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Abstract

Background: Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as
enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today
have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the
metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral
model of metabolic network evolution.

Results: We consider the ‘union-network’ of 134 bacterial metabolisms, and also the union of two smaller subsets
of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we
denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are
found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the
same OD are also more likely to be connected to each other compared to a random OD relabelling based on their
occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of
metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite
this seemingly drastic simplification, a ‘union-network’ of a collection of unrelated model networks, free of any
selective pressure, still exhibit similar structural features as their bacterial counterpart.

Conclusions: The OD distribution quantifies topological properties of the evolutionary history of bacterial
metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial
metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of
metabolic network growth can reproduce the main features of real networks, but we observe that the real
networks contain a smaller common core, while they are more similar at the periphery of the network. This
suggests that natural selection and biochemical correlations can act both to diversify and to narrow down
metabolic evolution.

Background
Evolution of metabolism occurs through the acquisition
and loss of genes whose products acts as enzymes in
metabolic reactions. From a presumably simple primor-
dial metabolism the organisms living today have evolved
complex and highly variable metabolisms, ranging from
extremophiles thriving in extreme conditions and feed-
ing on inorganic compounds such as ironsulfide, to
endosymbiontic parasites who are dependent on their
hosts and cannot themselves synthesise essential com-
pounds like aminoacids. In spite of this diversity there

are still reactions and pathways which are found in a
large number of organisms, such as the glycolytic path-
way, which probably emerged early in the history of life
on earth [1]. Changes to the metabolism are constrained
by the available genetic variation, the laws of biochemis-
try and by the selective pressure the organisms are sub-
ject to. Among eukaryotes the main source of
evolutionary novelty is gene duplication [2,3], whereby
unequal cross-over of a section of a chromosome leads
to the duplication of the corresponding genes. The loss
of selective pressure on one copy can then lead to the
divergence and sometimes a new functionality of the
duplicated gene. Prokaryotes, on the other hand, make
use of horizontal gene transfer (HGT) [4], where genes
can be transferred among organisms even from different
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species. This is a powerful mechanisms which allows for
rapid adaptation to new conditions and possibly to swift
changes in metabolic capacities. Several models have
been proposed for the evolution of metabolism, the
most prominent being the retrograde [5] and the patch-
work model [6]. The retrograde model states that meta-
bolic pathways evolve from the core and outwards from
a key-metabolite assumed to have been abundant in the
environment of the ancestral organism. Depletion of the
key-metabolite then led to a selective advantage for
organisms that could synthesise the missing metabolite
from some other metabolite in the environment. This
process is thought to have been repeated giving rise to
outward-growing pathways. The patchwork model on
the other hand assumes a low substrate-specificity to
enzymes in the early stages of evolution, so that each
enzyme could catalyse several reactions. Gene duplica-
tion events followed by divergence in function then lead
to the refinement and specialisation among the enzymes
which presumably gave rise to the structure found in
metabolic networks today. These two models are how-
ever not mutually exclusive, and evidence has been
found in support of both. For example homologous
enzymes containing a specific domain (TIM-barrels)
have been found in several distinct pathways [7], sup-
porting the patchwork model, but there is also evidence
that homologous enzymes are commonly found within
the same pathway [8]. Horizontal gene transfer (HGT),
which is prominent among prokaryotes, allows for a dif-
ferent mode of metabolic evolution, where enzymes
tend to be transferred in groups which are functionally
coupled. This would lead to a growth pattern similar to
the retrograde model, but not necessarily with the genes
being homologous. Further, it has been shown that the
genes encoding for enzymes that are involved in trans-
port reactions and reactions far away from the core of
the network are more variable in evolution [9]. That
study was however only carried out on E. coli and its
closest neighbours in the g-proteobacteria class, and
more thorough studies are required to draw more accu-
rate conclusions. In this paper we take a broader view
by incorporating 134 bacteria from 16 phyla, and utilis-
ing a network perspective to gain quantitative insight
into structural correlations between metabolic networks
of different species. Comparative studies of microbial
metabolic networks have shown that the overlap in
metabolic capability between species correlates well with
evolutionary kinship, and that phylogenetic trees based
on this metric are similar to those which are based on
more traditional measures of similarity in 16 S rRNA
[10,11]. It has also been shown that typical network
measures such as modularity and average path length
have a good predictive power when it comes to cluster-
ing metabolic networks into phylogenetic groups [12].

