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Abstract

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is
also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of
apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein
found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the
movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal
proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain
some insights into specialization of GAPD-2 as a testis-specific protein.

Results: A dataset of GAPD sequences was assembled from public databases and used for phylogeny
reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too
low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed
selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different
regions of the same sequences.

Conclusions: The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early
evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as
cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and
acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This
domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-
rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in
some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.

Background
Glyceraldehyde-3-phosphate dehydrogenase (GAPD, EC
1.2.1.12) is a homotetrameric glycolytic enzyme provid-
ing phosphorylation of 3-phosphoglyceraldehyde to 1,3-
diphosphoglycerate coupled with reduction of NAD+ to
NADH. Mammals are known to possess two tissue-spe-
cific GAPD isoenzymes: somatic (GAPD-1) and testis-
specific (GAPD-2, GAPDS). For Homo sapiens, their
protein sequences are 68% identical. Besides the two iso-
enzymes, a vast amount of GAPD pseudogenes was
found in the genomes of primates and rodents [1,2].

Mammalian GAPD-1 is a well-studied protein, a high
concentration of which in cells (5-15% of all cytoplasmic
proteins) confirms its functional significance. Recent
studies established that GAPD-1 is not simply a classical
metabolic protein involved in glycolytic energy produc-
tion, but rather a multifunctional protein with specific
functions in numerous processes [3,4]. GAPD-1 was
shown to display both cytosolic and nuclear localization
participating in endocytosis [5-7], plasma membrane
fusion [8], microtubule assembly [9,10], secretory vesicu-
lar transport [11,12], protein phosphotransferase/kinase
reactions [13,14], translational and transcriptional con-
trols of gene expression [15-17], regulation of telomere
structure [18,19], nuclear membrane fusion [20], nuclear
RNA transport [21], DNA excision-repair [22,23] and
induction of apoptosis in case of oxidative stress
[24-27]. Furthermore, GAPD-1 was implicated in
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Alzheimer’s [28-30] and Huntington’s [30-32] neurode-
generative diseases.
As opposed to soluble GAPD-1, mammalian GAPD-2

is tightly attached to the cytoskeleton, namely to the
principal piece of the spermatic filament fibrous sheath
[33-35]. The attachment is mediated by an additional
N-terminal proline-rich domain of 74 amino acids
[35,36]. GAPD-2 supplies the dynein ATPases of fila-
ment with energy, therefore playing a crucial role in
the maintaining of sperm motility. Disruption of its
expression generally leads to infertility [37]. Due to its
strong association with cytoskeleton GAPD-2 remains
within the insoluble fraction after cell breaking, signifi-
cantly complicating its experimental investigation. As a
result, there is only little data on GAPD-2 properties.
It was recently discovered to display enhanced stability
towards denaturation that may be an adaptation to the
absence of protein expression in spermatozoa. Enzyme
kinetics exhibited by GAPD-2 was found to differ from
the one exhibited by GAPD-1 too [38]. Based on the
study of short functional motives of both mammalian
isoenzymes, GAPD-2 was proposed to evade involve-
ment in most non-glycolytic processes characteristic
for GAPD-1 [39].
GAPD-1 and GAPD-2 are also possessed by some

other vertebrates besides Mammalia [40-42], but their
expression is apparently not always tissue-specific. In
the bony fish Oplegnathus fasciatus both GAPD mRNAs
were detected ubiquitously in all of tissues examined
[40], and therefore the functional specificities of the iso-
enzymes seem to differ from the mammalian ones.
Based on the phylogenetic trees, it was hypothesized
that GAPD could diverge to the isoenzymes around the
origin of Bilateria, but as only vertebrates have retained
GAPD-2, this scenario seems unlikely. However, some
vertebrates (e.g. Xenopus laevis) were discovered to lack
GAPD-2 [42].
Single copy genes are thought to evolve conservatively

because of strong negative selective pressure. Gene
duplications produce a redundant gene copy and thus
release one or both copies from negative selective pres-
sure. Thus, duplications should be an important precur-
sor of functional divergence. The increased availability
of sequences in the public databases allows the investi-
gation of the molecular evolution of the GAPD gene
family and the evaluation of selection following duplica-
tion events. In the present study we focus on the evolu-
tion of the poorly uninvestigated GAPD-2 isoenzyme.
Previously GAPD-2 was discovered to be specific for
vertebrates [42]. Therefore we will focus on this taxon
as well as on the other groups of deuterostomes not
considered in [42]. Specifically, we (1) examine the evo-
lutionary history of GAPD-2 and other GAPD isoen-
zymes of deuterostomes, (2) evaluate lineage-specific

changes in selective pressure affecting GAPD isoen-
zymes, and (3) look into the metamorphosis of GAPD-2
to a testis-specific protein.

