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Abstract

Background: From a common ancestor with animals, the earliest fungi inherited flagellated zoospores for dispersal
in water. Terrestrial fungi lost all flagellated stages and reproduce instead with nonmotile spores. Olpidium
virulentus (= Olpidium brassicae), a unicellular fungus parasitizing vascular plant root cells, seemed anomalous.
Although Olpidium produces zoospores, in previous phylogenetic studies it appeared nested among the terrestrial
fungi. Its position was based mainly on ribosomal gene sequences and was not strongly supported. Our goal in
this study was to use amino acid sequences from four genes to reconstruct the branching order of the early-
diverging fungi with particular emphasis on the position of Olpidium.

Results: We concatenated sequences from the Ef-2, RPB1, RPB2 and actin loci for maximum likelihood and Bayesian
analyses. In the resulting trees, Olpidium virulentus, O. bornovanus and non-flagellated terrestrial fungi formed a
strongly supported clade. Topology tests rejected monophyly of the Olpidium species with any other clades of
flagellated fungi. Placing Olpidium at the base of terrestrial fungi was also rejected. Within the terrestrial fungi,
Olpidium formed a monophyletic group with the taxa traditionally classified in the phylum Zygomycota. Within
Zygomycota, Mucoromycotina was robustly monophyletic. Although without bootstrap support,
Monoblepharidomycetes, a small class of zoosporic fungi, diverged from the basal node in Fungi. The zoosporic
phylum Blastocladiomycota appeared as the sister group to the terrestrial fungi plus Olpidium.

Conclusions: This study provides strong support for Olpidium as the closest living flagellated relative of the
terrestrial fungi. Appearing nested among hyphal fungi, Olpidium’s unicellular thallus may have been derived from
ancestral hyphae. Early in their evolution, terrestrial hyphal fungi may have reproduced with zoospores.

Background

Fungi in modern ecosystems are able to cause plant dis-
eases, serve as mycorrhizal partners to plants, or decom-
pose litter and woody debris using the tubular hyphae
(filaments of walled cells) that make up fungal bodies.
Hyphae use hydrostatic pressure to penetrate tough sub-
strates such as soil and plant tissue, secreting enzymes
across their chitinous cell walls to break down complex
organic compounds into simple, diffusible molecules
that are absorbed to nourish growth. An increasing
body of phylogenetic evidence indicates that fungi, ani-
mals, and protists, such as nucleariid amoebae and
Ichthyosporea, all share a close common ancestor [1-3].
This pattern implies that the original fungus-like
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organisms were not terrestrial and hyphal in their assim-
ilative phase but were instead aquatic, flagellated and
unicellular.

Fungi that have been classified in Zygomycota are
phylogenetically important because in most studies, they
appear as the first terrestrial fungi to have evolved from
flagellated, aquatic ancestors. However, their backbone
relationships remain largely unresolved. The lack of
decisive evidence for monophyly has led to alternative
classifications for Zygomycota [4]. Fungi once placed in
Zygomycota are sometimes distributed among the Glo-
meromycota, comprising the arbuscular mycorrhizal
fungi [5-7]; the Mucoromycotina; and “Zygomycota,
unresolved”, which includes animal or fungal symbionts
or pathogens in the subphyla Entomophthoromycotina,
Zoopagomycotina, and Kickxellomycotina. For conveni-
ence in the text, we will continue to apply “Zygomycota’
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to these terrestrial, non-flagellated fungi including Glo-
meromycota and Mucoromycotina.

In terms of evolutionary inference, some of the first
molecular phylogenies from ribosomal gene sequences
specified, probably incorrectly, that two clades of terres-
trial Zygomycota evolved convergently from flagellated,
aquatic ancestors. Early studies showed that the flagel-
lated Blastocladiomycota grouped with terrestrial Zygo-
mycota including Rhizopus, and the flagellated
Chytridiomycota grouped with the terrestrial Zygomy-
cota Basidiobolus [8-11]. This pattern was likely an arti-
fact of long-branch attraction and it is contradicted by
more recent analyses including more taxa or different
loci. More recently, a phylogeny of the amino acid
sequences of RPB1 showed Basidiobolus grouping with
other Zygomycota rather than with Chytridiomycota
[12]; Zygomycota appear monophyletic in analysis of
RPBI and RPB2 [13]; and Zygomycota are paraphyletic
in a multi-locus, phylogenomic study [14].

