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Obscured phylogeny and possible
recombinational dormancy in Escherichia coli
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Abstract

Background: Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure
has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide
polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.

Results: The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination
between extant E. coli groups is largely limited to only three intergroup pairings.

Conclusions: Segment-dependent phylogenies most likely are legacies of a complex recombination history.
However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species
as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of
E. coli as a species, or herald the coalescence of E. coli groups into new species.
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Background
For many years, our understanding of the phylogeny of
Escherichia coli, a diverse group of pathogenic and com-
mensal organisms, has been based on multilocus enzyme
electrophoresis (MLEE) [1] patterns of the strains in the
E. coli Reference Collection (ECOR) [2]. MLEE demon-
strated subspecific clonal structure within E. coli [3,4]
and formed the basis for parsing this collection (and by
extension the broader species) into one minor (E) and
four major (A, B1, B2, D) groups. These divisions often
correlate with pathogenicity or niche [2].
Multilocus sequence typing, which uses allelic varia-

tions in a sample of housekeeping genes distributed
around the chromosome, and whole genome sequencing
have been increasingly used to study E. coli phylogeny.
However, these circumchromosomal sequence datasets
generate incongruent phylogenetic topologies. For exam-
ple, MLST frequently identifies Group B2 as being the
first to branch from the phylogenetic tree, and Groups
A and B1 as ‘sister’ groups that branch most recently. In
contrast, MLEE places Groups B2 and B1 in a proximal
branching position and Group A branches more distally

[5]. Single gene phylogenies also fail to converge on a
single topology [6], place either Group D or B2 as being
the first to branch, and usually do not result in mono-
phyletic groups [7-12]. MLST additionally demonstrates
paraphyly for Groups A or B1 in some analyses [13,14],
or portrays strains as hybrids [15]. Different relation-
ships can be generated from MLST data by varying the
choice of outgroup, the stringency of recombination
detection [16], or the phylogenetic methodology [15,16].
A thorough analysis of the core genomes of 1,878 genes
in 20 E. coli strains indicate an early bifurcation of E.
coli into Group B2 and a Group D subgroup on one
fork, and a second subgroup of Group D and all other
strains on the other, inferring paraphyly within Group D
[17]. Gordon, et al [18] apply several different but
unrooted MLST analyses to a large number of E. coli.
Their unrooted analysis cannot illuminate the order of
emergence, but provides multiple different portrayals of
Group relatedness. These disparate approaches have
failed to resolve the topology of emergence of this
species.
We attempted to produce a more cogent picture of

the emergence of E. coli by studying backbone DNA.
Backbone (also termed K-loop) DNA [19] was initially
defined as the regions of the chromosome of one of the
first sequenced E. coli O157:H7 strain EDL933 that are
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homologous with the non-pathogenic laboratory strain
K-12, thus by definition lacking pathogenicity islands
and mobile elements such as prophages [20]. We
selected four extended length (ca. 25 kb) backbone seg-
ments in four different quadrants of the chromosome in
strains belonging to different ECOR Groups (See Addi-
tional File 1, Table S1). We chose this strategy for three
reasons: First, backbone DNA is relatively uncontami-
nated by horizontally acquired DNA such as pathogeni-
city islands (encoding virulence factors), which could
have evolutionary histories quite independent of their
host bacteria [21]. Second, long segments of nucleotides
are more likely to generate bootstrap confidence values
for node placement that are higher than those produced
by more limited datasets (i.e., MLST or single gene phy-
logenies). Third, the separation of the studied segments
provides information relevant to the overall phylogenetic
topology of the species.

Results
Phylogenetic topology of E. coli
In most topologies (Figure 1, see Additional File 2, Fig-
ure S1), SD, NJ, ME, and MP phylogenetic techniques
recapitulated the major groupings of E. coli as have
been defined by MLEE and MLST. However, in some
portrayals, Group E appears as an offshoot of Group A
(Additional File 2, Figure S1 Panels E, F, H) or Group D
is paraphyletic (Additional File 2, Figure S1 Panels N, O,
P). For Segment 1, all four methods produce a single
congruent topology (topologies in which major branch
points are in identical relative positions are considered
congruent) (Figure 1, Row 1, Additional File 2, Figure
S1 A, B, C, D). For Segments 2, 3, and 4, two or three
different, i.e., incongruent, topologies emerged (Figure 1
Rows 2-4, Additional File 2, Figure S1 E, F, G, H, I, J, K,
L, M, N, O, P). Most notably, we found no congruencies
between the topologies ordained by the same phyloge-
netic methods when these analyses were applied to dif-
ferent Segments (Figure 1). The confidence bootstrap
values (Additional File 2, Figure S1) of these phylogenies
cover a spectrum of magnitude (as do their variances
from congruency), but generally exceed those produced
by MLST [22-25].
The choice of segment influenced the inferred topol-