The properties of the reaction nodes themselves was
shown to correlate with the number of organisms the
reactions are found in. In particular the betweenness
centrality, which measures the number of shortest paths
in the network passing through the node, was a good
predictor, while the node degree itself was a poor pre-
dictor, i.e. nodes with high connectivity are not typically
present in more organisms [13]. Looking at correlations
between pairs of reactions Wagner [14] showed that
some reaction pairs are likely to occur together in one
organism, while others are rarely found together. This
suggests that evolution of metabolic networks is gov-
erned by reaction combinations that are favoured by
natural selection. The study by Wagner, however, does
not take into account the biochemical network structure
these reactions form, and there are many other ques-
tions yet unanswered. How are these correlated reac-
tions interconnected in the network? How are reactions
added and removed through the evolution of the meta-
bolism, and to what extent does a common metabolic
connected core exist? In the present study we aim at an
understanding of metabolic network evolution in the
context of the structural constraints imposed by existing
biochemistry. By comparing which parts, their topologi-
cal location, and to what degree the metabolic networks
of different bacterial species overlap we hope to gain
insight into the evolutionary history which has shaped
these networks. A few studies have dealt with related
topics such as the extent of which network modularity
[15-17] and synthesising capabilities [18] correlates
among species in the ancestral tree, but have not done
so from a topological perspective. As a further compari-
son we will also make use of a simple model of network
growth, which will serve as a model of a scenario where
evolution is completely neutral and only controlled by
biochemical constraints. Our analysis presented here
indicates that reactions with similar organism degree
(OD), denoting the number of organisms in which the
reaction is present, tend to be found structurally close
to each other in the metabolic network and those with
high OD are in general located in proximity of the
centre.

Results
We have focused on the reaction-representation of the
metabolic networks of 134 bacterial species. The meta-
bolism of an organism can conveniently be represented
by a network, which consists of two types of nodes:
reactions and metabolites. In the network a directed link
connects a metabolite and a reaction if that metabolite
is a substrate of the reaction, and conversely a link con-
nects a reaction node and a metabolite if the metabolite
is produced in that reaction. However, for simplicity one
often considers a projected network where only reaction
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nodes are present. This means that the nodes in the net-
work represent metabolic reactions, and there is a direc-
ted link between two nodes if any of the products of one
reaction is the substrate of the other. We have studied
both the metabolic networks of a union of 134 bacterial
species, as well as those of a subset of two phyla, Chlamy-
diae and Proteobacteria. One of the key concepts in this
work is the organism degree (OD) of a metabolic reaction
which denotes the number of different species it is pre-
sent in. This is of course a crude approximation and
ignores species specific information, which could be used
for inferring the evolution of metabolic networks. For
example, one could from known phylogenies and meta-
bolic networks infer the gain and loss of reaction along
the phylogenetic tree, as was done by Pal and colleagues
[9]. Furthermore, Borenstein et al. [19] studied the con-
cept of “seed set” of metabolic networks, defined as the
minimal subset of metabolites for a given organism that
cannot be synthesised by the other metabolites in the
network, from which phylogenetic trees could be recon-
structed. Another approach could be to analyse the pre-
cise overlap between pairs of species, which coupled with
phylogenetic distance, could give insight into evolution-
ary patterns. In the light of this, discarding the phyloge-
netic profile of every reaction and replacing it by single
number might seem a drastic move, but it allows us to
view the data from a topological perspective, something
that would have been next to impossible if species iden-
tity and phylogenetic information was taken into consid-
eration. Further, it allows for the use of methods from
graph theory and complex network analysis, which
strengthen our approach. The analysis presented in this
paper should thus be viewed as a complement to more
traditional bioinformatics approaches to inferring the
growth of metabolic networks. In order to make sure that
the projection from the list of actual species (i.e. phyloge-
netic profile) onto a single number, the organism degree,
for each reaction in the network, was reasonable and
information preserving, we measured how often two
neighbouring nodes in the reaction network of the same
OD in fact are present in precisely the same species. This
turned out to be true in 93% of the cases confirming that
the OD is a reasonable level of description, and a mean-
ingful concept to study. The remaining 7% correspond to
85 reaction pairs of which a majority are pairs with OD =
1, which, as our analysis will show, lie at the periphery of
the network, and are unlikely to have an impact on the
main conclusions of our study.