Against the background of recent support for a single
origin of nonflagellated terrestrial fungi (Zygomycota
plus Dikarya), James et al. [5,15] found yet another pos-
sible example of convergent loss of flagella. As the first
to include the zoospore-producing Olpidium virulentus
(= Olpidium brassicae) [16] in their analyses, James et
al. [5] were surprised to find that this flagellated fungus
clustered with Basidiobolus, although without statistical

Page 2 of 10

support. Olpidium and Basidiobolus were further nested
among terrestrial fungi with strong support from both
posterior probabilities and likelihood bootstrap propor-
tions. To explain the nesting of Olpidium within the
non-flagellated fungi required 2-4 losses of flagella [5].
This finding of a flagellate within the terrestrial clade
was no obvious artifact of long-branch attraction. The
James et al. [5] study included a rich sampling of avail-
able basal fungal lineages and neither Olpidium nor
Basidiobolus had particularly long-branch lengths.
Olpidium is however a challenging genus and it
seemed possible that its apparent phylogenetic position
was influenced by missing data. Several species, includ-
ing Olpidium virulentus and Olpidium bornovanus, are
biotrophic plant pathogens, unable to grow except as
unicellular thalli that develop embedded inside living
plant root cells [17-19]. At maturity, zoospores with sin-
gle posterior flagella are liberated from the root cell
through spore exit tubes [17] (Figure 1). Because they
are biotrophic, relatively pure Olpidium DNA can only
be harvested from zoospores. Washing roots with
mature sporangia in distilled water triggers zoospore
release. However, the zoospore suspension is not axenic.
Olpidium DNA sequences are mostly too divergent to
be amplified with universal fungal primers. As a result
of these difficulties, James et al. [5] were only able to
analyze one protein coding gene sequence (RPBI) in

-

Figure 1 Olpidium bornovanus, a unicellular fungus, is an obligate parasite of plants that reproduces with flagellated, swimming
zoospores. A-B. Vegetative unicellular thalli in cucumber root cells. Thalli differentiate into sporangia with zoospores, or into resting spores. C.
An empty sporangium, after zoospore release. D. A thick-walled resting spore. E. Zoospores being released from a sporangium, showing the
sporangium exit tube (arrowheads). F. A swimming zoospore with a single posterior flagellum. G. An encysted zoospore. Bars: A-E = 10 ym; F,G
=5pum.
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addition to ribosomal genes, from only one Olpidium
species.

Our objectives in this study included rigorous testing
of the phylogenetic position of Olpidium and resolving
the relationships among clades in the Zygomycota and
the flagellated fungi, with the overall goal of improving
understanding of the early evolution of Fungi. We used
genes for four proteins, translation elongation factor 2
(Ef-2), RNA polymerase II largest subunit (RPB1), RNA
polymerase II second largest subunit (RPB2), and actin.
Although Ef-2 genes have proven useful in other eukar-
yotic lineages [20], this study represents their first use
for the deep phylogeny of Fungi. Olpidium, if nested
within Zygomycota, becomes a key organism for recon-
structing the trail of how terrestrial fungi lost their fla-
gella and colonized land.