Results
Sequences of GAPD family members
The numbers of discovered GAPD family members for
all examined species are represented at Figure 1.
Mammalian GAPD sequences were extracted from the
Ensembl database. For most species (19 of the 25 exam-
ined) two different sequences were obtained. One of
these sequences always contained an additional proline-
rich domain at the N-terminus, as observed in the
human GAPD-2. A single GAPD sequence was obtained
for each of the 6 remaining mammalian species, either
with or without the proline-rich domain. The lack of
the second sequence seems to be due to incompleteness
of genomes.
GAPD sequences of teleosts were obtained using both

Ensembl (5 species present in this database) and BLAST
searches against RefSeq transcripts and the EST division
of GenBank (species not covered by Ensembl). Three
different sequences were discovered for 4 species, two
sequences - for 6 species and a single sequence - for 3
species. The differences between the numbers of
obtained GAPD sequences are not necessarily a result of
data incompleteness and may be biologically relevant.
For example, only two sequences were identified within
a complete genome of zebrafish.
Identification of GAPD sequences of all other species

was performed by conducting BLAST searches against
RefSeq transcripts and the EST division of GenBank.
Two different GAPD sequences were discovered for
lizards, some cartilaginous fishes, some jawless verte-
brates, some tunicates and a few non-deuterostomes (3
of 10 insects, a leech and a flatworm). Single GAPD
sequences were discovered for all examined birds, reptiles
except lizards, amphibians, lancelet, echinoderms, acorn
worm, Xenoturbella bocki, as well as for the remaining
cartilaginous fishes, jawless vertebrates, tunicates and
most examined non-deuterostomes. Two species (Xeno-
pus laevis and Ciona savignyi) were revealed to possess
even three, but slightly different GAPD family members.

Tissue-specific translation of the proline-rich domain in
lizard GAPD
Besides mammalian GAPD-2, proline-rich domains were
detected only in one of the GAPD isoenzymes of lizard
species: Anolis carolinensis and Gekko gecko. ESTs of A.
carolinensis encoding this isoenzyme originated from tes-
tis [GenBank:FG786985, GenBank:FG793471, GenBank:
FG801901, GenBank:FG802958], regenerating tail [Gen-
Bank:FG771974, GenBank:FG779496] and the whole
embryo [GenBank:FG720854]. It is remarkable that ESTs
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from regenerating tail and embryo lack a fragment of 103
nucleotides (shortened variant), which in present in ESTs
from testis (full-length variant; see Figure 2 and addi-
tional file 1: Alignment of the two forms of Anolis caroli-
nensis GAPD-2 mRNA). This fragment is situated near
the 5’-terminus and encodes the beginning of the pro-
line-rich domain including an ATG start codon. The
next possible start codon, which is present in both EST

variants, is located right after the proline-rich domain. So
the protein with the proline-rich domain should be trans-
lated only from the full-length EST variant. Translation
of the shortened EST variant should begin from the sec-
ond start codon such that the product will not possess
the proline-rich domain.
Availability of the two EST variants must be a result of

tissue-specific alternative splicing: the exon of 103
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Figure 1 Numbers of predicted GAPD genes for the examined species. Yellow color corresponds to species with a single predicted gene,
blue color - with two genes and red - with three genes. Taxonomy was obtained from NCBI Taxonomy database [119]; the figure was prepared
with iTOL [120].
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nucleotides was either preserved, as in gonads, or spliced
out, as in embryo and regenerating tail. Thus, the presence
of the proline-rich domain has a tissue-specific character.
A few ESTs of G. gecko were extracted from samples

of injured brain and spinal cord [GenBank:EB170778,
GenBank:CV053413] and had incomplete 5’-termini:
only a part of the sequence encoding the proline-rich
domain was present. Therefore it is impossible to ascer-
tain whether the translation of the proline-rich domain
in G. gecko is governed by alternative splicing like in A.
carolinensis.

Phylogeny and syntenic analyses
Analysis of the orthologous and paralogous relationships
of GAPD isoenzymes among different species was carried

out by combining the phylogeny reconstruction of the
GAPD gene family with syntenic comparison. The phylo-
genetic tree constructed from amino-acid sequences
demonstrated poor correspondence to the common
knowledge about the evolution of deuterostomes, prob-
ably due to high sequence conservation (only 48 of 335
residues are different between GAPD-1 of human and its
ortholog in zebrafish). Therefore we decided to switch to
nucleic sequences which are less conserved. Indeed, the
obtained phylogenetic tree (Figure 3) showed better cor-
respondence to the common evolutionary knowledge,
but still was far from perfect. For example, tunicates were
closer to mammals than fishes.
All GAPD isoenzymes of vertebrates can be subdivided

into two groups based on the clades of phylogenetic tree:

Translation
initiation site #1
(in testis)

Translation
initiation site #2
(in regenerating tissues)

Translation
termination site

Alternative
exon

Proline-rich
domain coding
region

1                             2                                          3                                     4                5                       6                        7                                 8                         9                           10                        11                                  12

full-length : ggttccgagccgttcggtcaatcgtttgggaggaagtctctcagtatttctaggtagagaaacggtagataggtcagcca
shortened   : ggttccgagccgttcggtcaatcgtttgggaggaagtctctcag------------------------------------
                                                                                              

full-length : gcaaaatgaatccacgcggtaacagtcaaccaatagagagcacatcagttagtgtcaaagttttcaggcttcagatcagt
shortened   : -------------------------------------------------------------------gcttcagatcagt
                   M  N  P  R  G  N  S  Q  P  I  E  S  T  S  V  S  V  K  V  F  R  L  Q  I  S  
                                                                                              

full-length : gaaggctctcctccaaagatctcccctcagcctgcaccagagcctgaaccagagccagaaccacaaccacctaccccaga
shortened   : gaaggctctcctccaaagatctcccctcagcctgcaccagagcctgaaccagagccagaaccacaaccacctaccccaga
              E  G  S  P  P  K  I  S  P  Q  P  A  P  E  P  E  P  E  P  E  P  Q  P  P  T  P  E 
                                                                                              

full-length : gcctgaaccagaagctcctccaccacctccgccacctccacctcctccaccacctccaaaacgcatggctgaattcgcgg
shortened   : gcctgaaccagaagctcctccaccacctccgccacctccacctcctccaccacctccaaaacgcatggctgaattcgcgg
               P  E  P  E  A  P  P  P  P  P  P  P  P  P  P  P  P  P  P  K  R  M  A  E  F  A  V

Exon 1 Exon 2

Exon 2 Exon 3

Exon 3

Exon 3

Translation initiation site #1

Translation initiation site #2

A.