Illustrating structural correlations in the
metabolism by coarse-graining the reaction
network
In order to visualise structural correlations in the meta-
bolic network graphically we made a coarse-grained

representation of the networks where reactions of the
same OD were collapsed into one super node if there
exists a direct link between them (see Methods for more
details). The smallest super nodes have been omitted in
the figure for the sake of clarity, resulting in a highly
disconnected network for the largest union. Figure 1
contains the coarse-grained metabolisms for the union
of all 134 bacteria as well as for the union of a subset of
species from Chlamydiae and Proteobacteria. The size of
each super node reflects the number of reactions it
hosts and dark to light colouring indicates high to low
OD. From figure 1 we conclude that for the smaller
subsets of species, reactions with high OD tend to be
connected to each other and found in the centre, while
reactions present only in a few organisms tend to be
located on the periphery; there is in general a dark to
light colour gradient from the most central super node
and outward. For the union of all bacteria this trend is
not so evident (but can nevertheless be found with
quantitative analysis as we show below) suggesting that
an ever-present metabolic core for all species does not
exist. The histogram (cumulative) of super node sizes
for the union of bacteria is shown in figure 2. For com-
parison, we have also included the case where the OD
values of the reactions have been randomly reshuffled
(the green curve shows an average of 20 randomisa-
tions) thereby effectively removing OD correlations
while maintaining the biochemical constraints (i.e. the
structure of the reaction network). The reason why the
curve for the real data is above the random expectation
for s > 1 and drops below at s = 1 is because there are
many more single nodes, i.e. reactions that are not con-
nected to others with the same OD, and fewer large
super nodes in the randomised version. This suggests
that reactions with the same OD tend to be found close
to each other in the real data (at least compared to the
case in which the OD is assigned randomly proportional
to their occurrence). To quantify the difference between
the two distributions in figure 2 we calculated the z-
score Z s= −( ) rand rand , where s is the average
super node size of the real distribution, and μrand and
srand denote mean and standard deviation of the distri-
bution when the OD is randomised, respectively. The z-
score estimates how likely it is that the observed value
s is drawn from the distribution where the OD is
reshuffled. The values s = 2 15. μrand = 1.45 and srand =
0.01 give Z ≈ 70 which corresponds to a p-value of < 2 ×
10-16 (i.e the probability to draw Z > 70 from a normal
distribution is < 2 × 10-16). In summary, based on the
course grained picture of the metabolic networks we
infer that (i) metabolic reactions with high OD tend to be
located close to the core and (ii) that reactions with the
same OD are likely to be found close to each other.
These conjectures are investigated in more detail below.
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ProteobacteriaChlamydiae

Union of bacteria

Figure 1 Coarse-grained metabolic networks for subsets of Chlamydiae, Proteobacteria and the union of bacteria (an exact list of
organisms of the respective families is found in additional file1,Table S1). Neighbouring reaction nodes in the metabolic networks with
the same organism degree (OD) are lumped into one super node, the size of which indicates the number of reaction nodes it contains. Dark to
light colouring indicate high to low OD level. Two super nodes are connected of there exist at least one link between two reactions in the
respective super nodes. See the Methods section for a more detailed description of the coarse-graining procedure.
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Quantifying structural correlations
In order to quantify to what extent reaction nodes with
high OD are enriched close to the centre of the metabo-
lism we calculated the average OD as a function of dis-
tance (number of nodes) from the most central reaction
node in the undirected reaction network. The most cen-
tral reaction was chosen as the one with the highest
betweenness centrality conditioned that it was present
in all organisms. For the smaller families the reaction
with highest betweenness centrality coincided with the
maximum OD (in accordance with the study of Liu
et al. [13]), while the one for the full bacterial network
had OD = 92. The betweenness centrality of a node mea-
sures the number of shortest paths that pass through the
node, and gives an approximation of the mass transfer
through the reaction. Figure 3 shows the average OD of
the reactions found at one, two, three etc. steps away
from the centre. The trend that reaction nodes with high
OD are enriched close to the metabolic core is clear in all
three cases but most obvious for the union of bacteria,
which shows a steady decline in average OD in the entire
measured range. The size distribution of the coarse-
grained metabolic network (figure 1) suggests that reac-
tions with the same OD are structurally correlated in the
sense that they seem to be found close to each other in
the reaction network. In order to quantify this feature
further we calculated the likelihood of finding two reac-
tions with the same OD a given number of steps away
from each other. This two-node correlation function,
averaged over all nodes in the network, is shown in figure
4, and illustrates that there is a clear correlation up to a
distance of 5 steps. The correlation is destroyed if the