Results

Overall phylogenetic analyses of the kingdom Fungi

The kingdom Fungi formed a robust clade in maximum
likelihood and Bayesian analysis from the dataset of con-
catenated amino acid sequences from four genes (Figure
2). The terrestrial fungi plus the flagellated fungi Olpi-
dium virulentus and O. bornovanus formed a monophy-
letic group excluding all other flagellated fungi with 95%
bootstrap support and a posterior probability of 1.0 (Fig-
ure 2). Topology tests rejected all alternative trees that
constrained the Olpidium species to cluster with other
groups of flagellated fungi (Table 1). A clade including
the Zygomycota plus Olpidium was also monophyletic
with 68% bootstrap support from likelihood and a pos-
terior probability of 0.98 (Figure 2). In our analysis, ter-
restrial fungi were divided between the monophyletic
Zygomycota plus Olpidium, and the Dikarya (= Asco-
mycota plus Basidiomycota). The Zygomycota included
two well-supported groups: Mucoromycotina and Glo-
meromycota. The Zygomycota also included “Zygomy-
cota, unresolved” (Figure 2), a weakly supported clade
consisting largely of animal or fungal symbionts or
pathogens [4-6]. “Zygomycota, unresolved” also included
Olpidium. If any group within Zygomycota were the sis-
ter group to Olpidium, it was not clear from our phylo-
genies. The two species that clustered most closely with
Olpidium in the Bayesian analysis, Piptocephalis corym-
bifera and Rhopalomyces elegans, had long-branches
(data not shown), were missing data from two loci, and
did not cluster with Olpidium in the likelihood analysis
(Figure 2). In Approximately Unbiased tree topology
tests, uniting Olpidium with Glomeromycota could not
be rejected at the p-value of < 0.05 (Table 1). In the
more conservative weighted Shimodaira-Hasegawa tests,
uniting Olpidium with Mucoromycotina and with
Dikarya could not be rejected either (Table 1). These
analyses suggest that Olpidium is part of the terrestrial
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fungi, but leave open the possibility that it may be the
sister taxon to the Dikarya, or sister to one of the basal
clades within Zygomycota.

Concerning the other flagellated fungi, the concate-
nated dataset provided strong support for the mono-
phyly of the Blastocladiomycota, the “core chytrid
clade”, and the Monoblepharidomycetes. Although
support was low, the flagellated fungi form a paraphy-
letic assemblage, with Monoblepharidomycetes diver-
ging first, then the Neocallimastigomycota, the “core
chytrid clade,” and finally, the Blastocladiomycota as
the sister group to the terrestrial fungi. Tree topology
tests did not reject any of the alternative possible pat-
terns of relationships among the three basal clades of
flagellated fungi (Monoblepharidomycetes, Neocalli-
mastigomycota, and “core chytrid clade”) (data not
shown).

Analyzed separately, individual gene trees did not
resolve branching order of basal fungal clades with sig-
nificant bootstrap support (Figure Sla-S1d in Additional
file 1). However, the Ef-2 likelihood tree showed Olpi-
dium in “Zygomycota, unresolved” with 56% support
and all the genes except actin placed Olpidium with
members of “Zygomycota, unresolved”. Overall, actin
provided less phylogenetic information than the other
genes due to its low substitution rates (note the much
longer scale bar relative to 0.1 substitutions, Figure S1d)
compared with scale bars for other single genes (Figure
Sla-Slc) for phylogenetic analysis.

Olpidium sequences

Because Olpidium cultures were not axenic, we had to
use phylogenetic concordance as a criterion for testing
whether or not their DNA sequences could be from
contaminants. Reassuringly, in a maximum likelihood
tree from concatenated data (Figure 2), sequences of the
two Olpidium species formed a robust clade among
other fungi with 100% bootstrap support. As expected,
they grouped among the Zygomycota, consistent with
results from James et al. [5]. Sequences from both spe-
cies also clustered together in individual gene trees
whenever both species were included in the analysis
(Figure Sla, S1b, and S1d in Additional file 1). The
RPBI gene sequence obtained from our O.virulentus
(GenBank AB644405) was almost identical to O.virulen-
tus isolate used in James et al. (GenBank DQ294609)
[5]. As an additional assay for possible contamination,
we amplified the SSU rRNA gene region from DNA
extracts by PCR with eukaryotic-universal SSU primers
[SR1 (5-TACCTGGTTGATCCTGCCAG-3’) and SR12
(5-CCTTCCGCAGGTTCACCTAC-3)], then sequenced
amplicons directly. We found the Olpidium SSU rRNA
gene region in our extracts and we did not detect the
host plant or any other sequences (data not shown).


