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Potential pitfalls of modelling ribosomal RNA
data in phylogenetic tree reconstruction:
Evidence from case studies in the Metazoa
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Abstract

Background: Failure to account for covariation patterns in helical regions of ribosomal RNA (rRNA) genes has the
potential to misdirect the estimation of the phylogenetic signal of the data. Furthermore, the extremes of length
variation among taxa, combined with regional substitution rate variation can mislead the alignment of rRNA
sequences and thus distort subsequent tree reconstructions. However, recent developments in phylogenetic
methodology now allow a comprehensive integration of secondary structures in alignment and tree reconstruction
analyses based on rRNA sequences, which has been shown to correct some of these problems. Here, we explore
the potentials of RNA substitution models and the interactions of specific model setups with the inherent pattern
of covariation in rRNA stems and substitution rate variation among loop regions.

Results: We found an explicit impact of RNA substitution models on tree reconstruction analyses. The application
of specific RNA models in tree reconstructions is hampered by interaction between the appropriate modelling of
covarying sites in stem regions, and excessive homoplasy in some loop regions. RNA models often failed to
recover reasonable trees when single-stranded regions are excessively homoplastic, because these regions
contribute a greater proportion of the data when covarying sites are essentially downweighted. In this context, the
RNA6A model outperformed all other models, including the more parametrized RNA7 and RNA16 models.

Conclusions: Our results depict a trade-off between increased accuracy in estimation of interdependencies in
helical regions with the risk of magnifying positions lacking phylogenetic signal. We can therefore conclude that
caution is warranted when applying rRNA covariation models, and suggest that loop regions be independently
screened for phylogenetic signal, and eliminated when they are indistinguishable from random noise. In addition
to covariation and homoplasy, other factors, like non-stationarity of substitution rates and base compositional
heterogeneity, can disrupt the signal of ribosomal RNA data. All these factors dictate sophisticated estimation of
evolutionary pattern in rRNA data, just as other molecular data require similarly complicated (but different)
corrections.

Background
Progress of molecular techniques has eased the use of
genomic data for phylogenetic analyses. Nevertheless,
whole genomes are currently available for relatively few
metazoans. Molecular studies of phylogenetic relationships
within higher taxonomic groups, e.g. at the intra-ordinal
level, therefore still rely on individual genes, among which

the nuclear and mitochondrial ribosomal RNA genes are
the most frequently sequenced. A pattern of highly vari-
able positions, nested within conserved, slowly substituting
sites across the alignment, yields a valuable resource for
studying phylogenetic relationships of both recent and
ancient splits [1-4]. This, combined with the ease of ampli-
fication, has lead to a widespread use of rRNA genes in
phylogenetics and furthermore uncovered several specific
properties of these genes, which should be considered,
using these sequences as phylogenetic markers. Paired
regions in rRNA sequences evolve via selectively neutral
substitutions in the form of compensatory mutations [5]

* Correspondence: h.letsch.zfmk@uni-bonn.de
1Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für
molekulare Biodiversitätsforschung, Adenauerallee 160, 53113 Bonn,
Germany
Full list of author information is available at the end of the article

Letsch and Kjer BMC Evolutionary Biology 2011, 11:146
http://www.biomedcentral.com/1471-2148/11/146

© 2011 Letsch and Kjer; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:h.letsch.zfmk@uni-bonn.de
http://creativecommons.org/licenses/by/2.0


to maintain energetically stable secondary structures.
Additionally, a strong bias of nucleotide composition
between paired and unpaired areas has been observed
[5,6]. Ribosomal RNA loop and stem regions are therefore
subject to very different selectional regimes, which can
hamper the use of rRNA genes for phylogenetic purposes
[2,5,7-11]. In particular, correlated variation of nucleotides
in stem regions, has been suggested to corrupt phyloge-
netic analyses as these covariation patterns of paired sites
do not display independent phylogenetic signal. Ignoring
this correlation results in an overestimation of phyloge-
netic information of these sites, which can lead to inflated
measurements of tree robustness [12,13]. As a solution,
rRNA secondary structural information as independent set
of characters have been advocated to aid tree reconstruc-
tion by the use of specific RNA substitution models
[12,14-17]. Application of RNA substitution models in
phylogenetics is still confined to a few studies [11,18-27],
most of them emphasing improvement of the analyses. In
contrast, a recent study on hexapod phylogeny found
mixed RNA/DNA model setups leading to a higher sensi-
tivity to systematic problems ("long-branch attraction”)
[28]. This has been suggested as a result of potential
homoplasy in loop positions. RNA models virtually down-
weight stem partitions, leading to an increased impact of
loops. If these loop positions are saturated and/or misa-
ligned, this “noisy” signal might dominate the phylogenetic
signal of unsaturated stem positions and lead to inaccurate
tree reconstruction.
In the present study, we want to test this hypothesis by

