA export across eukaryotes. The different
RNA export pathways can be divided into two different
groups. In opisthokonts, miRNAs, rRNAs, snRNAs, and
tRNAs are exported through RanGTP-dependent path-
ways (Figure 2), whereas mRNA export follows a
RanGTP-independent pathway (Figure 3). We examined
conservation of the proteins involved in the different
RNA export pathways across eukaryotes, with special
focus on distinguishing components that are traceable to
the LECA from those that derive from lineage-specific
innovations. To facilitate the discussion, the different
proteins were grouped according to the pathways they
are involved with. In the case of proteins that are
involved in more than one pathway, they were discussed
in the context where their role appears to be better
understood. Thus, results for the TAP-p15 heterodimer
are discussed in the context of mRNA export, although
TAP-p15 also plays a role in rRNA export. We present
results for the most representative proteins in Tables 2
and 3, and complete results for all species are available in
Tables S2 and S3 (Additional File 1).

Ran-GTP dependent RNA export (Table 2; and Tables S2
and S3 from Additional File 1)
Ran is a small, soluble GTPase present in both the
nucleus and cytoplasm of all eukaryotic cells that plays
a critical role in RNA export. Exportins, the nuclear
export transport receptors, bind nuclear cargo together
with RanGTP in the nucleus to form a ternary complex
(RNA-exportin-RanGTP) that is translocated to the
cytoplasm, where the complex subsequently dissociates

Table 1 List of species included in this study (Continued)

Paramecium tetraurelia Pte Alveolata Chromalveolata NCBI RefSeq

Tetrahymena thermophila Tth Alveolata Chromalveolata NCBI RefSeq

Phaeodactylum tricornutum Ptr Stramenopila Chromalveolata NCBI RefSeq

Thalassiosira pseudonana Tps Stramenopila Chromalveolata NCBI RefSeq

Phytophthora infestans Pin Stramenopila Chromalveolata NCBI RefSeq

Leishmania braziliensis a Lbr Kinetoplastida Excavata NCBI RefSeq

Leishmania infantum a Lin Kinetoplastida Excavata NCBI RefSeq

Leishmania major Lma Kinetoplastida Excavata NCBI RefSeq

Trypanosoma brucei Tbr Kinetoplastida Excavata NCBI RefSeq

Trypanosoma cruzi a Tcr Kinetoplastida Excavata NCBI RefSeq

Trypanosoma vivax a Tvi Kinetoplastida Excavata GeneDB

Naegleria gruberi Ngr Heterolobosea Excavata NCBI RefSeq

Giardia lamblia Gla Diplomonadida Excavata NCBI RefSeq

Trichomonas vaginalis Tva Parabasalia Excavata NCBI RefSeq
a Results for these species are available in the Supplementary Online Material.
b The nucleomorph genomes of these species were included in the searches. Despite the phylogenetic position of the hosts, they were members of placed close
to Plantae in the tables because of the algal origin of the nucleomorphs.
c The phylogenetic position of Emiliana is still unclear (see [11,12]).
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Figure 1 Phylogenetic relationships among the species included in our study, based on results from four recent studies that group
the six supergroups into three different megagroups [9-12]. Relationships within Fungi follow Fitzpatrick et al. [73]. The genomes of the
nucleomorphs of Guillardia theta and Bigelowiella natans were included in the bioinformatic searches but not in tree because its phylogenetic
position does not match the position of the host. The different eukaryotic supergroups are highlighted. The phylogenetic position of Emiliana is
still unclear (see [11,12]), and thus, it was left in black.
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Figure 3 Schematic representation of the mRNA export pathway in yeast (see [4]for a full description). mRNAs associate with protein
factors into messenger RNPs (mRNPs) which are then exported through the NPC by the TAP/p15 heterodimer (Mex67/Mtr2 in yeast), that
functions as a general mRNA export receptor. TAP/p15 operates in association with TREX (Transcription/Export), a complex that connects
transcription with mRNA export and the THO complex. In yeast there is a an additional complex named TREX-2, that is also capable of
mediating the nuclear export of mRNPs. Each box represents a human/yeast protein and the absence of human predicted orthologs, is
represented by “X”. Proteins are colored according to the stage in which they act and lines represent interactions between the complexes. TREX:
transcription-coupled to export complex. Pol II: RNA Polymerase II.