OD values of the reaction nodes are reshuffled which is
illustrated by the green curves.

Model of metabolism governed by biochemistry
In order to get an understanding of the interplay
between evolution and biochemical constraints on the
growth and development of metabolisms we made use
of a network growth model which is completely neutral.
By this we mean that reactions are removed or added to
the metabolism based only on their biochemical com-
patibility, as defined by the BioCyc database, with the
existing metabolism, and no consideration is taken as to
the usefulness or change in fitness the addition or
removal gives rise to. Starting from a single reaction, we
incrementally add reactions which can be linked directly
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Figure 2 Histogram of super node sizes for the union of
bacteria. The plot shows that the union-network contains more
super nodes of size 1 <s < 10, compared to a network where all
ODs have been randomised.
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Figure 3 Average organism degree (OD) as function of the
distance from the most central reaction node. The centre node
is defined as the reaction node with the highest betweenness
centrality conditioned that it is present in all organisms. The
horizontal line is the average OD of all reaction nodes in the
network. Both on the family level (Chlamydiae and Proteobacteria)
and for the union of bacteria there is a decay in OD when moving
outward from the core. This indicates that reactions with high OD
are in general found in the centre while species specific reactions
with low OD are found further out.
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to at least one of the reactions already present in the
metabolism (more details are given in the Methods sec-
tion). The initial, or seed reaction, can be chosen in several
ways and we explored two different variants: (i) the initial
seed is fixed and chosen as a reaction which is present in
all organisms, or (ii) the initial seed is a different random
reaction for each generated network. Adding and remov-
ing reactions or metabolites based on known metabolisms
to construct synthetic metabolic networks is not a new

concept. The model presented here is inspired by the
work of Maslov et al. [20], where reactions are added
(removed) to (from) a given (directed) metabolic network
given that the reactions are connected. This means that
we in principle could add a reaction for which its ingoing
metabolites are not synthesised by our metabolism, and in
a more detailed model one should make sure that this
condition is satisfied, see e.g. [21,22]. However, it has be
demonstrated [23] that when omitting currency metabo-
lites (e.g. water, protons, ATP/ADP, NADH) metabolic
pathways are close to linear chains of reactions in which
substrates are enzymatically modified in each reaction
step. This implies that a considerable fraction of the reac-
tions only have a single substrate (depending of course on
the level of coarse graining of currency metabolites) and
the mean in and out degree is only slightly above one. We
found that the networks produced by our algorithm in the
two cases of fixed and random seed reactions are substan-
tially different, where the one with the fixed starting point
reproduces features of the real data in a much better way,
such as the OD distribution of the reactions making up
the metabolism, shown in figure 5. Although the fixed
seed scheme over-estimates the number of nodes with low
OD, it reproduces the general shape of the curve much
better than the random scheme, which exhibits linear
rather than an exponential decay in the number of nodes
with a given OD. We also grew metabolic networks using
an OD = 1 reaction as seed node, and found that the
resulting networks were similar, with respect to the mea-
sures we are interested in, to the networks generated from
the most central node in the complete network (see addi-
tional file 1, figure S2). The main reason being that the
most central node is included only after a few steps in the
algorithm, thus giving rise to similar growth trajectories.
Using the fixed seed model, we produced a set of 134
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Figure 4 Structural correlations among reaction nodes with the
same organism degree (OD). The curves show the two-node
correlation function which captures the likelihood of finding two
reactions of the same OD k steps apart from each other. The blue
curve is based on the actual data while the green curve shows the
correlation function when the OD attribute of all reaction nodes is
randomly reshuffled.