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB644405
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ294609
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Figure 2 A phylogeny from four protein-coding genes shows that Olpidium is the only flagellated genus in a clade of terrestrial non-
flagellated fungi. This maximum likelihood tree from RAXML is based on concatenated amino acid sequences of genes for the elongation
factor 2, the RNA polymerase Il largest and second largest subunits, and actin. Numbers on the internal nodes represent posterior probabilities
and bootstrap percentages calculated by MrBayes and RAXML, respectively.
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Table 1 The only phylogenetic positions of Olpidium that could not be rejected by either the weighted Shimodaira-
Hasegawa (wSH) or the Approximately Unbiased (AU) tests were within the Zygomycota.

Tree Constraint AlnL AU’ wSH’
1 Olpidium united with “Zygomycota, unresolved” (Best tree; Figure 2) 0.0 0.896 0.995
2 Olpidium united with Glomeromycota in Zygomycota 19.8 0.208 0619
3 Olpidium united with Mucoromycotina in Zygomycota 423 0.013% 0.087
4 Olpidium united with Dikarya 65.7 0.011* 0.058
5 Olpidium sister to all terrestrial fungi 80.8 0.000** 0.010*
6 Olpidium united with Blastocladiomycota 1484 0.002** 0.004**
7 Olpidium sister to all other fungi 148.7 0.005** 0.008**
8 Olpidium sister to all terrestrial fungi and Blastocladiomycota 1546 0.000%* 0.000**
9 Olpidium united with Neocallimastigomycota 174.1 0.004** 0.013*
10 Olpidium united with Monoblepharidomycetes 203.6 0.000%* 0.000**
11 Olpidium united with “Core chytrid clade” 2336 0.000** 0.000**

AU, Approximately Unbiased; wSH, weighted Shimodaira-Hasegawa test. The constrained tree was significantly worse than the best tree (Figure 2) at P < 0.05*

or P < 0.01**,

This result suggested that Olpidium DNA predominated
in our extracts.

However, along with the Olpidium sequences that
clustered, as expected, in the fungi, we also found addi-
tional, aberrant sequences for Ef-2, RPB2, and actin
(Figure Sla, Slc, and S1d in Additional file 1). These
sequences did not match common laboratory contami-
nants. From the Ef-2 dataset, in addition to the set of
Olpidium sequences that clustered as expected, within
“Zygomycota, unresolved,” a pair of sequences clustered
with the slime mold Dictyostelium discoideum (Figure
Sla). From the RPB2 dataset, one O. bornovanus
sequence clustered with the zygomycete Conidiobolus
coronatus and the other with D. discoideum (Figure
Slc). In the actin dataset, we detected two O. virulentus
and four O. bornovanus actin-like sequences (Figure
S1d). One pair of sequences from Olpidium species
clustered together in Fungi, but the other four
sequences clustered with non-fungal taxa (Figure S1d).
The aberrant sequences could be divergent paralogs or
genes gained through horizontal gene transfer, and we
cannot even rule out contamination as their source. We
deleted those aberrant sequences (Figure Sla, Slc, S1d)
from our four-protein dataset used in the likelihood and
Bayesian analyses (Figure 2, S2).

Discussion

Phylogenetic position of Olpidium

Our likelihood and Bayesian analyses strongly suggest
that Olpidium virulentus and O. bornovanus are more
closely related to terrestrial fungi than to other clades of
flagellated fungi. Olpidium has typical “core chytrid”
characters including a single endobiotic sporangium
producing zoospores having a single posterior flagellum.
It shares no obvious morphological characters with any
clade of terrestrial fungi. Whether Olpidium and terres-
trial fungi share biochemical characters, such as enzyme

systems for entry into plant cell walls, remains to be
seen.