B.

after splicing

Figure 2 Alternative splicing in GAPD-2 of Anolis carolinensis. Alternative splicing seems to govern the proline-rich domain presence in
GAPD-2 of a lizard Anolis carolinensis. If the second exon is spliced, the protein product will lack the proline-rich domain, otherwise it will
possess this domain. A) Map of GAPD-2 gene constructed based on both Ensembl and EST data. Exons are in yellow, introns and not-transcribed
regions are in blue. The positions of the two possible translation initiation sites are marked, as well the position of the translation termination
site. B) Alignment of the 5’-termini of full-length and shortened (lacking the second exon) mRNAs. The sequences of possible protein products
are also represented.
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Figure 3 Phylogenetic tree of 92 GAPD isoenzymes. Phylogenetic tree constructed on nucleotide sequences using the Bayesian algorithm.
Numbers at nodes are the obtained posterior probabilities. Discontinuous lines mark the branches of enormous high length (more than 0.75),
which can correspond to pseudogenes or contaminated samples. The tree does not fit the common knowledge about the evolution in details;
nevertheless it provides some useful information. For more accurate definition of GAPD evolution, syntenic analysis was also used.
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the group including mammalian GAPD-1 and the group
including mammalian GAPD-2. GAPD of insects sepa-
rates before these two groups diverge, which means that
the duplication into GAPD-1 and GAPD-2 took place
after the divergence of protostomes and deuterostomes.
The orthologs of mammalian GAPD-1 and GAPD-2 are
further referred to as GAPD-1 and GAPD-2,
correspondingly.
The clade including mammalian GAPD-1 is supported

by a high posterior probability (100%). Inside this clade
a number of additional duplications were detected. One
of them apparently happened near the origin of teleosts
and produced a third GAPD isoenzyme hereinafter
referred to as GAPD-3. Other independent duplications
produced additional GAPD isoenzymes in lamprey, hag-
fish, sea squirt and Xenopus laevis.
The clade including mammalian GAPD-2 is based on

a less robust branch with a posterior probability of 77%.
It splits into a clade of vertebrates (100% posterior prob-
ability) and a clade including the only GAPD isoen-
zymes of echinoderms, lancelet, hemichordates and
Xenoturbella bocki, as well as the second GAPD isoen-
zyme of some tunicates (77% posterior probability). On
account of lower support value, merging of these two
clades into one is questionable and needs confirmation.
The syntenic analysis showed that GAPD family mem-

bers of the examined species can be linked to either of
two loci: the locus syntenic to human GAPD-1 contains
GAPD-1 of zebrafish, GAPD-1 and GAPD-3 of stickle-
back, the only GAPD of lancelet and the only GAPD of
sea squirt; the locus syntenic to human GAPD-2 con-
tains GAPD-2 of both zebrafish and stickleback (Figure
4). The similarity between gene layouts within both loci
is rather low, multiple genome micro-rearrangement
events such as deletions and inversions were detected.
The surroundings of GAPD genes in sea urchin and
acorn worm genomes do not contain any common
genes with both each other and the revealed two synte-
nic loci. The genes in these surroundings do not form
any clusters in the genomes of other examined species
as well. This can be accounted for distant relationships
between the species.
BLAST searches of genes which are syntenic to

human and fish GAPD-2 were carried out in the gen-
omes of lancelet, sea squirt, sea urchin and acorn worm.
They showed that these genes are dispersed in the gen-
omes rather than combined together in a single locus.
The constructed synteny maps provide support for

orthology between GAPD-1 of human, either GAPD-1
or GAPD-3 of stickleback, GAPD of lancelet and sea
squirt, as well as between GAPD-2 of human and both
fishes. These results generally agree with the phyloge-
netic trees, indicating orthology between appropriate
isoenzymes of human and fishes. Syntenic analysis

helped to identify the origin of lancelet and sea squirt
GAPDs, which was not determined with confidence by
phylogenetic trees construction because of low branch
support values. The evidence is also given for the origi-
nation of GAPD-1 and GAPD-3 of stickleback and
probably some other bony fishes as a result of teleost-
specific whole genome duplication.

Selective pressure estimation
Ka/Ks profiles were compared in four clades: mamma-
lian GAPD-1 and GAPD-2, teleost GAPD-1 and GAPD-
2, while GAPD of insects was used as an outgroup. To
avoid saturation in synonymous substitutions which can
significantly affect the results, pairs of closely related
sequences were considered (Table 1).
Results of Ka/Ks profile calculation show that selective

pressure varies for different regions of GAPD sequences
(Figure 5). Most regions of all examined sequences are
suggested to be under strong purifying selection (Ka/Ks