Organism degree

N
um

be
r o

f r
ea

ct
io

ns

Union of bacteria

Network growth model, fixed seed

Network growth model, random seed

Figure 5 The distribution of OD in the ‘union-network’ of
bacteria and the two different versions of the model.
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metabolic networks, which were analysed in the same way
as the real data (Figures 3 and 4). Figure 6 shows (top
panel) the decay in OD when moving outward from the
centre, and (bottom panel) to what extent reaction nodes
with the same OD are found close to each other compared
with the case of when the OD is reshuffled. The average
OD of the model networks close to the centre of the net-
work is higher than the real data, but for distances larger
than approximately 10 steps from the centre it is consider-
ably lower. Correlations between nodes of the same OD
are also prominent in the networks generated with the
model, and decay at a rate similar to those observed in the
union of bacteria network.

Is there evidence of an omnipresent metabolic
core?
To put numbers on the question of the existence of a
commonly shared metabolic core, we analysed the
coarse-grained network (figure 1) and calculated core

sizes (see Table 1) for the small subset of Chlamydiae
and Proteobacteria, the union of bacteria, and for the
union of 134 networks generated by our model. We also
analysed smaller subsets of randomly assigned families
containing 10 organisms, in order to assess the impact
of the relatedness of the species and the size of the sub-
sets considered. Two measures were used. First, the size
of the largest super node with maximum OD (score)
compared to the total number of reactions (Ntot) in the
network. This measure reflects the size of the metabolic
core when compared to the size of the entire network.
Second, the size of the largest super node with maxi-
mum OD relative to the total number of reactions with
maximum OD NODmax( ) in the coarse-grained network.
This measure, on the other hand, quantifies the degree
to which the nodes with maximum OD are clustered
together in the network. The numbers in the table sup-
port what is seen in the figure 1. On the phylum level
where kinship between species in general is close, there
is a clear connected metabolic core which constitute a
significant fraction of the union of their metabolisms.
For example, 22% of all metabolic reactions in Chlamy-
diae from a connected metabolic core, at least among
the species in the phylum included here. This should be
compared with the average properties of a random sub-
set of ten species, which exhibits a small metabolic core
of approximately 1% of the network. However, when
merging metabolisms of additional phyla, the core
shrinks. For the union of the 134 bacteria studied here,
including organisms from 16 phyla, there is only a small
fraction of the reactions that can be classified as a
shared metabolic core. Analysing the networks gener-
ated by our growth model, where metabolic reactions
are added one by one starting from a single reaction
node without any evolutionary pressure, we found that
they show a very well defined metabolic core. However,
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Figure 6 Analysis of the network growth model analogous to
the ones in Figures 3 and 4. (Top panel) Decay in organism
degree (OD) as a function of distance from the most central node.
(Bottom panel) The likelihood of finding two reaction nodes of the
same OD k steps apart.

Table 1 Table of core sizes, where score is the size of the
largest super node of maximum OD, Ntot is the total
number of reactions in the respective reaction network,
and NODmax( ) is the total number of reactions with
maximum OD

Networks score/Ntot s Ncore ODmax
Chlamydiae 0.22 0.86

Proteobacteria 0.13 0.70

Random subset of species 0.01 0.21

Union of bact.(ΔOD = 10) 0.004 0.27

Union of bact.(ΔOD = 50) 0.008 0.09

Model (ΔOD = 10) 0.021 ~1

Model (ΔOD = 50) 0.079 ~1

Random subset of model networks 0.05 ~1

The random subsets represents the average result for the union of 10
randomly picked networks from the full set of real organisms and model
networks respectively.
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they are still not dominating the entire metabolism as
seen from the small values in the first column. As a
robustness test to make up for possible errors due to
incomplete annotations in some of the included species,
we altered the range of OD values (ΔOD) that allow
reactions to be put in the same super node. This also
compensates for the natural increase of sparseness in
OD with increasing number of organisms. Changing
ΔOD effectively means that the size of the measured
core also change. However, even though we increase
ΔOD from 10 to 50 (which means that all reactions
with an OD larger than 100 is included in the core) we
still do not get one dominating connected core (Table
1) which means that the above conclusions are insensi-
tive to the choice of coarsening.