None of the other Zygomycota genera are close to
Olpidium, based on the tendency of Olpidium to cluster
with different genera in different analyses, without sup-
port. This lack of resolution may be yet another long-
branch attraction problem. Adding more species of
Olpidium to a phylogeny would contribute to breaking
up the Olpidium branch and would allow reconstruction
of the ancestral traits of Olpidium. However, most of
the ~50 Olpidium species are difficult to obtain. We
were able to include O. virulentus and O. bornovanus in
this study only because Rochon and colleagues grow
them routinely to serve as vectors for experimental
transmission of viral diseases of plants [21,22]. Other
species of evolutionary interest from other hosts (fungi,
moss protonemata, microscopic animals, or algae)
would have to be isolated from nature and cultured
along with their hosts. As shown in other morphologi-
cally simple but diverse fungal genera, e.g., Rhizophy-
dium [23], Olpidium is likely not monophyletic. Species
differ in cell size (depending on the size of the host
cell), shape (spherical to ovoid, irregular, tubular or
elongate), and other morphological characters (resting
spore morphology, number of spore exit tubes etc.).
Ultrastructure also varies from species to species. Olpi-
dium pendulum perhaps belongs in a genus separate
from O. virulentus and O. bornovanus (as a synonym of
O. cucurbitacearum) [24-31]. Some of the other species
might belong in the same clade as our two plant parasi-
tic Olpidium, while others will likely fall out with the
“core chytrids” instead.

Terrestrial fungal relationships-a classical phylogenetic
challenge?

Conflicts among phylogenies from different datasets
suggest that as fungi first colonized land, at least five
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basal lineages (Mucoromycotina, Glomeromycota,
“Zygomycota, unresolved”, Dikarya, Olpidium) radiated
rapidly and then evolved independently by different
rates and modes of substitution. A succession of
researchers have noted and attempted to solve the pro-
blem of variation in rates and modes with various analy-
tical strategies. Tanabe et al. [32] pointed out the
ribosomal substitution rates varied dramatically in rela-
tive rate tests and recommended relying more heavily
on RPBI, which showed less rate variation. Voigt and
Wostemeyer [33] used logdet methods to overcome
biases resulting from lineage-specific variation in
nucleotide composition to estimate distances. Liu et al.
[14] applied huge amounts of sequence, analyzing
40,925 amino acids with a substitution model intended
to minimize long-branch attraction problems. In their
ribosomal gene phylogeny, White et al. [6] included an
excellent sampling of taxa representing most known
Zygomycota lineages, including many species that have
not appeared in other studies because they are difficult
to grow.

No aspect of basal branching order for these taxa
receives consistent support across studies. The clade
corresponding to the traditional Zygomycota from our
study and from Liu et al.’s RPBI and RPB2 amino acid
phylogenies [13] does not appear in analyses consisting
largely or entirely of ribosomal DNA sequences [5,6,15]
or of actin plus Ef-1 alpha [33,34]. It is also missing
from a phylogenomic study of nuclear genes [14] where
Mucoromycotina is sister to Dikarya. Our analyses show
Mortierella verticillata as part of Mucoromycotina. This
relationship was supported strongly in our analysis of
concatenated data; it was evident in our Ef-2 and RPBI
gene trees, and it is consistent with some traditional
classifications schemes based on morphology [35]. Liu et
al. [14], however, showed Mortierella diverging much
earlier (although with limited support) as one of the
three Zygomycota lineages paraphyletic to Mucoromy-
cotina plus Dikarya. Although the Liu et al. [14] study
had a great deal of data per taxon and an appropriate
model of evolution, the number of genomes available
for analysis may still be too small to capture branching
order with statistical support. As a result, in Liu et al.’s
[14] study, long-branch attraction or other kinds of sys-
tematic error may have been responsible for pulling
Mortierella away from its closest relatives. In contrast,
our phylogenies have good representation of lineages
but data from only four loci, and our inability to reject
alternative topologies in weighted Shimodaira-Hasegawa
and Approximately Unbiased tests reflects the need for
more data per taxon. Resolution of the relationships
among early fungi joins the resolution of relationships
among the first animals and among seed plants as a dif-
ficult phylogenetic problem.
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Phylogenetic age of origin of fungal hyphae

Branching order among early-diverging fungal groups
has been assumed to involve progressive elaboration of
thread-like hyphal systems [2], from ancestors, which
like most “core chytrids,” had unicellular thalli. Beyond
the Fungi, the oomycetes, chromistan fungus-like pro-
tists, provide an example of convergent origin of hyphae.
Oomycete thalli range from single cells to well-defined
mycelia [19]. Recent phylogenetic studies have indicated
that the ancestral oomycetes might have been unicellu-
lar endoparasites of marine organisms that later gave
rise to hyphal species. Of the hyphal oomycete species,
some remained aquatic, while others invaded land [36].
Ability to form hyphae may have been an important
character that allowed early oomycetes as well as early
Fungi to poke, penetrate and explore to find terrestrial
food that may have been patchy in its distribution.