ogy to a greater extent than did the method used to
construct the phylogeny. This is surprising, because phy-
logeny should be a property of organisms, and not vary
as a function of the DNA segment scrutinized. Most
likely, circumchromosomal datasets produce net topolo-
gies weighted by the differing evolutionary and recombi-
nation histories of components of the chromosome. In
other words, the phylogenetic history of E. coli becomes
less clear as more sequence data are entered into
analysis.

Inter-Group recombination
Next, we used GENECONV [26], a program that com-
pares orthologous DNA and identifies regions that have
been acquired by recombination, to identify among the
four extended segments a total of 112 inter-group
exchanges (Figure 2). Of these 112 exchanges, 41 were
‘duplicates’, where two or more regions identified by
GENECONV had identical borders. Such conversions
probably represent transfer of DNA from a single strain
in one Group to a single strain in another Group before
lineages diverged in the recipient Group. Of the remain-
ing 71 converted segments, 70 overlapped partially with
at least one other exchanged fragment (see Additional
File 3, Figure S2).
We used three increasingly stringent tiers of analysis

to determine if the exchanges between Groups occurred
randomly (portrayed in Figure 3, see Additional File 4,
Table S2). For Tier 1, we considered all 112 exchanges
as independent events, and identified disproportionate
(over-represented) conversions between Groups B2 and
D, A and B1 (both p < 0.0001), and A and E (p <
0.001). For Tier 2, we assigned duplicate conversions of
fragments with identical borders as single events, and
again found statistically significant non-random associa-
tions between Groups B2 and D, A and B1 (both p <
0.0001), and A and E (p < 0.01) for the 57 such non-
duplicated inter-group exchanges. For Tier 3, we
counted any and all inter-group recombination events
once and only once for any segment, because most
recombined fragments overlap to some extent. Among
the 13 such occurrences, the four B2/D and two A/E
pairings were overrepresented (both p = 0.06). These
different conversion enumeration strategies each suggest
that DNA exchange was restricted to a subset of all pos-
sible pairings.
Intra-group recombination was more frequent than

inter-group exchange. Among the 258 intra-group and
772 inter-group strain to strain opportunities for pair-
ings, GENECONV identified 40 (expected 34), 26
(expected 18), and 10 (expected 5) intra-group and 95
(expected 101), 47 (expected 55), and 9 (expected 14)
inter-group recombination events for tier 1, 2, and 3
exchanges, respectively. The chi square and two-tailed
approximate P values for tier 1, 2, and 3 inter- vs. intra-
group comparisons are 1.415 (P = 0.23), 4.719 (P =
0.03) and 6.786 (P = 0.009), respectively.

Discussion
Our data prompt two questions: First, how can the
robust recombination that occurred in E. coli’s distant
past [27] be reconciled with the restricted recombina-
tion among extant groups? Second, can the restricted
recombination that we demonstrated across four seg-
ments from different quadrants of the chromosome be
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harmonized with the concept that members of the same
species readily exchange DNA [28]? In answer to these
questions, we propose that for much of its existence, E.
coli exchanged DNA freely between groups as evidenced
by its convoluted phylogeny. However, as the five
lineages that formed each phylogroup continued to

evolve and differentiate, their abilities to receive and/or
to donate DNA diminished, and the exchange of chro-
mosomal DNA among extant E. coli is now largely dor-
mant. Mechanisms for exchange restriction might
include limited opportunities for interactions between
groups as their members occupy particular niches

E D

B2

B1

A

E D

B2

B1

A

B2

B1

A

E D D

B2

B1

A

E

B1

E

A

D

B2

B1

E

A

D

B2

B2B1

A E
A

B1

E D

B2

O

B1

E

A

D

B2

E

A

B1

D

B2

B1

A
E D

D

B2

D

D

B2

AE

B1

OOOO

O

OOOO

O O O O

B1

B2

D

DA E

B1

E

A

D

B2

Segment Split Decomposition Neighbor Joining Minimum Evolution Maximum Parsimony

1

2

3

4

Minimum EvolutionMaximum Parsimony

OO

A

B1

E

D

B2

B1

A
E

D

B2
D

Figure 1 Phylogenetic Topologies. Various phylogenetic topologies are assigned to Segments 1, 2, 3, and 4 (rows) by SD, NJ, ME, and MP
methods (columns). Congruent topologies are displayed within conjoined panels. ‘O’ represents the outgroup, E. albertii. The Segment 4 ME and
MP portrayals are switched to demonstrate topologic congruency between adjacent panels.