< 0.1). However, a part of the proline-rich domain of
mammalian GAPD-2 is not restrained by purifying
selection with Ka/Ks up to 1.1.
In mammalian GAPD-1 and GAPD-2, teleost GAPD-2

and insect GAPD, the purifying selection is impaired
approximately between the 85th and 105th positions of
protein sequences (Section 1; from here on the number-
ing of amino acid positions as in mammalian GAPD-1).
In mammalian GAPD-2 purifying selection is also wea-
kened between the 265th and 285th positions (Section
2). In teleost GAPD-1 purifying selection is weakened
between the 55th and 75th positions (Section 3).
The regions under impaired purifying selection were

mapped on the 3D-structure of human GAPD-1 (PDB
ID 1u8f). Section 1 corresponds to a buried b-strand
and adjacent loops near the NAD-binding site. Sections
2 and 3 are solvent-exposed regions of the polypeptide
chain also composed of both b-strands and loops.
Selective pressure affecting GAPD family members

was also investigated by means of branch-specific mod-
els as implemented in PAML. Six datasets were exam-
ined: mammalian GAPD-1 (17 sequences) and GAPD-2
(12 sequences), teleost GAPD-1 (10 sequences), GAPD-
2 (7 sequences) and GAPD-3 (4 sequences) as well as
insect GAPD (8 sequences). To determine whether the
selective constrains vary for different isoenzymes and
lineages, two models were compared: one-ratio (R1) and
six-ratios (R6). R1 assumed constant Ka/Ks ratio for all
examined GAPD datasets, whereas R6 assumed different
ratios for each dataset. The obtained Ka/Ks ratios and
the likelihoods of the models are represented in Table 2.
The likelihood ratio test (LRT) indicated a significant
difference between the likelihoods of R1 and R6 (2d =
148.57, df = 5, p-value = 0.00), implying variation of
selective constrains at least for some datasets.
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Following the results obtained for R6 model, the Ka/Ks

ratios of mammalian GAPD-2 and insect GAPD differ
from the mean value above all (Figure 6). Therefore the
hypotheses stating that the selective constrains differ
between these two and the other datasets were tested.
Three models were compared with R6: R2m model
assuming constant Ka/Ks ratio for all datasets except

mammalian GAPD-2, R2i model assuming constant Ka/
Ks ratio for all datasets except insect GAPD and R3
model assuming constant Ka/Ks ratio for all datasets
except both mammalian GAPD-2 and insect GAPD (see
Table 2 for the obtained ω-values and likelihoods). LRT
revealed that the likelihoods of R3 and R6 are not signif-
icantly different (2d = 6.73, df = 3, p-value = 0.08), while
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Figure 4 Synteny maps. Syntenic comparison of GAPD genes among human (Homo sapiens), stickleback (Gasterosteus aculeatus), zebrafish
(Danio rerio), lancelet (Branchiostoma floridae) and sea squirt (Ciona savignyi). A) The locus containing GAPD-1 of human, GAPD-1 of stickleback,
GAPD-3 of stickleback, the only GAPD isoenzyme of lancelet and one of GAPD isoenzymes of sea squirt. B) The locus containing GAPD-2 of
human, GAPD-2 of stickleback and GAPD-2 of zebrafish. GAPD genes are shown by ovals, other genes - by rectangles. Homologues are indicated
by discontinuous lines. The numbers near the yellow axes mean either the quantities of genes which are not shown or the distances in
kilobases.

Table 1 Pairs of sequences used for Ka/Ks calculation

Taxon Species Isoenzyme Sequence identity, %

Mammals Homo sapiens - Microcebus murinus GAPD-1 91

Homo sapiens - Callitrix jacchus GAPD-2 94

Teleosts Tetraodon nigroviridis - Takifugu rubripes GAPD-1 94

Tetraodon nigroviridis - Takifugu rubripes GAPD-2 92

Insects Drosophila ananassae - Drosophila virilis GAPD 87
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the likelihoods of both R2m and R2i are significantly
lower (2d = 64.84, df = 4, p-value = 0 and 2d = 60.5, df
= 4, p-value = 0, respectively). It means that the selec-
tive constrains are more or less similar for all three tele-
ost GAPD isoenzymes and mammalian GAPD-1, greater
for insect GAPD and weaker for mammalian GAPD-2.

Discussion
Evolutionary relationships between GAPD isoenzymes
In this study we sought to expand the previous phyloge-
netic investigations of GAPD [42-50] by concentrating
on deuterostomes. As compared to the study in refer-
ence [42], which is also focused on deuterostomes, we
introduced a number of new sequences especially from
non-mammalian and non-teleost species and carried out
the syntenic analysis. This allowed more accurate

determination of phylogeny, as well as the identification
of some novel GAPD isoenzymes, for example the third
isoenzyme of teleosts.
The constructed phylogenetic trees provide evidence

for duplication in the early evolution of chordates which
gave rise to GAPD-1 and GAPD-2 isoenzymes. It pre-
sumably took place even before the first whole-genome
duplication of vertebrates [51-53]. The loci of GAPD-1
and GAPD-2 were found not to be syntenic to each
other. It can be explained either by a single-gene dupli-
cation, which produced a copy of the ancestral GAPD
gene, or by loss of synteny after a duplication of longer
genome segment. However, the emergence of GAPD-1
and GAPD-2 is surely not a result of a retroposition, as
it was concluded in early studies [54,55], documented
by similar exon structures of the isoenzymes (Figure 7).
It should be noted that GAPD is one of the few glycoly-
tic enzymes that did not acquire any additional isoen-
zymes during the vertebrate-specific whole-genome
duplication events; neither did phosphoglucose isomer-
ase, triosephosphate isomerase and phosphoglycerate
kinase. The other glycolytic enzymes gained from one to
three extra copies that evolved to the tissue-specific pro-
teins [42,56-61].
GAPD-2 was lost in most lineages and retained only

by mammals, lizards, teleosts and cartilaginous fishes.
The presence of both isoenzymes in these organisms
raises the question of a functional difference between
them. It is assumed that if two isoenzymes perform the
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Table 2 The Ka/Ks ratio estimates for GAPD isoenzymes
under various branch-specific models