As in the oomycetes, hyphae may have evolved in
fungi even before they colonized land. Most of the
known Monoblepharidomycetes are hyphal, and they
diverged at or near the base of the Fungi. The Blastocla-
diomycota, the aquatic sister clade to the terrestrial
fungi [5,6,14], also includes genera with well-developed
mycelia. Since its relatives are hyphal, Olpidium’s unicel-
lular thallus is perhaps an adaptation to parasitism and a
reduction from a hyphal ancestor. On the other hand,
finding Olpidium nested among the terrestrial clades
implies that fungi on land initially had flagellated spores.
Eukaryotic flagella are complex structures that would
have been unlikely to evolve repeatedly, and so multiple
losses of flagella were far more likely than a convergent
gain in Olpidium. As in early terrestrial animals and
plants, early terrestrial fungi retained a motile unicellu-
lar phase.

We reluctantly excluded two interesting basal fungal
lineages, microsporidia and Rozella [5], from our ana-
lyses. Microsporidia, obligate intracellular pathogens of
animals, have unusual, highly divergent genes [37]. Con-
served synteny among the microsporidia and the zygo-
mycotan Phycomyces blakesleeanus and Rhizopus oryzae
has been used to suggest that the microsporidia may be
related to Mucoromycotina [38], an interpretation con-
tested by Koestler and Ebersberger [39]. Sequences from
microsporidia are difficult to align and a source of arti-
facts involving long-branch attraction. It seemed more
likely that microsporidia would obscure phylogenetic
signal in our dataset than that our analysis would cor-
rectly resolve their relationships.

Rozella allomycis is a unicellular obligate endoparasite
of Allomyces arbusculus, another fungus [40]. James et
al. [5] found Rozella allomycis to group with microspori-
dia at the base of Fungi. Unfortunately, the only known
living culture of Rozella had died before our study, so
we were unable to contribute new data for the genus.
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Rozella is basal in Fungi in our RPBI and RPB2 indivi-
dual trees. This could be its correct phylogenetic posi-
tion but it could also reflect long-branch attraction
(Figure S1b, Slc, in Additional file 1). Adding Rozella to
the analysis caused relationships among the other flagel-
lated fungi to shift (Figure S2 in Additional file 2). Our
tree topology test did not rule out most possible topolo-
gies for the positioning of Rozella with other fungal
lineages (Table S1, in Additional file 2). Uncertain about
the reason for the behaviour of Rozella, we show the
consequences of including it in the supplemental file
(Figure S2) but excluded the taxon from the analyses in
Figure 2.

Conclusions

Even with analysis of amino acid sequences from four
protein-coding loci, and from all available early-diver-
ging lineages, the resolution of branching order in the
deepest parts of kingdom Fungi remains uncertain.
Instead of converging on a single solution, recent studies
of early fungi have produced conflicting phylogenies.
Our trees showed the zoosporic Monoblepharidomy-
cetes to be sister to all other fungi, the zoosporic Blasto-
cladiomycota to be sister to terrestrial fungi, and the
Zygomycota to be monophyletic. These relationships
require further testing through phylogenomic analysis
and comprehensive taxon sampling.

Our study provided the strongest support to date for
the monophyletic group that includes two zoosporic
Olpidium species together with all of the non-flagellated,
terrestrial fungi. Here, the results from our study and
others are congruent. If its nested position among
hyphal fungi is correct, the unicellular thallus of Olpi-
dium may have evolved by reduction from hyphae, con-
tradicting an intuitive expectation that the smaller
structure would predate the larger one. Swimming zoos-
pores that germinated and grew as hyphae may have
been the fungal analogues of amphibians that made the
earliest evolutionary forays into drier environments.