comparing the performance of mixed RNA/DNA model
setups in the tree reconstruction of different ribosomal
RNA data sets with the level of relative homoplasy in
loop and stem positions. Current studies on the topic of
modelling rRNA data in tree reconstruction have utilised
simulation analyses [28,29], which can generally be seen
to be a sophisticated complement to empirical studies in
order to test hypotheses in algorithmically rooted phylo-
genetics. However, in Letsch et al. [28], tree reconstruc-
tions on simulated data were not able to reveal a
potential correlation between homoplasy and data mod-
elling. Consequently, the present analyses were based on
case studies. Eight ribosomal RNA data sets were initially
compiled, using from one to three mitochondrial and/or
nuclear ribosomal RNA gene partitions, covering a broad
spectrum of phylogenetic levels (Echinodermata (18S),
Tunicata (18S), Heterobranchia (18S) Chilopoda (18S),
Hexapoda (18S + 28S), Mammalia (12S + 16S), Primates
(12S + 16S) and Anisoptera (12S + 16S + 28S)). All data
sets were aligned with the RNASALSA alignment soft-
ware [30], considering rRNA secondary structures.
Ambiguously aligned positions where identified and
excluded prior to the tree reconstruction. Based on the
complete aligned data sets, we further conducted

Maximum Likelihood (ML) tree reconstructions with the
RAxML v7.2.6 software package [31-33] with (1) a stan-
dard DNA model setups and (2) 13 mixed RNA/DNA
model setups. In the latter, loop positions are covered by
a standard DNA model and stem positions are covered
by a specific RNA model. Performance of different model
setups was compared according to recent morphological
and molecular expectations of taxonomy. To test the
relative homoplasy between stem and loop regions, all
alignments were divided into unpaired (loop) and paired
(stem) positions according to a consensus secondary
structure. Both partitions were then separately tested for
homoplasy by estimating the level of substitutional
saturation. Additionally, ML analyses were conducted on
loop and stem partitions separately and the results were
compared to the trees from the combined data sets. The
analyses setup is depicted in Figure 1.

Results
Phylogenetic analyses
In the following, we represent and discuss the results of
Echinodermata, Tunicata and Mammalia data sets as

Eight different 

ribosomal RNA data sets

Structure aided alignment
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ambiguous positions
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Test for potential homoplasy
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Figure 1 Setup of the analyses. Flowchart representing the setup
of the analyses.
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examples. Discussion on the results of all other data sets
are provided in Additional file 1. To investigate the
impact of homoplasy in loop regions on the behaviour
of mixed RNA/DNA models setups in the tree recon-
struction, the tree reconstruction results of all 13 RNA
models were compared to the trees relying on the DNA
model setup. Trees were evaluated in comparisons with
recent morphological and molecular understanding of
the accordant group, where we mainly focus on “bench-
mark clades” to check the reliability of each model
setup. Clades were defined as “benchmark clades”, if
they have repeatedly received support in previous stu-
dies, based on independent morphological and/or mole-
cular data.
Phylogeny of echinoderm classes
Echinodermata is divided into five extant classes, the
Crinoidea (sea lilies), Ophiuroidea (brittle stars), Asteroi-
dea (starfishes), Holothuroidea (sea cucumbers) and
Echinoidea (sea urchins). Monophyly in these five
classes is well founded [34], whereas the relationships
among them are still debated. Nevertheless, there is
some consensus regarding major aspects of echinoderm
phylogeny [34-36]. Crinoids are seen as the most basal
split within Echinodermata, forming the sister group to
the four remaining classes (Eleutherozoa). Furthermore,
there is strong support for a sister group relationship of
echinoids and holothurians (Echinozoa). Debates on the
phylogenetic position of the stellate forms (starfishes
and brittle stars) revolve around two competing hypoth-
eses: are the ophiurids alone sister group to Echinozoa
[37,38] or do asteroids and ophiuroids form a clade
(Asterozoa), which is then the sister taxon to Echinozoa
[34]? The above outlined hypotheses are only reflected
by the results of the GTR and the RNA6A model setups.
These trees all show basal Crinoidea and Eleutherozoa
divided into Asterozoa and Echinozoa. In contrast, all
other mixed RNA/DNA model setups show either
Holothuroidea or a clade of Holothuroidea + Echinoidea
the sister taxon to the rest of Echinodermata (Figure 2),
thus clearly contradicting current expectations of echi-
noderm phylogeny.
The position of Appendicularia within Tunicata
Molecular approaches to the phylogeny of Tunicata are
generally hampered by the base composition biases and
elevated substitution rates in Aplousobranchia, Appendi-
cularia and Mogulidae (Stolidobranchia). Appendicularia
retain larval characters throughout their lifespan, which
made an understanding of their phylogeny crucial for
understanding the evolution of body plans and develop-
mental modes in Tunicata [27]. Recent molecular stu-
dies using phylogenomic or rRNA data to target the
phylogeny of Tunicata usually recover Appendicularia as
sister group to all other tunicate groups [39-42]. How-
ever, this position is suspected to be a result of a “long