Model Ka/Ks ratio Log-likelihood

R1 0.06369 -22221.41

R2m 0.05363 (all except mammalian GAPD-2)
0.12179 (mammalian GAPD-2)

-22179.54

R2i 0.07405 (all except insect GAPD)
0.02642 (insect GAPD)

-22177.37

R3 0.06263 (all except listed below)
0.12186 (mammalian GAPD-2)
0.02567 (insect GAPD)

-22150.49

R6 0.06672 (mammalian GAPD-1)
0.05218 (fish GAPD-1)
0.07492 (fish GAPD-3)
0.12187 (mammalian GAPD-2)
0.06218 (fish GAPD-2)
0.02593 (insect GAPD)

-22147.12
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Figure 6 Ka/Ks values obtained with the aid of branch-specific
models. The shown Ka/Ks values were calculated using the six-ratio
(R6) model, which implies different selection constrains for GAPD-1
and GAPD-2 of mammals, GAPD-1, GAPD-2 and GAPD-3 of teleosts,
as well as GAPD of insects. The values for all isoenzymes except
mammalian GAPD-2 and insect GAPD were found not to differ
significantly. Discontinuous horizontal line is the Ka/Ks value
obtained using the one-ratio (R1) model, which implies the same
selection constrains for all isoenzymes.
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same function in the same set of tissues, one of them is
free from functional constraints and its gene will even-
tually turn into a non-functional pseudogene or will be
deleted [62-64]. In mammals and lizards GAPD-1 and
GAPD-2 specialized to tissue-specific proteins and this
is probably the reason why one of them avoided the
lost. Generally, specialization towards tissue-specificity is
a trend among glycolytic enzymes that have acquired
additional copies. In vertebrates, they usually have dis-
tinctive isoenzymes in liver, muscle and brain, some-
times in erythrocytes and other tissues [42,60]. The
situation with GAPD of teleosts and cartilaginous fishes
is more complex. According to EST data, GAPD-1 and
GAPD-2 of fishes are expressed in the same tissues. The
results of branch-specific tests indicate that the evolu-
tionary rates of both isoenzymes are accelerated as com-
pared to the ancestral GAPD (GAPD of insects, which
separated before the emergence of GAPD-1 and GAPD-
2, was considered to evolve with the similar rate as the
ancestral protein). This is in line with the model of gene
duplications proposed by Hughes [65,66]. It suggests
that the original gene was performing two or more func-
tions. After duplication each copy specialized on per-
forming a part of them. GAPD is known to be a
multifunctional protein participating in many processes
beyond glycolysis. As the catalytic center is conserved in
both isoenzymes, GAPD-1 and GAPD-2 of teleosts and
cartilaginous fishes may specialize on performing differ-
ent non-glycolytic functions, as also evidenced by Ka/Ks

profiling. Different regions of teleost GAPD-1 and
GAPD-2 are under impaired purifying selection. These
regions can correspond to the parts of proteins which
are responsible for performing isoenzyme-specific non-
glycolytic functions.

A number of additional duplications of GAPD genes
occurred independently in certain lineages. For example,
some teleosts possess the third GAPD isoenzyme
(GAPD-3) in addition to GAPD-1 and GAPD-2. Taking
into account both the constructed phylogenetic trees
and the obtained data on syntenies, it can be concluded
that GAPD-3 originated from GAPD-1 during the tele-
ost-specific whole-genome duplication [67]. However,
GAPD-3 was not found in complete genomes of zebra-
fish, tetraodon and fugu, which means that it was lost.
The retention of GAPD-3 by certain species of teleosts

agrees with the model of dosage balance proposed by
Papp with colleagues [65,68]. It states that genes having
optimal dosages that are dependent on each other may
be lost only synchronously after whole-genome duplica-
tions. Therefore they are preferentially kept. In the
study by [42] most of the other glycolytic enzymes were
shown to have extra copies in teleosts, which also origi-
nated during the whole-genome duplication. Therefore,
GAPD-3 as well as the other additional glycolytic isoen-
zymes in teleosts may be retained to prevent dosage
imbalance leading to glycolysis malfunction.
The model of dosage balance also provides an expla-

nation for Xenopus laevis possessing three slightly dif-
ferent GAPD isoenzymes [Swiss-Prot:P51469, GenBank:
BC043972, GenBank:BC048770]. Following the results of
phylogenetic analysis (Figure 3), the duplications of
GAPD-1 gene giving rise to these isoenzymes seem to
have taken place after the divergence of Xenopus and
Rana genera of frogs. X. laevis is known to have under-
gone a whole-genome duplication event about 40 mil-
lion years ago [69,70] and most of its genes have two
copies [71]. Furthermore, the GAPD genes in reference
[GenBank:BC043972, GenBank:BC048770] might be the
allelic variants of a single gene since they are 99% iden-
tical and their evidence is only at transcript level. If so,
X. laevis would have only two GAPD genes, in line with
the dosage balance model.
Sea squirt Ciona savignyi was discovered to possess

three different GAPD isoenzymes as well. All of them
seem to have originated from GAPD-1 after the emer-
gence of tunicates (Figure 3). To check whether these iso-
enzymes are encoded by distinct genes or allelic variants
of a single gene, we turned to the C. savignyi genome
assembly version 2.0 (Broad Institute) with removed
redundant alleles [72] available via Ensembl. There were
only two GAPD genes [Ensembl:ENSCSAVG00000004357,
Ensembl:ENSCSAVG00000007442] corresponding to the
two isoenzymes. The remaining isoenzyme was 97% iden-
tical to one of the others. Perhaps, it is nothing but an alle-
lic variant since C. savignyi displays extremely high allelic
polymorphism [73].
It looks like the duplication giving rise to the GAPD-1

copies in C. savignyi is advantageous itself by increasing

GAPD-1     0 --------------------------------------------------      0
GAPD-2     1 MSKRDIVLTNVTVVQLLRQPCPVTRAPPPPEPKAEVEPQPQPEPTPVREE     50