Methods

Fungal strains, DNA and RNA extraction, PCR
amplification and sequencing

Table S2 (in Additional file 3) lists fungal strains
sequenced in this study. All zygomycetes were main-
tained on potato dextrose agar medium (PDA: Difco
Grade, Becton, Dickinson and Company, MD, USA), or
PDA plus 0.5% yeast extract medium at ambient tem-
perature, as described in O'Donnell [41]. All chytrids
except the two Olpidium strains were maintained on
PmTG agar medium [42]: 1g peptonized milk, 1g tryp-
tone, 5g glucose, 8g agar, and 1litre of distilled water) at
ambient temperature. Olpidium bornovanus was main-
tained on cucumber roots (C. sativis cv. Poinsette 76),
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and O. virulentus was maintained on lettuce roots (Lac-
tuca sativa cv. White Boston) as described by Campbell
et al. [43]. The full length of the internal transcribed
spacer (ITS) regions (between the 18S, 5.8S and 28§
ribosomal RNA genes) of our O. virulentus strain was
sequenced for species identification, and it had 100%
nucleotide similarity with that of O. virulentus strain
GBR1 (GenBank no. AY373011) [16,44]. Ef-2 gene
sequences of two Olpidium species and RPB2 gene
sequences of O. bornovanus were obtained from total
RNA, and all other sequences obtained in this study
were from total genomic DNA. For the RNA and DNA
extraction from two Olpidium strains, we used TRIzol
Reagent following the procedure outlined by Invitrogen
(Mississauga, Ontario, Canada). Prior to DNA and RNA
extraction the Olpidium zoospores were pelleted from
root washings at 2,700 x g for 7 minutes. Total genomic
DNA from cultured strains was extracted using a
DNeasy Plant Mini Kit (Qiagen, Mississauga, Ontario,
Canada), following the manufacturer’s protocol.

Primers were designed in this study, or taken from
James et al. [5], or Hoffmann et al. [45] (Table S2, Addi-
tional file 3 Table S3, Additional file 4). We amplified
the partial genes for eukaryotic translation elongation
factor 2 (Ef-2), RNA polymerase II largest subunit
(RPBI), RNA polymerase II second largest subunit
(RPB2), and actin using 0.5 puM concentrations of pri-
mers, two to five pl of genomic DNA solution, and
PureTaq™ Ready-To-Go™ PCR beads (Amersham
Biosciences, Piscataway, NJ, USA) following the manu-
facturer’s protocol. Total PCR reaction volume was 25
ul, and cycling parameters were: initial denaturation (5
min, 94°C), followed by 40 cycles (94°C, 10 s; 50-65°C,
20 s; 72°C for 30 s plus 4 additional seconds per cycle),
and then a final extension at 72°C for 7 min. RT-PCR
was conducted using SuperScript™ One-Step RT-PCR
with Platinum® Tagq (Invitrogen) following manufac-
turer’s protocol. The total 25 pl reaction volume of RT-
PCR, contained 0.2 uM concentrations of primers, 1 pl
of total RNA solution, 0.5 pl of RNaseOUT® Recombi-
nant Ribonuclease Inhibitor (Invitrogen), 12.5 pl of 2x
Reaction Mix, and 1.0 pl of RT/Platinum® Tag Mix.
Cycling parameters were: reverse transcription (32 min,
55°C) and initial denaturation (5 min, 94°C), followed by
40 cycles (94°C, 15 s; 55°C, 30 s; 68°C for 30 s plus 4
additional seconds per cycle), and then a final extension
at 68°C for 10 min. PCR products were then purified
with EtOH precipitation (20 pl PCR products, 2 pl 3 M
sodium acetate (pH 4.5), 50 pl 95% ethanol; 15 min spin
and rinse with 70% ethanol twice, resuspended in 20 pl
water), or cloned with TOPO® TA Cloning kit (Invitro-
gen) following the manufacturer’s protocol. Products
were then sequenced with BigDye Terminator v3.1
Cycle Sequencing Kit on a Applied Biosystems 3730S
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48-capillary sequencer (Applied Biosystems, Foster City,
CA, USA) at NAPS Unit, MSL, University of British
Columbia [accession numbers; DDBJ:AB609150 -
AB609186, AB625456, and GenBank:HM117701 -
HM117719; Table S4 in Additional file 5].