Figure 2 Schematic representation of the RanGTP-dependent RNA export pathways in yeast (see [4]for a full description). Nuclear
export of miRNA, rRNA, snRNA, and tRNA has been shown to follow the RanGTP-dependent exportin model. The nuclear export receptors,
exportins, bind nuclear cargo together with RanGTP in the nucleus to form a ternary complex (RNA-exportin-RanGTP) that is translocated to the
cytoplasm. The complex dissociates in the cytoplasm upon hydrolysis of RanGTP to release the cargo molecule. Different exportins are
preferentially involved with the different RNA export pathways. Exportin t (XPOt) is involved with tRNA export, Exportin 5 (XPO5) in miRNA
export whereas Exportin 1 (XPO1) is in charge of snRNA and rRNA export, as shown in the corresponding box. In the case of snRNA and rRNA
export, additional adaptors are needed. After GTP hydrolysis in the cytoplasm, the import receptor, NTF2, carries RanGDP into the nucleus, where
nucleotide exchange occurs by RCC1 to generate RanGTP.
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Table 2 Bioinformatic results for proteins involved in the RanGTP-dependent RNA export pathways
Opisthokonta Amo Plantae Chromalveolata Excavata

Queries Hsa Cin Dme Cel Mbr Cgl Afu Spo Cne Ecu Ddi Ehi Ath Osa Pop Ppa Cre Vca Cme Ehu Tpa Pfa Tgo Cpa Pte Tth Ptr Tps Pin Lma Tbr Ngr Gla Tva

Hsa_RAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sce_Gsp1p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Hsa_Ranbp1 1 2 4 4 2 2 2 2 2 2 2 2 1 1 1 2 4 2 4 2 4 4 2 2 2 2 2 2 1 3 2 2 2 2

Sce_Yrb1p 2 2 4 4 2 1 1 1 2 2 2 2 2 2 2 2 4 2 4 2 4 4 1 2 2 2 2 2 2 3 2 2 3 2

Hsa_RCC1 1 1 4 4 4 3 3 3 3 3 4 4 3 3 2 3 3 4 2 4 4 3 4 4 4 4 4 3 2 4 4 4 NC 4

Sce_Srm1p 3 3 3 3 3 1 1 2 2 3 3 NC 3 3 3 3 3 3 4 3 4 4 4 4 3 4 4 3 3 4 4 3 NC 4

Hsa_RANGAP 1 1 2 4 3 4 3 4 4 4 3 NC 3 3 3 3 4 4 3 4 NC NC NC NC 4 4 3 4 4 3 4 3 4 3

Sce_Rna1 4 4 4 4 4 1 1 1 2 3 4 NC 4 4 4 4 NC 3 NC 4 NC NC NC NC 3 3 NC NC 4 NC NC NC NC NC

Hsa_XPO5 1 3 2 5 3 3 3 3 5 5 3 NC 3 3 5 3 5 5 5 5 5 5 5 5 NC NC 5 5 3 5 5 3 NC 5

Sce_Msn5p 3 5 NC NC 3 1 3 3 NC NC 3 NC NC NC NC 4 NC NC NC NC NC NC NC NC NC NC NC NC 3 NC NC 4 NC NC

Exportins
Hsa_Xpot 1 1 4 3 3 2 3 2 3 NC 2 5 2 3 2 2 NC NC 3 4 NC 4 NC 5 NC NC 3 3 3 3 3 4 5 5

Sce_Los1p 3 3 NC 3 4 1 3 3 3 NC 3 5 3 4 3 3 NC NC NC NC NC NC NC 5 NC NC NC NC 3 5 4 4 NC NC

Hsa_XPO1 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 1 1 1 2 2 2 1 4 2 1 1 1 2 2 1 4 3

Sce_Crm1p 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 1 1 2 2 2 2 2 4 2 1 1 1 3 2 1 4 3

Hsa_EEFIA 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sce_Tef2p 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Hsa_CBP20 1 1 1 1 4 4 2 1 2 2 4 2 4 4 4 2 1 4 1 4 4 4 4 4 1 4 2 2 4 1 2 4 NC 1

Sce_Cbc2p 3 3 3 2 5 1 2 2 3 3 3 3 2 2 2 4 3 4 4 2 2 3 4 3 3 3 4 4 4 2 1 4 NC 2

Hsa_CBP80 1 1 1 2 NC 3 3 3 3 NC 2 NC 2 2 2 2 4 4 4 3 NC NC 4 NC 3 NC NC NC 3 NC NC 3 NC NC

Sce_Sto1p 4 5 3 3 NC 1 3 4 3 NC 4 NC 4 4 4 4 5 5 5 NC NC NC NC NC NC NC NC NC 4 NC NC NC NC NC

Hsa_PHAX 1 3 2 4 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC 5 5 NC 5 5 NC NC NC NC 5 NC NC NC NC NC