GAPD-1     1 ----------------------MGKVKVGVNGFGRIGRLVTRAAFNSGKV     28
GAPD-2    51 IKPPPPPLPPHPATPPPKMVSVARELTVGINGFGRIGRLVLRACMEK-GV     99

GAPD-1    29 DIVAINDPFIDLNYMVYMFQYDSTHGKFHGTVKAENGKLVINGNPITIFQ     78
GAPD-2   100 KVVAVNDPFIDPEYMVYMFKYDSTHGRYKGSVEFRNGQLVVDNHEISVYQ    149

GAPD-1    79 ERDPSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADA    128
GAPD-2   150 CKEPKQIPWRAVGSPYVVESTGVYLSIQAASDHISAGAQRVVISAPSPDA    199

GAPD-1   129 PMFVMGVNHEKYDN-SLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTT    177
GAPD-2   200 PMFVMGVNENDYNPGSMNIVSNASCTTNCLAPLAKVIHERFGIVEGLMTT    249

GAPD-1   178 VHAITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPELNGK    227
GAPD-2   250 VHSYTATQKTVDGPSRKAWRDGRGAHQNIIPASTGAAKAVTKVIPELKGK    299

GAPD-1   228 LTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPLKGILGYT    277
GAPD-2   300 LTGMAFRVPTPDVSVVDLTCRLAQPAPYSAIKEAVKAAAKGPMAGILAYT    349

GAPD-1   278 EHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDNEFGYSNRVVDL    327
GAPD-2   350 EDEVVSTDFLGDTHSSIFDAKAGIALNDNFVKLISWYDNEYGYSHRVVDL    399

GAPD-1   328 MAHMASKE-    335
GAPD-2   400 LRYMFSRDK    408

Figure 7 Exon structures of human GAPD-1 and GAPD-2. The
boundaries of exons are shown by vertical lines. The figure is based
on Ensembl data [96].
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GAPD dosage. Otherwise fixation of even two consecu-
tive duplications seems to be unlikely. The model of
gene duplications assuming beneficial increase in gene
dosage has been extensively studied and shown to be
applicable in a number of cases [74-76]. The duplica-
tions of GAPD in the considered species may be
explained by the emerged necessity of enhancing of
some non-glycolytic functions of GAPD, as it is hard to
imagine that such a conserved process as glycolysis
needs an increase of a dose of one of its enzymes.

GAPD-2 specialization to a testis-specific protein
Mammalian GAPD-2 is known to be a highly specialized
isoenzyme, which is present solely in testis (microarray
data are available in the ArrayExpress database at http://
www.ebi.ac.uk/arrayexpress under accession numbers E-
GEOD-7307, E-GEOD-3526, E-TABM-969 and E-GEOD-
2361) [77-79]. We have found that GAPD-2 is expressed
in a testis-specific way also by two lizard species. Lizards
are also the only lineage besides mammals in which
GAPD-2 possesses the proline-rich domain. Taking into
account that this domain serves as an anchor to spermatic
filament cytoskeleton, correlation between its presence
and testis-specific expression seems to be evident.
As GAPD-2 is a testis-specific protein only in mam-

mals and lizards, it is likely to have specialized in this
way during the early evolution of amniots. However,
birds have completely lost GAPD-2. We could not
detect it in any of the examined bird species including
Gallus gallus and Taeniopygia guttata with complete
genomes. So, the same GAPD isoenzyme should act in
both somatic tissues and testis. It remains unclear what
changes in bird spermatozoa rendered testis-specific
GAPD-2 unnecessary.
GAPD-2 is not the only testis-specific glycolytic isoen-

zyme. There are also testis-specific isoenzymes of phos-
phoglycerate kinase (PGK-2) [80,81] and lactate
dehydrogenase (LDHC) [82-84]. It is remarkable that
both are possessed only by mammals, thus resembling
GAPD-2. PGK-2 originated from PGK-1 isoenzyme by
retrotransposition [85,86], while LDHC stems from the
LDHA isoenzyme [60]. These events are supposed to
have taken take place during the early evolution of
mammals. Perhaps, the gain of three testis-specific gly-
colytic isoenzymes is a consequence of an alteration of
spermatozoa structure. Mammalian spermatozoa are
known to have a relatively long and thin tail, complicat-
ing ATP diffusion from mitochondria along it [87].
Therefore, energy is generated mostly by glycolytic
enzymes located in the tail cytoplasm [34,88]. Such reor-
ganization of metabolism may require special isoen-
zymes with distinctive catalytic properties.