Discussion
The structural correlations between metabolic networks
from different species bear a clear mark of their evolu-
tionary history. Species which are closely related usually
have more similar metabolisms compared to distant
relatives. This feature can clearly be seen in figure 1,
which shows the condensed metabolic network of both
the union of a wide range of species, and that of phylo-
genetically closer species. The overlap of the networks
restricted to a single phyla are considerably larger,
implying a higher similarity in metabolic capability. This
picture also suggests that what is common to the species
within a phyla forms a connected component, and that
the species specific reactions are attached onto this core
metabolism. Although this cannot visually be seen for
the union of the 134 bacterial species, the quantification
of average OD as function of distance from the centre
of the network shows that reactions become more speci-
fic as we move out to the periphery. The average OD
for the two smaller networks decay more rapidly, but
this does not imply that the distribution of OD across
the network is less structured. On the other hand, as
can be seen in figure 4 correlations are prominent. The
drop in average OD should instead be interpreted as a
consequence of the similarity of the underlying species.
A similarity which persists even at the periphery of the
network. The two-node correlation function shows that
correlations in OD are present up to distance of
approximately 5 nodes. This suggests that there is a
characteristic length scale within the union-network
which tends to be conserved among closely related spe-
cies. In other words, viewing metabolic evolution as a
transfer of subsets of the metabolic network from one
species to another (as in HGT), our results suggest that
the typical size of these transferred sets of reactions is
approximately five. Interestingly, this is close to the
average pathway length of 4.4, as defined in the Meta-
Cyc database, suggesting that the annotated pathway

structure reflects the structural correlations we have
reported on. There is also evidence that pathways are
enriched within super nodes (see additional file 1,
figure S3), which further supports this view. The impor-
tance of HGT in shaping metabolic evolution has pre-
viously been highlighted, for example in a study by Pal
et. al [9]. They showed that HT-genes are integrated at
the periphery of the metabolic network, and that the
proportion of HT-genes increases as one moves from
biomass producing reactions to nodes at the periphery
where transport reactions occur. Further, they showed
that pairs of enzymes which were flux coupled were
more often gained and lost together in the phylogenetic
tree. This concords well with the results presented in
this study, that the variability of network structure is
higher closer to the periphery, and by taking into
account the precise placement of enzymes/reactions on
the metabolic union-network we have put forward
further quantitative evidence for this growth mechanism.
It has been claimed that many of the properties exhib-
ited by metabolic networks such as modularity and
scale-free degree distributions are products of adaptive
evolution. One argument that has been put forward is
for example the robustness and fault-tolerance conferred
by a scale-free architecture [24]. However, little empha-
sis has been put on the underlying biochemical con-
straints these networks are subject to, and the existing
biochemistry has an obvious influence on possible net-
work structures. It has for example been shown that
atmospheric reaction networks exhibit scale-free degree
distributions [25], and these networks have clearly not
been subject to any selective process. On the theoretical
side it has also been shown that the scale-free degree
distributions of metabolic networks can be obtained as a
maximum-entropy solution, giving a random null-model
neutral to any selective pressure [26,27]. Naturally the
external environment of an organism will have an influ-
ence on metabolic evolution, such as in the case of cer-
tain endosymbionts which have lost the capability to
synthesise amino acids provided by the host, but it is
still unclear how much the laws of chemistry act to con-
strain metabolic evolution. The present study will not
resolve these questions, but still gives an idea of how
the metabolism of different bacterial species are related
with respect to each other. Approximately 1.5% of the
nodes in the union-network of all bacteria are present
in all species, but these reactions do not form a coher-
ent core, but are distributed across the network. The
presence of these universal reactions does suggest some
level of constraint, but the fact that they are bridged by
different reaction paths in different species on the other
hand hints at a degree of plasticity. A large metabolic
core was indeed found in the union-networks of the
subset of the Chlamydiae and Proteobacteria phyla, but
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this is an effect of the close phylogenetic relationship of
these species, and not of a constraining chemistry. The
results of the network growth model also support this
dual view. Although the largest super node with maxi-
mal OD in the super-network generated from 134
model networks contains almost all the nodes of that
OD, it only spans a small fraction of the network. This
means that the completely neutral evolutionary process
occurring in the model results in metabolisms which
exhibit too much overlap compared to the real data, but
at the same time are more diverse than the real meta-
bolic networks. Notably the model overestimates the
average OD close to the core, while underestimating it
further away, an effect which is also obvious from the
OD distribution plot (figure 5). This is most likely due
to two separate deficiencies of the model. Firstly, nodes
with a high degree in the BioCyc-network are more
likely to be included in the model networks. The aver-
age node degree (in- plus out-degree) in the union-net-
work generated from the model was 4.4, compared to
3.3 for the real data, suggesting that this is the case.
These hubs are typically close to the centre of the net-
work, and their affinity to be included in the networks
therefore leads to an increased average OD at small dis-
tances from the centre. On the other hand, further away
from the centre the model gives rise to lower average
OD than the real data. This means that the model net-
works exhibit a larger diversity on the periphery, com-
pared to the bacterial networks which are less diverse at
this distance. This discrepancy from the neutral model
suggests that natural selection and biochemical correla-
tions can act both to diversify and to narrow down
metabolic evolution. Bacterial species sharing the same
environment would of course be likely to share path-
ways which allow for the degradation of compounds
specific to that environment [28], and this effect would
lead to a lower diversity at the periphery of the meta-
bolic networks. The complimentary roles of some reac-
tions, which were reported as anti-correlated reaction
pairs by Wagner [14], could on the other hand lead to a
smaller amount of overlap, and thus a smaller number
of nodes with high OD. One might argue that the
model made use of here is too simple to accurately
describe the evolutionary paths of metabolic networks.
For example, the model does not take into account the
possibilities that the network can shrink (p < 1), add/
remove chunks of reactions, or that all substrates must
be available before a new reaction can be incorporated.
This is all very true, however the model is not meant to
give a detailed description of the evolutionary path of
metabolic networks. Its purpose is to capture how the
diversity of possible networks is influenced by the
underlying biochemical constraints. In this setting it
effectively means that it is the fluctuations of the