Sce-no ortholog

Hsa_NMD3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 4 1 1 1 2 4 4 1 1 1 1 1 1 1 1 1 2 2

Sce_Nmd3p 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 4 1 1 1 2 4 4 1 1 1 1 1 1 1 1 1 2 2

Hsa_ZNF622 1 1 2 3 2 3 2 2 2 NC 2 2 2 3 2 2 4 3 3 4 4 3 4 4 4 2 3 3 2 3 4 NC 3 4

Sce_Rei1p 3 2 2 2 2 1 3 2 2 NC 2 3 2 2 3 2 3 4 3 4 3 5 5 3 3 2 2 4 2 3 3 NC 2 3

Hsa-no ortholog

Sce_Arx1p 4 4 4 4 4 1 4 3 NC NC 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 NC NC

Hsa-no ortholog

Sce_Alb1p NC NC NC NC NC 1 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Results were ranked into 5 categories (1-5; with 1 being the most conserved). NC (Not Classified). We present results for a representative subset of species in here, and full results are presented in Table S2
(Additional File 1)
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Table 3 Bioinformatic results for proteins involved the RanGTP-independent mRNA export pathway
Opisthokonta Amo Plantae Chromalveolata Excavata

Queries Hsa Cin Dme Cel Mbr Cgl Afu Spo Cne Ecu Ddi Ehi Ath Osa Pop Ppa Cre Vca Cme Ehu Tpa Pfa Tgo Cpa Pte Tth Ptr Tps Pin Lma Tbr Ngr Gla Tva

Hsa_CETN3 1 1 4 1 1 1 4 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sce_Cdc31p 1 1 4 1 1 1 4 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Hsa_MCM3AP 1 3 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 NC NC 5 5 5 5 5 5 5 NC NC 5 NC 5

Sce_Sac3p 4 5 5 5 5 1 5 4 5 5 5 NC 5 5 5 5 5 5 5 5 NC NC NC NC NC NC 5 5 5 NC NC 4 NC 5

Hsa-no ortholog

Sce_Thp1p 4 4 3 3 3 1 NC 3 NC NC 3 NC 3 4 NC 4 NC NC 3 NC NC NC NC NC 3 NC 4 4 4 NC NC 4 NC NC

Hsa-no ortholog

Sce_Sus1p 2 1 2 NC 2 NC NC 2 2 NC 2 NC NC NC 2 2 3 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Hsa_THOC2 1 1 1 2 4 3 4 2 4 NC 4 5 2 2 2 2 NC 4 5 4 4 5 4 NC 3 3 3 3 2 NC NC 3 NC NC

Sce_Rlr1p 3 3 3 3 4 1 4 3 3 NC 4 5 3 3 4 3 NC 4 NC NC NC 5 NC NC 4 4 4 4 4 NC NC 4 NC 4

Hsa-no ortholog

Sce_Tho1p NC NC NC NC NC 2 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC 5 NC NC NC NC NC NC

Hsa-no ortholog

Sce_Hpr1p NC NC NC NC NC 2 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Hsa-no ortholog

Sce_Mft1p NC NC NC NC NC 2 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Hsa-no ortholog

Sce_Thp2p NC NC NC NC NC 1 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Hsa_UAP56 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1

Sce_Sub2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1

TREX
Hsa-no ortholog

Sce_Yra1p NC NC 3 2 NC 1 3 3 2 NC NC 4 NC 4 2 2 NC NC NC NC NC NC NC NC NC NC NC NC 3 NC NC NC NC 4

Hsa_THOC3 1 1 1 2 2 3 2 2 4 3 4 3 1 1 1 1 2 2 4 1 3 4 4 4 2 2 2 4 2 3 4 4 3 3

Sce_Tex1p 3 5 3 3 3 1 NC 4 4 NC 3 5 3 3 3 3 4 NC 4 NC 3 NC NC NC 3 3 NC NC 3 NC NC NC NC 5

Hsa_TAP 1 2 2 2 3 3 2 2 3 NC 4 4 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC 3 NC NC