As mentioned before, a unique feature of testis-speci-
fic GAPD-2 is the additional N-terminal proline-rich
domain, which is absent in all other GAPD isoenzymes.
Moreover, there are no additional fragments in PGK-2
and LDHC. The spatial structure of the proline-rich
domain is still unsolved. We have found that for the
majority of mammals it is encoded by two exons. The
first exon encodes a conservative segment of 22 amino
acids. The second exon encodes a segment with a high
content of proline residues, highly variable in both
length (58-97 amino acids) and composition (see addi-
tional file 2: The proline-rich N-terminal domains of
mammalian GAPD-2). The layout of proline residues
has a strikingly repetitive character. They form Pn and
(XP)n motifs, where X is any amino acid (often cysteine,
glutamic acid or glutamine). Generally, polyproline
repetitive motifs are known to participate in strong but
unspecific protein-protein interactions [89]. Apparently
they play the same role in the proline-rich domain of
GAPD-2 mediating the binding to spermatic filament
cytoskeleton. The presence of two different kinds of
polyproline motifs suggests GAPD-2 being bound to
more than one protein of cytoskeleton.
An evidence for unspecific proline-rich domain recog-

nition by cytoskeletal proteins is also furnished by the
results of Ka/Ks calculation. Ka/Ks value estimated for
the variable segment of the proline-rich domain of
mammalian GAPD-2 was close to unity, which means
that this domain is subjected to neither purifying nor
positive selection and therefore its specific sequence is
not important for functioning.
The proline-rich domain is likely to be relatively

young since it is absent in all other GAPD isoenzymes
and no similar sequences have been revealed in other
proteins by means of BLAST searches. So-called exoni-
zation of non-coding sequences is now assumed to be
the source of new protein domains [90-93]. The repeti-
tive character of the proline-rich domain sequence
implies that it could have emerged from a microsatellite
region. This way of new domain origination was pro-
posed to be a general mechanism for the repetitive pro-
tein sequences [90,94,95].
Tissue-specific alternative splicing was discovered to

govern the presence of proline-rich domain in GAPD-2
of a lizard Anolis carolinensis: it depends on a cassette
exon being either spliced or retained. Unfortunately, no
conclusion can be made as to whether this mechanism
preceded GAPD-2 specialization to a testis-specific pro-
tein or appeared after it. It may be that GAPD-2 first
incorporated the proline-rich domain as a rare optional
splice variant in some tissues and only then specialized
towards testis-specificity.
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Conclusions
The results of our study substantially expand the cur-
rent knowledge on evolution of GAPD family members.
We show that GAPD-1 and GAPD-2 isoenzymes of
mammals are also present in other lineages. We specu-
late that they emerged after duplication of the ancestral
GAPD gene during the early evolution of chordates.
GAPD-1 then underwent a number of additional inde-
pendent duplications in different species, while GAPD-2
was lost in most lineages and is now found only in
mammals and lizards, as well as cartilaginous and bony
fishes.
We have demonstrated that GAPD-2 of mammals and

lizards is specialized to a testis-specific protein. Accord-
ingly, in these lineages GAPD-2 has acquired the novel
N-terminal proline-rich domain anchoring the protein
to the sperm tail cytoskeleton. This domain is likely to
have originated by exonization of a microsatellite geno-
mic region in a common ancestor of amniots. Estimates
of selective pressure suggest unspecific recognition of
the proline-rich domain by cytoskeletal proteins. Besides
testis, GAPD-2 of lizards was also found in some regen-
erating tissues, but lacking the proline-rich domain due
to tissue-specific alternative splicing.

Methods
Sequence data
In the previous study [42], GAPD-2 was shown to be
specific for vertebrates. Therefore we decided to limit
the consideration of GAPD isoenzymes and focused
only on those belonging to vertebrates and also to the
other groups of deuterostomes since they were not
examined in [42]. In order to find all GAPD sequences
of deuterostomes, we first turned to the Ensembl data-
base [96]. 69 sequences of mammals and bony fishes
were obtained from it as belonging to glyceraldehyde-3-
phosphate dehydrogenase protein family [Ensembl:
ENSFM00250000000211]. Second, a PSI-BLAST [97]
search using the human GAPD-1 [SwissProt:P04406] as
query (which was selected to be a typical example of
GAPD) was conducted against UniProt [98]. Since
GAPD is known to be a well-conserved protein, a strict
e-value threshold of 10-6 was chosen. The search con-
verged in 6 steps returning 8957 hits, all of which
showed more than 30% of identity to the query
sequence. All in all 60 sequences of deuterostomes were
picked out (excluding fragments and those previously
obtained from the Ensembl database). We also selec-
tively picked out 13 sequences of the major protostome
phyla (arthropods, mollusks, annelid worms, round-
worms and flatworms). Third, additional 55 sequences
were obtained by employing TBLASTN algorithm with
default parameters [97] to search with human GAPD-1

[SwissProt:P04406] and GAPD-2 [SwissProt:O14556] as
queries in the EST division of GenBank [99]. EST hits,
which usually represent fragments of complete mRNAs,
were manually scanned for extensive overlapping regions
and then joined into larger sequences. Further inspec-
tion revealed some cases of contamination, which were
excluded from the analysis. Specifically, we identified a
chicken EST [GenBank:AM067846] actually belonging
to Aspergillus flavus and three lancelet ESTs [GenBank:
FE567488, GenBank:FE567489, GenBank:BW781185]
belonging to some diatoms. As a result of this three
step procedure the total of 197 GAPD sequences were
identified for 131 species (109 deuterostomes and 22
other animals, see additional file 3: Accession codes of
GAPD sequences used in the analysis).