“surface” of the networks (reactions not included in the
common core at the periphery of the network) that is
the interesting property, which is independent of the
details of the growth model. The model used here is
then just the simplest, most straight forward, way of
obtaining an ensemble of networks of a given size,
grown from a given seed reaction. The growth model
has an obvious flavour of the retrograde model of meta-
bolic evolution, where new reactions are added at the
periphery of the network. It is therefore not surprising
to find that nodes with high OD are found close to the
centre of the network and that the average OD
decreases as we move out from the centre, but the simi-
lar results for the real metabolic networks suggest that
an analogous growth process has shaped their evolution.
Our results thus point to the retrograde model as being
more likely, however this should be looked upon in the
light of HGT, as has been suggested in [19].

Conclusion
We have presented a study of the structural correlations
in the metabolic networks of 134 bacterial species. By
considering the union-network formed by these net-
works we were able to show that the universal reactions
lie at the centre of the network and more specific reac-
tions are placed closer to the periphery. The analysis of
two smaller groups of species taken from the Chlamy-
diae and Proteobacteria phyla showed that these union-
networks exhibited metabolic cores onto which species-
specific subnetworks were attached. These features
could be reproduced by a simple network growth model
confirming that horizontal gene transfer is a prominent
mechanism in the evolution of metabolic networks. The
model does however overestimate the number of species
specific reactions, and also overestimates the size of the
common metabolic core, highlighting the effect of envir-
onmental selection and biochemical correlations.

Methods
Coarse-graining of network
The coarse-graining of the union of the metabolic net-
works was done by clustering all nodes that are con-
nected to each other, and have the same OD, into one
super node, using a depth-first algorithm. The size, si, of
the super node, i, equals the number of reactions that
were condensed together. For the small subsets of the
phyla Chlamydiae and Proteobacteria two neighbouring
reaction nodes are placed in the same super node if
their OD is exactly equal. For the much larger set of
134 organisms the sparseness in OD naturally increases,
which we compensate by letting each super node repre-
sent a range of 10 OD values (e.g. OD1 = 1, ..., 10, OD2 =
11, ..., 20, etc.). Two super nodes are then joined if there
exists at least a reaction in each super node which are
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linked together. In figure 1 we have omitted the smallest
super nodes for the sake of clarity, which explains why
the union of all bacteria seems highly disconnected.