Sequence alignments

DNA sequences were assembled and edited using the
software Se-Al v2.0all [46]. Also using Se-Al, sequences
were manually added to RPB1 and RPB2 amino acid
alignments of James et al. [5] or to the actin alignment
of Voigt & Wostemeyer [33]. Introns, ambiguously
aligned positions and gaps were excluded from both
analyses. Alignments have been accessioned in Tree-
BASE (S11208, http://purl.org/phylo/treebase/phylows/
study/TB2:511208).

Molecular phylogenetic analysis

Phylogenetic relationships were inferred from maximum
likelihood and Bayesian methods, and all four protein
datasets were combined and used for both analyses (Fig-
ure 2). ProtTest version 2.4 [47] estimated that the best-
fit model of protein evolution for each of the individual
alignment datasets was the LG model, with site-to-site
rate variation approximated with a gamma distribution
(G) and an estimated proportion of invariable sites (I),
and with empirical base frequencies (F) (LG+G+I+F).
For likelihood, we used RAxML version 7.0.3 [48], with
the LG+G+I+F model and 600 replicate searches. We
used 1000 likelihood bootstrap replicates with the rapid
bootstrapping algorithm in RAxML version 7.2.7 with
the LG+G+F model conducted on CIPRES Science
Gateway Web server (on RAXML-HPC2 on Abe 7.2.7)
[49]. For Bayesian posterior probabilities for branch
nodes, we used MrBayes version 3.1.2 [50] on Parallel
MrBayes Web Server at the BioHPC compute cluster at
CBSU (http://biohpc.org/), with 1,713,600 generations,
sampling trees every 100 generations, and discarding the
first 5000 trees as a burnin. Convergence was evaluated
from running two independent chains. The effective
sample size was > 288.3 and 325.2, estimated by Tracer
v1.5 [51]. Each of the four of individual protein data sets
was analyzed with likelihood as explained above Figure
Sla-S1d (in Additional file 1).

Tree topology tests

To compare alternative phylogenetic positions for Olpi-
dium, we used the Approximately Unbiased test and the
weighted Shimodaira-Hasegawa test [52,53], both imple-
mented by CONSEL v0.20 [54], using the site-wise like-
lihood values estimated in PAUP v.4.0b10 [55]. Each
constrained tree was based on an initial guide tree with
a single internal branch, generated in MacClade version
4.08 [56] or in Mesquite version 2.75 [57] (Additional
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file 6). The most likely tree (Additional file 6), given
each constraint, was found using 50 search replicates in
RAXxML version 7.2.8 with the LG+G+F model con-
ducted on CIPRES Science Gateway Web server (on
RAXML-HPC2 on TeraGrid) [49].

Additional material

Additional file 1: Figure S1. The phylogeny of the kingdom Fungi
based on likelihood analysis of amino acid sequences from single
genes. Figure S1a, elongation factor 2 tree; Figure S1b, RNA
polymerase Il largest subunit tree; Figure S1c, RNA polymerase I
second largest subunit tree; Figure S1d, actin tree.

Additional file 2: Figure S2 and Table S1. Figure S2. The phylogeny
of the kingdom Fungi, including Rozella allomycis, based on
likelihood analysis of amino acid sequences of four concatenated
protein-encoding genes. Table S1. Tree topology tests showing that
most of the alternative phylogenetic positions of Rozella could not
be rejected.

Additional file 3: Table S2. Species sequenced in this study,
including voucher numbers and primer sets used.

Additional file 4: Table S3. Primers used in this study.

Additional file 5: Table S4. GenBank accession numbers of
sequences used in this study.

Additional file 6: The initial guide trees with a single internal
branch, and the most likely trees given the constraint, that we used
for the tree topology tests in Table 1. All trees are in Newick
format.
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