Sce_Mex67p 3 3 3 NC NC 1 2 3 3 NC 4 4 NC NC NC NC NC NC NC NC NC NC 5 5 NC NC NC NC NC 5 5 4 NC NC

Hsa_p15 1 2 1 2 NC 3 1 4 2 NC 3 3 2 3 2 3 NC NC 3 NC 3 NC NC 3 NC NC NC NC 3 2 2 3 NC 3

Sce_Mtr2p NC NC NC NC NC 1 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

Hsa_DDX19 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 2 1 1 2 1 1 2

Sce_Dbp5p 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 1 1 1 2 1 4 1 1 1 2 2 2 1 2 2 1 2 1

Hsa-no ortholog

Sce_Gle1p 4 3 3 NC NC 1 NC 2 3 NC NC NC NC 3 NC NC 5 NC 4 NC NC NC NC NC NC NC NC NC NC NC NC 4 NC NC

Hsa_RAE1 1 1 1 1 2 2 2 1 1 2 1 3 1 1 1 1 1 1 2 2 2 4 2 2 4 2 1 1 1 3 3 2 3 3

Sce_Gle2p 2 2 1 2 2 1 1 1 1 2 1 3 2 1 1 1 1 1 2 2 2 NC 2 1 4 2 1 1 1 3 2 2 3 2

Hsa_TPR 1 5 3 4 NC 4 3 5 5 NC 4 NC 3 5 3 5 NC 4 NC NC NC NC NC NC NC NC 3 3 3 NC NC 5 NC NC

Sce_Mlp1p 2 4 3 NC NC 1 2 3 NC NC NC NC 4 NC 4 NC NC NC NC NC NC NC NC NC NC NC 5 4 5 NC NC 5 NC NC

Hsa-no ortholog

Sce_Nab2p 4 NC NC NC NC 1 3 4 3 NC NC NC NC NC NC NC NC NC 3 NC NC NC 4 5 NC NC NC NC NC NC NC NC NC NC

Hsa_HNRNPM 1 3 4 4 4 4 4 4 4 4 4 NC 4 4 4 4 4 4 4 4 4 4 4 4 NC 4 4 4 4 4 4 4 NC 4

Sce_Gbp2p 4 2 4 4 3 2 3 3 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 2 4 4 4

Results were ranked into 5 categories (1-5; with 1 being the most conserved). NC (Not Classified). We present results for a representative subset of species in here, and full results are presented in Table S2
(Additional File 1)
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upon hydrolysis of RanGTP to release the cargo mole-
cule. Nuclear export of miRNA, rRNA, snRNA, and
tRNA has been shown to follow the RanGTP-exportin
model. Bioinformatic searches showed that Ran was well
conserved in all species included in this study, with a Ran
CHS in category 1 (see categories definition in the Meth-
ods section) in almost all genomes surveyed, and high
levels of sequence conservation. The Ran orthologs from
human and Trypanosoma brucei are 72.2% identical/79%
similar, whereas the S. cerevisae and T. brucei orthologs
are 70.51% identical/79% similar. The high conservation
scores and phyletic distribution of Ran CHS indicate that
the LECA was highly likely to have possessed an ortholog
of Ran, and extends previous work that included fewer
eukaryotic species in their analyses [18,19].
Ran Binding Protein 1 (RanBP1, Yrb1p in yeast),

another protein of the Ran cycle, had a high level of
conservation as well. RanBP1 stimulates RanGTP hydro-
lysis by RanGAP [20,21]. Because we found strong CHS
for RanBP1 in representatives of the three eukaryotic
megagroups (Table 2), it is likely that RanBP1 was pre-
sent in the LECA. Experimental evidence showing that
RanBP1 is involved in the Ran cycle in the Excavate
Leishmania major [22] would suggest its function has
been conserved throughout eukaryotic evolution.
RCC1 (Srm1 in yeast) and RanGAP (Rna1 in yeast)

are responsible for the establishment of a RanGTP-
RanGDP gradient across the nuclear envelope that
drives RanGTP dependent transport. These two proteins
were less conserved than either Ran or RanBP1 in our
searches (Table 2). RCC1 acts in the nucleus as the gua-
nine nucleotide exchange factor, and RanGAP acts in
the cytoplasm and regulates the GTPase activity of Ran.
We only found CHS for the human or yeast RCC1 and
RanGAP orthologs in categories 1 and 2 in opisthokonts
(Table 2). Because we found some CHS in category 3
for RCC1 and RanGAP among plants, chromalveolates,
and excavates, we infer that these two proteins were
probably present in the LECA (Table 2).
The proteins involved in the Ran cycle discussed

above play role in intracellular transport of proteins
and nucleic acids. Their strong conservation across all
species examined is in line with previous reports
[18-23]. Further, these results are consistent with the
predictions of the evolutionary scenario presented by
Jékely [24], where RanGTP-dependent transport is
strongly related to the origin of the nucleus. In addi-
tion to the proteins involved in the Ran cycle, other
export factors are required to provide specificity for
the different RNA export mechanisms. In the following
sections we discuss conservation for the proteins that
are specifically involved in the different RNA export
pathways.