Leopold et al. BMC Evolutionary Biology 2011, 11:183
http://www.biomedcentral.com/1471-2148/11/183

Page 3 of 9



(mostly in animals and humans) or organism-specific
factors (e.g., phage receptors, differing DNA restriction
or DNA mismatch repair capacities) hinder conversions.
The durability of the nonrandom exchange of DNA

between groups could determine the fate of E. coli. If
these conversion patterns become increasingly restricted,
there could be involution of the ability to exchange
chromosomal DNA across the entire species. Alterna-
tively, if these networks are durable, Groups B2 and D,
and possibly Groups A, B1, and E, could now be coales-
cing, (i.e., converging through recombination) as nascent
species, in which case inter-group recombination will
persist for these sets. This latter scenario would resem-
ble the early fragmentation of an ancestral species into
E. coli and Salmonella [29]. However, recombinational
dormancy is only one explanation for our findings, and
confirmation or refutation will require larger datasets,
using, as we note above, optimally representative strain
sets.
The disproportionately high intra-group recombina-

tion rates strengthen the case for highly restricted
recombination networks between sets of organisms, as
suggested by other investigators. For example, the pat-
terns in Figure 3 resemble gene-sharing “highways” [30]
between distantly related bacteria, and our intra-species
analysis suggests this process applies within E. coli. Such
networking also appears among penicillin resistant
pneumococci [31].
The appropriateness of defining bacterial species based

on net DNA homology has been questioned [32-34], but
there remains concurrence that members of a species
should exchange DNA [28,35]. Statistical comparisons
of open reading frames suggest a recent and unexpected
slowing of DNA exchange between enteric bacteria
belonging to different species [36]. Our findings now
raise the possibility that DNA exchange is also recently
constrained within a single species, i.e., E. coli, a taxo-
nomic rank that should, according to Mayrian theory
[28], tolerate recombination.
Our study has several limitations. It is possible that

the predominantly human origin of our strain set intro-
duced biases. However, isolation of the E. coli from
humans does not mean that these organisms are
adapted to humans. Specifically, urinary and meningitis
isolates occupied bladder, kidney, or meningeal niches
only briefly before they were recovered, and their prior
venues are unknown. E. coli O157:H7 infection of
humans is incidental and quite ephemeral; these human
enteric pathogens are much better adapted to the rumi-
nant gut. Microbial phylogenetic studies should ideally
use minimally biased, globally representative strain sam-
ples. However, until such a sample set is assembled, we
remain reliant on strain sets of variable convenience,
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and must acknowledge that they might produce mis-
leading interpretations regarding microbial membership
in a given niche. Also, fragmentation of E. coli into lim-
ited recombination networks could be related to the
recent entry into the species niche from which they
were recovered. Such entry is soon followed by clonal
expansion, and increased opportunities for recombina-
tion with other occupants, but the surge does not reflect
evolutionarily-driven emergence. Indeed, Walk, et al
[37], used MLST (22 loci) to study E. coli with “notice-
ably divergent sequences” and most of their phyloge-
netic outliers were from non-human sources. This
finding lends credence to the possibility that recent
expansion in human niches leads to recovery opportu-
nity and biases, and that human-based strains might
offer an incomplete picture of the broader species. How-
ever, this study of largely environmental strains could
also reflect strain selection biases if they comprised only
a small minority of non-human isolates in the collection.
We also acknowledge that the segments chosen might
be at variance from the true evolutionary history of the
chromosome. However, the inclusion criteria balanced
our need to select segments that were of sufficient
length to identify recombination, that were widely sepa-
rated on the chromosome thereby providing validity to
and generalizing our findings, and that were not abun-
dantly interrupted by non-backbone DNA, which might
have introduced pro-recombinational biases. Moreover,
the analysis of Segments 3 and 4 (using a somewhat dif-
ferent strain set) validated the data from initial data Seg-
ments 1 and 2. These measures reduce the likelihood
that we inadvertently introduced a bias for certain kinds
of genes that are more or less likely to have undergone
recombination [27]. Additionally, it is likely that all spe-
cies are gradually radiating, but our data raise the possi-
bility that extant E. coli, after evolving from a set of
organisms that were a species (as traditionally defined),
are at or near a point where we might consider their
coalescence into new species. An additional caveat when
considering our findings is that we purposely focused on
the core (backbone) genome, and did not enter into
analysis DNA that had been clearly acquired by lateral
gene transfer. It is known that such horizontally trans-
ferred DNA is readily exchanged between organisms
that are quite distantly related, even belonging to differ-
ent species, and we wished to retain focus on the stable
portion of the chromosome. We had hoped to resolve
differences in phylogeny by the reductionist approach of
extended length segment analysis, but the variably dis-
cordant phylogenies suggest to us that at least at present
the problem cannot be solved: the E. coli chromosome
“chassis” has parts with too many origins to assign the
emergence scenario of the whole with confidence. Our
data do prompt us to propose that future phylogenetic