Species under consideration
In our analysis we have done a small-scale analysis on a
subset of two bacterial phyla (Proteobacteria and Chla-
mydiae) as well as a large-scale analysis based on a
union of bacterial species taken from the MetaCyc data-
base [29]. In order to have well-defined phylogenetic
relationships between the species under consideration
we picked 134 species for which a phylogenetic tree has
been constructed [30]. Please note that this presents a
possible bias where certain phyla are over-represented
in terms of DNA-sequencing. The subset of the species
from the Proteobacteria were chosen as the 10 closest
relatives to Bordetella parapertusis (including itself), and
the subset of the Chlamydiae was chosen as all the spe-
cies of that phyla which were included in the phyloge-
netic study, which amounted to 7 species. A full list and
the two subsets of species are given in additional file 1,
Table S1.

Data analysis
The data describing the metabolism of the 134 species
was downloaded from MetaCyc (22/10/2009) [29]. We
transformed the data into a bipartite network, which
contains two types of nodes: metabolites and reactions
with directed links between them. Each reaction node
was also tagged with a list of species in which it occurs,
the organism degree. In order to simplify the analysis,
the network was projected to a reaction-reaction net-
work, where two reactions are connected if the product
of one is the substrate of the other. However, in order
to avoid connections contributed by currency metabo-
lites such as water and ATP, which tend to dominate
the network, we applied a pruning algorithm [23], which
removed all metabolites with a connectivity higher than
10 prior to the projection. The resulting metabolic net-
work contained 3650 reaction nodes and 4411 links. In
order to make sure that the pruning level chosen is
appropriate we also generated networks with pruning
level 20 and 5. The higher pruning level leads to a
dense network with short path lengths, while the lower
one gives similar results to pruning level 10. The depen-
dence of average OD as a function of distance on prun-
ing level is shown in additional file 1, figure S1.

Network growth model
The network growth model used in this study was
inspired by a previously published model by Maslov
et. al [20], which was used for modelling the evolution
of prokaryote metabolism. In our model, the growth of

the metabolic network occurs on a background of possi-
ble reactions. These were defined from the BioCyc data-
base [31], which describes the union of all known
biochemical reactions. This data was downloaded from
the BioCyc website (22/10/2009) and subject to the
same processing as the MetaCyc-data. In addition we
only kept the reactions which were in the giant con-
nected component of the network. This resulted in a
network consisting of 5191 reaction nodes and 10130
links. The growth model was implemented as follows:
first we define an initial, or seed set of reactions R0. In
each time step t of the model we do one of the follow-
ing: (i) with probability p we add a reaction node to Rt-1

by at random picking a node which is not in Rt-1, but is
neighbour of at least one of the current nodes (as
defined in the underlying BioCyc-network). With com-
plementary probability 1- p we pick a node in Rt-1,
which is a leaf, i.e. has only one link, and remove it. The
following is repeated either until the network defined by
Rt reaches a given size or after a given number of time
steps. In our version of the model the seed set is only
one reaction; either the Methenyltetrahydrofolate cyclo-
hydrolase-reaction (found in all 134 species) or a ran-
domly chosen reaction, and the parameter p was set to
unity, meaning that we only add reactions to the net-
work. If we would have used p < 1 the end result would
have been roughly the same (differing mainly in the col-
lection of peripheral reactions) but would have required
more iteration steps. Since we wished to produce a large
collection of metabolisms, and not study their exact evo-
lution, we used p = 1. The model was run 134 times to
produce an ensemble of organisms having the same size
as the union of bacteria. Also, the size of each individual
network was set to match exactly that of each consid-
ered species. In order to make sure that the choice of
seed set, in the fixed reaction scheme, does not bias the
dynamics of the model we also ran the model with a
starting node with OD = 1. The result of this simulation
can be found in additional file 1, figure S2, and shows
that the union-network in this case exhibits a similar
structure.

Additional material

Additional file 1: Additional table and figures. The file contains
additional Table S1 and additional figures S1-S3.
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