MicroRNA and tRNA export pathways
MicroRNAs are short non-coding RNAs involved in the
regulation of gene expression in eukaryotic cells [25],
and tRNAs are non-coding RNAs that transfer specific
amino acids to a growing polypeptide chain. In the case
of miRNA and tRNA export, the exportins involved in
the export of miRNA precursors in human and yeast is
exportin-5 (XPO5, Msn5 in yeast), whereas XPOt (Los1
in yeast) is the one involved in tRNA export [26].
There were no conservation scores better than 3 for

yeast XPO5 other than its CHS in yeast (Table 2). Con-
versely, conservation scores outside members of Meta-
zoa were 3 or worse in searches involving human
XPO5. These results agree with previous studies that
had failed to find XPO5 homologs in members of Eugle-
nozoa and Apicomplexa [27,28]. Interestingly, several of
the species that lack XPO5 homologs, such as T. brucei
or Trichomonas vaginalis, posses a functional miRNA
machinery [29,30], suggesting that there are additional
pathways for the export of miRNA other than the one
used in humans. A simple explanation for the complex
phyletic distribution of XPO5 CHS is difficult to recon-
cile with current eukaryotic phylogenies. There are
known orthologs of XPO5 in Plantae, and Opisthokonta,
and there are CHS of score 3 in the three different
megagroups, which would suggest that an XPO5 ortho-
log was probably present in the LECA and would have
been secondarily lost in several lineages. Under alterna-
tive eukaryotic phylogenies [9-14] the presence of ortho-
logs in plants and opisthokonts would suggest that
XPO5 was probably present in the LECA, as previously
suggested [28].
In the case of XPOt, CHS for the yeast ortholog in

category 1 were only found in Fungi, whereas CHS for
the human ortholog in categories 1 and 2 were found
among members of Metazoa and Amoebozoa, respec-
tively (Table 2). In addition, we found CHS in category
3 or higher for the human XPOt ortholog in members
of Opisthokonta, Plantae, Chromalveolata and Excavata.
Although some of the CHS in Leishmania and Trypano-
soma (Excavata) and Plasmodium (Chromalveolata) are
not strongly conserved, phylogenies show that they are
true orthologs [28]. Orthologs of XPOt are involved in
tRNA export in yeast and plants, but they are not an
essential factor in some species. For example, nucleocy-
toplasmic export of tRNA is not fully blocked when the
XPOt gene is deleted in S. cerevisae, S. pombe and A.
thaliana [31-33]. Similar to XPO5, orthologs of XPOt
are present in most of the major eukaryotic supergroups
in this study, which would imply that the LECA was
likely to posses an ortholog of this gene.
XPO5 has also been postulated to play a minor role in

tRNA export for some organisms. In this case, XPO5
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mediates the tRNA transport in association to a riboso-
mal elongation factor named eEF1A, TEF2 in yeast
[34,35]. This ribosomal elongation factor is also highly
conserved, with CHS in category 1 for most species in
this study (Table 2), once again, suggesting that it was
likely present in the LECA.
Small nuclear RNAs export pathway
Small nuclear RNAs are a group of non-coding tran-
scripts involved in RNA splicing, transcription factor
regulation and telomere maintenance. The different
snRNAs are synthesized in the nucleus, assembled into
snRNPs in the cytoplasm and re-imported into the
nucleus. Export of snRNAs presents some departures
from the simpler model of exportin-RanGTP-cargo seen
in miRNAs and tRNAs. In this case the exportin does
not bind RNA directly, and additional adaptor proteins
are needed. Exportin-1 (XPO1, CRM1 in yeast) is the
transport receptor in charge of carrying snRNAs to the
cytoplasm, in association to CBP20 (CBC2 in yeast),
which binds to the snRNA; CBP80 (Sto1 in yeast),
which ensures high affinity binding; and PHAX, which
provides the nuclear export signal [36,37].
Our analyses indicate that XPO1 is the most con-