analyses address disproportionate contributions
from recently acquired, or very long, segments of
chromosomes.

Conclusion
It is currently problematic to use circumchromosomal
sequence data to develop an unambiguous emergence
topology for E. coli. Most likely, E. coli’s legacy of
recombination [38] hinders such attempts to discern a
cogent phylogeny, as predicted two decades ago by
Dykhuizen and Green [6]. It will be tempting to use
whole genome sequences to construct phylogenies of
other microbes, but our findings from E. coli suggest
that depending on the phylogenetic questions asked,
there are optimal sizes of datasets to provide the
answers. Indeed, more (i.e., total genomic) sequence
might, counter-intuitively, offer less clarity in trying to
discern species topology. E. coli might now be in an
epoch of recombinational dormancy. The few non-ran-
dom conversion patterns we identified could represent
new species emerging, or, alternatively, vestigial recom-
bination capabilities between existing groups, if the abil-
ity to exchange DNA is slowing, among the set of
organisms we know as E. coli.

Methods
Strains
For our initial strain set, we selected 16 strains from
ECOR groups A, B1, D, and B2, five fully sequenced E.
coli deposited in GenBank as of 18 August 2006, nine
additional E. coli in GenBank as of 4 February 2009, and
Escherichia albertii (see Additional File 1, Table S1). In
our validation strain set, we chose 28 strains in Gen-
Bank as of 29 March 2010 (Additional File 1, Table S1)
that had extensive (>95%) alignment between Segments
3 and 4. We limited the analysis of Group E strains
because there is negligible recombination of backbone
DNA between members of this clade [39].

Choosing, Validating, and sequencing Extended Segments
We used a subset of E. coli genomes (strains K-12,
CFT073, UTI89, O157 Sakai, and EDL933 [19,40]) at
the outset of the project for segment selection purposes.
Then, we identified the conserved backbone regions that
were at least 25 kb in length, and uninterrupted by O-
islands. Two regions that were 25 kb in length in two
different quadrants of the chromosome were selected
for further analysis: 1,084,426 - 1,109,426 (Segment 1)
and 2,368,611 - 2,393,611 (Segment 2) (position num-
bers based on nucleotide sites in the O157 Sakai chro-
mosome) [19]. For the purposes of this study, these
genes met a functional definition of backbone, as chro-
mosomal loci common to all sequenced E. coli at the
time we needed to choose a data set for analysis.
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However, it is possible that a subset of these open read-
ing frames might not be found in subsequently
sequenced strains. We then performed long range PCR
across three overlapping sections of each 25 kb segment
in a set of pilot ECOR strains (Additional File 1, Table
S1) to ensure that these segments were likely to be
intact and uninterrupted across the species.
Segments 1 and 2 were sequenced (from nucleotide

positions 1,084,356 to 1,110,604 and 2,368,707 to
2,393,879, respectively) in eight ECOR strains (two each
from groups A, B1, B2, and D) (Additional File 1, Table
S1) based on uniform restriction patterns in these seg-
ments in these pilot strains. Orthologous sequences
from 13 published E. coli strains (including four of the
initial five-strain dataset) as well as E. albertii (outgroup)
(Additional File 1, Table S1) were retrieved from the
NCBI database using BLASTn [41], then aligned to Seg-
ments 1 and 2 of the ECOR strains. We analyzed only
the nucleotides of Segments 1 and 2 that were repre-
sented in all 21 strains by concatenating these common
sequences into two respective contigs for each strain
(Segment 1 = 23,237 bp, Segment 2 = 23,394 bp), and
then aligning them using ClustalW [42]. Validation stu-
dies used Segments 3 (3,633,818 - 3,658,818) and 4
(4,754,067 - 4,779,067), and the same alignment techni-
ques used for Segments 1 and 2. Primers were designed
to amplify ~500 bp overlapping segments of the genome
in Segments 1 and 2 in eight ECOR strains (Additional
File 1, Table S1). DNA was prepared by phenol chloro-
form extraction and ethanol precipitation, and each
amplicon was Sanger sequenced.
Sequenced amplicons for each strain were assembled