Multiple alignment and phylogeny reconstruction
Since phylogenetic tree reconstruction is a computation-
ally expensive process, only a part of the obtained
sequences was subjected to the analysis. No more than 7
species from each class of deuterostomes were considered,
as well as 6 species of insects as the representatives of pro-
tostomes (for more details see additional file 3: Accession
codes of GAPD sequences used in the analysis). Two
slightly different GAPD sequences from the flatworm
Macrostomum lignano, both derived from several ESTs
[GenBank:EG952499, GenBank:EG951174, GenBank:
EG952414, GenBank:EG952720, GenBank:EG953822],
were used as an outgroup. The total dataset for phyloge-
netic analysis comprised 92 GAPD sequences. Multiple
alignment of protein sequences was performed by MUS-
CLE [100] and then manually edited. The alignment of
nucleic sequences was constructed by means of RevTrans
1.4 Server [101] based on the protein alignment (see addi-
tional file 4: Raw alignment of GAPD nucleic sequences
used in the phylogenetic analysis). Columns with gaps
were eliminated before phylogenetic analysis.
The phylogenetic relationships between GAPD family

members were reconstructed using both protein and
nucleic sequences. The Bayesian method of tree recon-
struction as implemented in MrBayes 3.1.2 [102,103]
software was applied. The JTT model of amino-acid
change [104], as well as the GTR model of nucleotide
substitutions [105] were used. Preliminary analyses indi-
cated that variation at the third position was saturated
and confounded resolution at deep internal nodes.
Therefore, trees based on nucleotide data were recon-
structed in MrBayes by partitioning the data into the
first, second and third codon positions, and allowing
each partition to evolve at its own rate with its own
shape parameter of gamma distribution.
For the Bayesian analyses, two independent runs were

performed, each with four simultaneous chains that
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sampled every 100 generation. Trees sampled before the
cold chain reached stationarity based on plots of the
maximum likelihood scores were discarded. Sampling
continued until convergence was achieved based on the
average standard deviation of the split frequencies as
given in MrBayes. Node support was accessed as Baye-
sian posterior probabilities.

Syntenies
Syntenic analysis is a reliable approach for establishing
orthology. It is based on the assumption that local sur-
roundings of genes are rarely affected by genomic rear-
rangements. Therefore, if the two genes have
homologous neighbors, they are likely to have originated
by vertical descent from a single ancestor and, in other
words, be orthologous.
A syntenic analysis of the relationship between GAPD

family members was performed by identification of posi-
tions of up to 20 genes both upstream and downstream
of GAPD genes in human (Homo sapiens), stickleback
(Gasterosteus aculeatus), zebrafish (Danio rerio), lancelet
(Branchiostoma floridae), sea squirt (Ciona savignyi), sea
urchin (Strongylocentrotus purpuratus) and acorn worm
(Saccoglossus kowalevskii). Syntenic maps were con-
structed based on the information regarding gene loca-
tion either available from Ensembl (human, both fishes
and sea squirt) or obtained by conducting BLASTX
searches of adjacent genomic regions against non-redun-
dant protein databases. In the latter case, the homology
between genes was decided if the identities of their pro-
tein product sequences were greater than 30%. The fol-
lowing genomes were used: B. floridae version 2.0 (Joint
Genome Institute) [51], S. purpuratus version 2.1
(Human Genome Sequencing Center) [106] and S.
kowalevskii version 1.0 (Human Genome Sequencing
Center). Since genomic micro-rearrangements might
occur, the matches between the local surroundings of
GAPD genes were not required to be co-linear for
establishing orthology. Gene losses and insertions were
allowed as well.

Synonymous and non-synonymous substitution rates
To examine whether the GAPD family members are
subjected to adaptive evolution, an analysis of variation
under selective pressure was performed. Usually selec-
tive pressure is estimated by comparing the rates of
synonymous (Ks) and non-synonymous substitutions
(Ka) for the entire sequence. If Ka/Ks value is greater
than unity, the whole sequence is supposed to be under
positive selection, otherwise under purifying selection
[107-109]. However, since each amino acid has a differ-
ent function, the type and strength of natural selection

may be different for each amino acid. To detect the var-
iation in Ka/Ks values across the sequence a sliding-win-
dow approach is often used [110,111].
Alignments of nucleotide sequences were constructed

by PAL2NAL [112] based on protein alignments. Ka/Ks

profiles were generated using a window of 120 base
pairs and a step of 20 base pairs. Such a wide window
was used because of high conservation of the analyzed
sequences. Calculations of Ka and Ks for each window
position were carried out with the aid of DnaSP 5.10
software [113].

Branch-specific selection tests
The differences in selective pressure between GAPD iso-
enzymes were also examined by means of more sophisti-
cated branch-specific models as implemented in codeml
program from PAML software [114]. Such kind of mod-
els assumes separate Ka/Ks values for different branches
of the phylogenetic tree. They are often used for detect-
ing selection changes after gene duplications, where one
copy might evolve at a different rate due to acquisition
of a new function or the loss of an old one [115-118].
First, GAPD sequences were divided into groups

according to the results of phylogenetic analysis. Then a
number of branch-specific models assuming separate
Ka/Ks ratios for different combinations of groups were
assayed. Likelihood ratio test (LRT) was used to deter-
mine whether the likelihoods of a pair of alternative
branch-specific models are significantly different.

Additional material

Additional file 1: Alignment of the two forms of Anolis carolinensis
GAPD-2 mRNA. The sequence of protein product is represented; the
possible start codons are in bold. Translation of the full-length mRNA
seems to begin from the first start codon and the protein product will
possess the proline-rich domain (shown in italic). The shortened mRNA
lacks the first start codon. Therefore translation should begin from the
second one resulting in a protein product without the proline-rich
domain.

Additional file 2: The proline-rich N-terminal domains of
mammalian GAPD-2.

Additional file 3: Accession codes of GAPD sequences used in the
analysis.

Additional file 4: Raw alignment of GAPD nucleic sequences used in
the phylogenetic analysis.
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