served exportin among the three included in our study
(Table 2). There were CHS for human and yeast ortho-
logs in categories 1 and 2 in most of eukaryotic lineages,
and sequence conservation was also high. The human
and T. brucei XPO1 orthologs were 32% identical/52%
similar. In the case of CBP20 we found CHS in cate-
gories 1 or 2 in all eukaryotic supergroups, whereas we
failed to find CHS of CBP80 in several species (Table 2).
By contrast, conservation scores for PHAX are either
low, or below our detection threshold for all eukaryotes
in this study other than members of Metazoa, in agree-
ment with a previous study [36]. These results indicate
that the LECA was likely to have XPO1 and CBP20
orthologs, but that PHAX appears to be a lineage-
specific innovation. The case for CBP80 is more
complex, there are some matches in category 3 in all
eukaryotic megagroups, but no CHS were identified in
several species. We infer that CBP80 could have been
present in the LECA, but that it was either lost or
diverged beyond our ability to detect it in several species.
rRNA export pathway
Ribosomes are made up of a combination of different
rRNAs and a large number of ribosomal proteins that
are organized into the large (60S) and small (40S) pre-
ribosomal subunits. In yeast, nuclear export of the pre-
ribosomal subunits depends on XPO1 and RanGTP
[38,39], and also involves additional proteins. In yeast,
the nuclear export of the pre-60S ribosomal subunit
requires the proteins Nmd3, Arx1 and the Mex67/Mtr2
heterodimer, but export of 40S is poorly understood
[40-42]. The role of Nmd3, Arx1 and the Mtr2/Mex67

has not been completely elucidated yet. On the one
hand, deletion of the Arx1 gene leads to pre-60S accu-
mulation in the nucleus [43]. On the other hand, a sub-
sequent study from the same group shows that in the
absence of Arx1, the addition of a nuclear export signal
to the pre-60S subunit would be enough to restore its
export [44], which suggests that the export of pre-60S is
relatively flexible.
XPO1 conservation scores have already been discussed

with the other snRNA export proteins. Results for the
two subunits of the general transport adapter, (TAP/p15
in human, Mex67/Mtr2 in yeast) are low (Table 3) and
will be discussed in the next section because of their
major role in mRNA export. The phyletic distribution of
XPO1, XPO5, and XPO5 suggests that these exportins
are involved with RNA export in all the different eukar-
yotic supergroups analyzed, and also indicate that each
of them is traceable to the LECA. We observed that
XPO1, which is mostly involved in rRNA export in
opisthokonts, is the most conserved one, while XPOt
and XPO5, involved in miRNA, tRNA, snRNA export,
are not as conserved. Even though orthologs of these
exportins are found among excavates and chromalveo-
lates, their role in these lineages is not fully understood.
The little functional data available suggest that their
roles are not entirely the same as in opisthokonts. For
example, XPO1 has been shown to be involved with
mRNA export in the parasites of the genus Trypano-
soma [45], but it is mostly involved with rRNA export
in opisthokonts. Based on the functional data and their
phyletic distribution, we speculate that there is some
level redundancy in the functional role of the different
exportins and propose that in the LECA, XPO1 could
have acted as the protein responsible for transport of
most of the RNAs through the NPC.
For the additional rRNA export proteins, our analyses

show that Nmd3 is well conserved in the vast majority
of species included in this study (Table 2), with 58%
similarity/38% identity in comparisons between human
and T. brucei orthologs. This would indicate that Nmd3
is highly likely to have been present in the LECA. By
contrast some of the additional adaptors, such as Arx1,
Alb1p, and PHAX have few matches in category 3, and
seem to be lineage specific innovations. Strong CHS for
Arx1 are only found among Fungi, strong CHS for
Alb1p are restricted to yeasts in the subphylum Sacchar-
omycotina, whereas strong CHS for PHAX are only
found among animals.
As in the case with the exportins, the phyletic distri-

bution of the transport adaptors discussed above sug-
gests that these proteins are involved with export of
tRNA, miRNAs, snRNAs and rRNAs in all the different
eukaryotic supergroups, and that they are traceable to
the LECA, such as Nmd3, which also appear to be
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conserved among the different eukaryotic supergroups.
The specific combination of exportins and adaptors var-
ies in a lineage-specific manner through a combination
of gene gains and losses. For example, XPO5 has been
secondarily lost in fruit fly, whereas XPOt has been sec-
ondarily lost in C. elegans. On the other hand, we also
found that Arx1, Alb1p and PHAX are restricted to dif-
ferent groups within Opisthokonta, suggesting that they
are innovations specific to this group. These results
would suggest that the specific export mechanism for
the different RNAs varies in a lineage-specific manner.