into contigs using the SeqMan Pro program (Lasergene
v.3 DNASTAR software suite). Regions that failed to
amplify and multi-nucleotide insertions or deletions
were not included in the final concatenated assembly.
Single nucleotide indels and SNPs occurring in only one
strain were verified by visualizing the original trace data.
The sequences from the amplicons that were success-
fully sequenced in every strain and for which there was
orthologous sequence in the published genomes were
concatenated using Lasergene’s EditSeq program and
aligned by ClustalW in Molecular Evolutionary Genetics
Analysis (MEGA) software v.4.0 [43]. All analyzed
sequences are provided in Table S3 (see Additional File
5), as aligned by SeaView (version 4.2.11) [44]. We
chose to use E. albertii as an outgroup in all analyses,
because, unlike Salmonella, it is considered a member
of the E. coli species, and has considerably more Seg-
ment 2 orthologous sequence E. coli than E. fergusonii
and evolved less rapidly (thereby diminishing the risk of
long branch attraction) [37]. The ClustalW alignment of
all strains (except E. albertii) (see Additional File 3, Fig-
ure S2) was analyzed for evidence of sequence acquired

by recombination using GENECONV [26] with com-
mand-line parameter gscale = 1. Regions of sequence
identified as being affected by recombination were
replaced by “—”. An a of 0.05 was considered statisti-
cally significant.
We constructed phylogenetic models using Neighbor

Joining (NJ), Minimum Evolution (ME) and Maximum
Parsimony (MP) analyses in MEGA v.4.0 software [43].
Phylogenetic analysis was performed by using Kimura-2-
parameter (for NJ and ME), and complete-deletion for
all trees. Bootstrapping was performed with 1,000 repli-
cates. Split Decomposition (SD) network analysis was
performed using SplitsTree v.4.10 [45].

Statistics
We used the Pearson chi-square statistic in a permuta-
tion-like simulation test to determine the statistical sig-
nificance of the differences between observed and
expected inter-group recombination frequencies. For
expected counts, we assume that each of the 166 (Seg-
ments 1 and 2) or 292 (Segments 3 and 4) inter-stain
pairings is equally likely to be involved in a gene conver-
sion. The relative probability of a between-group gene
conversion for each segment is proportional to the
number of strains in the corresponding groups.
Expected and simulated counts are conditional on the
total number of observed counts in segments, and
observed and expected numbers are summed over seg-
ments for each pair of groups. For example, if there are
10, 20, 30, and 40 total inter-group conversions in the
four segments, respectively, and if Group X has five stu-
died strains and Group Y has six studied strains for Seg-
ments 1 and 2 and four and five respectively on
Segments 3 and 4, then there would be (10+20) × (5 ×
6)/166 + (30+40) × (4 × 5)/292 expected gene conver-
sions between Groups X and Y. The Pearson chi-square
statistic, which is a higher-dimensional analog of the
Cochran-Mantel-Haenszel (CMH) test statistic [46] (a
standard way to estimate p-values for stratified data) is
summed over pairs of groups. p-values were estimated
by a simulation procedure due to the large number of
empty cells. The test score for the observed counts was
compared with the same test score for 106 simulated
count sets. In each simulation, the observed recombina-
tion events for each segment were randomly reassigned
to pairs of groups according to the expected probabil-
ities for that segment, specifically by simulating the
values of a multinomial distribution for each segment.
The simulated counts were summed across the four seg-
ments and the Pearson test score recomputed. The p-
value for biases between-group recombination rates
across segments is estimated as the proportion of simu-
lations for which the randomized test score was greater
than or equal to the observed test score.
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The chi-square test was used to test the significance of
the observed difference in inter- and intra-group recom-
bination frequency. The total observed recombination
events and possible recombination opportunities (inter-
group and intra-group) were enumerated for each tier in
each of the two categories. Group E was not included in
the analysis because of the paucity of group E strains
studied, as noted above.

Additional material

Additional file 1: Table S1. Strains Used.

Additional file 2: Figure S1. Topologies generated by various analyses
from each Segment.

Additional file 3: Figure S2. Fragments identified as being subjected to
conversion.

Additional file 4: Table S2. Conversion events identified by GENECONV.

Additional file 5: Table S3. Sequence alignment.
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