RanGTP-independent transport: mRNA export pathway
(Table 3; and Tables S2 and S3 from Additional File 1)
In Metazoa and Fungi, nucleocytoplasmic export of the
majority of the mRNAs does not follow the RanGTP-
dependent exportin pathway. From yeast to humans,
mRNAs associate with protein factors into messenger
RNPs (mRNPs) which are then exported through the
NPC by an essential shuttling heterodimer, TAP/p15 in
human and Mex67/Mtr2 in yeast, which functions as a
general mRNA export receptor to transport mRNPs
through the NPCs [46-48]. The dimeric export receptor
operates in association with TREX (Transcription/
Export), a multiprotein complex that connects transcrip-
tion with mRNA export [49,50]. Human TREX consists
of the RNA helicase UAP56 (Sub2 in yeast), the RNA-
binding adaptor protein Aly (Yra1 in yeast) and the
THO complex [51-53]. In yeast, an additional complex
named TREX-2, consisting of Thp1, Sac3, Sus1, and
Cdc31 is also capable of mediating the nuclear export of
mRNPs in concert with Mex67/Mtr2 [54-56].
Our analyses indicate that few of the proteins involved

in the mRNA export pathway are conserved across all
eukaryotes. This is perhaps not unexpected given the
differences in mRNA processing among eukaryotes. In
the case of the TAP or Mex67 subunit of the heterodi-
mer, conservation scores outside Fungi and Metazoa
were 4 or 5 with the exception of some Excavata mem-
bers. Whereas bioinformatic searches for the yeast Mtr2
subunit only identified strong CHS in fungi. This is not
a surprising result, as similarities between Mtr2 and its
human functional analog, p15, are restricted to three-
dimensional structure [57], which cannot be detected by
sequence similarity analyses. In the case of TREX, the
UAP56 subunit (Table 3) is well conserved across all
eukaryotes: we have strong CHS for the yeast ortholog
in all species in this study except for Emiliana huxleyi.
The Thoc3 subunit, Tex1 in yeast (Table 3), has good
CHS among opisthokonts and plants, and moderate can-
didates in Amebozoa, Chromalveolata, and Excavata. By
contrast, we could not identify CHS for the yeast Yra1
(Table 3) in several Chromalveolata and Excavata. A
similar situation is observed for the TREX-2 complex,

where only CETN3, CDC31 in yeast (Table 3), is well
conserved across all eukaryotes. CETN3 is a centrin
involved in the duplication and segregation of the cen-
trosome during cytokinesis that is also involved in
mRNA export in yeast [55]. However, evidence for a
role of CETN3 in mRNA export in some members of
Excavata is lacking, as it is only required for the initia-
tion of cytokinesis in Leishmania and T. brucei [58].
The cellular fate of the different mRNAs depends

mainly on the shuttle proteins TAP/p15, Yra1, Rae1 and
Gle1, DDX19, which are also required for proper transla-
tion [4,59]. Rae1 acts in delivering TAP to the NPC [60]
and DDX19 is responsible for triggering the mRNPs
remodeling at the NPC cytoplasmic-face scaffold, deliver-
ing the mRNA to the cytoplasm [61]. Both Rae1 and
DDX19 are well conserved, with CHS in categories 1 and
2 for all the supergroups. However, the adaptor protein
Gle1, that plays an important role in the control of
mRNA export in yeast [62], appears to be missing from
Amoebozoa, Plantae, Chromalveolata, and Excavata, sug-
gesting it is an innovation specific to Opisthokonta.
The proteins involved in the RanGTP-independent

export of mRNA are generally less conserved than those
involved in RanGTP-dependent export of all other RNA
species. Some of the major components of the mRNA
export pathway are conserved across the different eukar-
yotic supergroups examined. This is the case for UAP56,
DDX19, and Rae1. However, there are many proteins
that play essential roles in mRNA export in opisthokonts
that lack strong CHS outside this group, and appear to
represent opisthokont-specific innovations. This group
includes Mlp1, Mlp2, and the shuttling proteins TAP,
Yra1, Nab2, and Gbp2. These results suggest that mRNA
export in members of the other supergroups might follow
slightly different mechanisms. One possibility is that
mRNA export might also follow a RanGTP-dependent
pathway. Interestingly, the fact that in the excavate Try-
panosoma the XPO1 ortholog is involved in mRNA
export [45] is consistent with our inference. We speculate
that mRNA might have been exported by XPO1 in a
RanGTP-dependent manner early in eukaryote evolution,
and that it later followed more specialized pathways.

Conclusions
Results from our genomic comparisons indicate that sev-
eral of the key proteins involved in the different RanGTP-
dependent RNA export pathways are conserved across
most eukaryotic lineages, and thus we infer that orthologs
of them were highly likely to have been already present in
the LECA. Examples of these are the exportins XPO1 and
XPOt, Nmd3 and most of the proteins involved in the Ran
cycle. Despite the relatively strong level of conservation,
we also document how these export mechanisms vary in a
lineage-specific manner as a consequence of the
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differential gene gains and losses, as documented by the
secondary loss of XPOt in C. elegans, and the emergence
of Arx1 in Fungi and of PHAX in animals. In agreement
with inferences drawn from studies of components of the
cytoskeleton, endomembrane, NPC, and spliceosome
[17-19,62-67] a number of key RNA nucleocytoplasmic
transport factors can be traced to the LECA. This would
suggest that the different RanGTP-dependent RNA export
mechanisms were already present in the LECA.
By contrast, our analyses indicate that several of the

proteins involved in the RanGTP-independent export
pathway from opisthokonts are lineage-specific innova-
tions. The mRNA export pathway is the most complex
and the least conserved among those examined in this
study. We found CHS for few of the yeast proteins
involved in mRNA export in most eukaryotic lineages,
which suggests that mRNA export among them is differ-
ent from what is observed in yeast. We document the
acquisition of several lineage-specific innovations in the

mRNA export mechanisms of opisthokonts relative to
the other supergroups included in this study. It seems
plausible that the evolution of a RanGTP-independent
mRNA export pathway in opisthokonts might be related
to the observed differences in the regulation of gene
expression. In Amoebozoa, Chromalveolata and Exca-
vata, most regulation is post-transcriptional [68],
whereas in human and yeast the presence of both tran-
scriptional and post-transcriptional regulation is linked
to a more refined control of gene expression. One possi-
bility is that having an mRNA export pathway fully
separated from the other RNA export pathways
increases of the range possibilities of gene-specific con-
trol. This would be particularly important to allow both
coordination and versatility in gene expression control
[69,70], as well as to open additional opportunities to
connect active transcriptional sites to the NPC, allowing
a fine control of gene expression in yeast and human
[71,72]. Functional data regarding mRNA export in

Figure 4 Model proposed of the evolution of the different RNA export pathways throughout eukaryotic history. (A) Early in the history
of eukaryotes a single ancestral exportin similar to XPO1 was in charge of nucleocytoplasmic export of all RNAs in a RanGTP-dependent manner.
(B) Prior to the emergence of the LECA, different exportins originated and specialized in nucleocytoplasmic export of the different RNA species.
(C) In opisthokonts, a further innovation was the emergence of a RanGTP-independent pathway of mRNA export. This pathway relies on the
TAP-p15 heterodimer as the transport receptor instead of an exportin, and includes several other adaptors which are restricted to opisthokonts.
Each box represents a human/yeast protein.
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excavates and chromalveolates is still limited, and
despite the fact that some studies suggest if follows less
complex routes [45], the possibility that alternative spe-
cializations haven arisen in these groups cannot be
discarded.
Taken together, our analyses suggest that the LECA

possessed most of the basic components of the different
RanGTP-dependent RNA export mechanisms, which are
also well conserved among the different eukaryote
supergroups included in this study. In addition, we also
show that some of the major components of the
RanGTP-independent mRNA export pathways can also
be traced to the LECA, but that several of the proteins
that play key roles in opisthokonts derive from lineage-
specific innovations. It is likely that early in eukaryote
evolution a single generalized ancestral exportin was
probably responsible for nucleocytoplasmic transport of
all RNA species (Figure 4A). Prior to the emergence of
the LECA, orthologs of XPO1, XPO5, and XPOt would
have already emerged and specialized in transporting a
subset of the RNAs (Figure 4B). We speculate that in
the LECA mRNA might have been exported by XPO1
in RanGTP-dependent manner, as in excavates in the
genus Trypanosoma. The emergence of the RanGTP-
independent mRNA export pathway in opisthokonts
coincides with the origin of several lineage-specific inno-
vations, and might be related to refinements in the regu-
lation of gene expression in this supergroup (Figure 4C).
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