branch attraction” artefact, due to genome-wide elevated
substitution rates in this group [27,40]. As an alterna-
tive, Appendicularia as sister to Stolidobranchia has
been recovered through analyses of 18S rRNA genes
[27,39,43,44]. However, this position was generally
weakly supported and has been discussed as a possible
result of base composition bias in Appendicularia and
Mogulidae, a family of Stolidobranchia [27]. These pro-
blems are reflected by the results of our study on tuni-
cates (Figure 3), which either show Appendicularia as
first split within Tunicata (RNA7C, E, F and RNA16A
model setups) or as sister group to Stolidobranchia (all
other model setups). According to the currently unre-
solved position of Appendicularia, none of these alterna-
tives can be chosen as superior.
Relationships within Mammalia
The first molecular analyses on the phylogeny of
Mammalia, using mitochondrial genes have remarkably
challenged previous morphological hypotheses on the
relationship among mammalian groups [45]. However,
subsequent studies on nuclear markers and more
sophisticated analyses of mitochondrial genomes led to
more consistent hypotheses of mammalian relationships,
which are in several aspects congruent to morphological
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Figure 2 Results Echinodermata. Trees summarising the results of
the tree reconstructions on Echinodermata. (A) Tree by the GTR and
the RNA6A model setups, showing monophyletic Asterozoa and
Echinozoa. Bootstrap (BS) values taken from the GTR model based
tree reconstruction. (B) Results of all other mixed RNA/DNA model
setups. Dotted line indicates alternative sistergroup relationship of
Holothuroidea and Echinoidea. BS values taken from the RNA7A
model based analyses.
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studies [45-51]. General congruence among these inde-
pendent markers has resulted in a well resolved and
strongly corroborated backbone tree of mammalian
groups, representing the four “superorders” Xenarthra,
Afrotheria, Euarchontoglires and Laurasiatheria and sev-
eral subgroups, e.g. monophyletic Theria, the Paenungu-
lata (containing elephants, hyraxes and sirenians),
Tetytheria (elephants and sirenians), and Euarchonta
(Scandentia + Dermoptera + Primates). Consequently,
the evaluation of tree reconstructions targeting mamma-
lian phylogeny has been formalised by defining theses
groups as “benchmark clades” [52], whose appearance is
used to evaluate the performance of the method that
was used. In the present study, most analyses are highly
congruent in their results of mammalian relationships
and display many of the proposed benchmark clades
with sufficient support. However, in the RNA6A,
RNA16 and RNA16A analyses, a clade combining
Afrotheria + Xenarthra is sistergroup to Laurasiatheria
and Rodentia appear paraphyletic to the remaining
eutherian groups, with Muroidea + Anomalurus as first
split within Eutheria. This reflects the suggestions of
several previous analyses based on mt genes, but must
been interpreted as a result of model misspecification
ignoring among-site rate variation [53,54] and composi-
tional bias [55]. In contrast, all other analyses show
Afrotheria + Xenarthra as first split within Eutheria and
paraphyletic Rodentia, but the latter are nested within
monophyletic Laurasiatheria. It is notable, that bootstrap
support values for potentially correct groupings
increased, if mixed RNA/DNA model setups are applied
(cf. Figure 4 and Additional file 2 for complete mamma-
lian trees).

Separate analyses of loops and stems
Homoplasy due to multiple substitutions was tested with
the index of substitution saturation (ISS) [56,57], which
assumes a critical index of substitution saturation (ISSc)

that defines a threshold for significant saturation in the
data. The ISSc is compared with the observed ISS of the
data. If the ISS value is larger than the critical ISSc
values, saturation is assumed. To contribute to different
tree shapes, the ISSc is estimated, using a symmetrical
(balanced) and an asymmetrical (pectinate) tree topol-
ogy. The test for homoplasy reveals striking differences
between paired and unpaired positions. In the stem por-
tions of all data sets, the asymmetrical and the symme-
trical ISSc is always larger than the observed ISS. The
differences are significant, thus indicating that the paired
partitions are not saturated. In contrast, we detected
potential saturation of substitution in the unpaired posi-
tions of several data sets. For Echinodermata, Hexapoda,
Tunicata, Chilopoda and Heterobranchia, the ISS of was
notably larger than the asymmetrical ISSc, suggesting
substantial saturation in these alignments. The complete
results of the saturation tests are summarised in Table 1.
The comparison matrix in Figure 5 further depicts the
results of all tree reconstruction analyses in relation of
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Figure 3 Results Tunicata. Tree summarising the results of the
tree reconstructions based on Tunicata. The dotted line (A)
indicates an alternative position of the Appendicularia. BS values
taken from the RNA16A model based analyses.
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Figure 4 Results Mammalia. Trees summarising the results of the
tree reconstructions on Mammalia. (A) Tree by the GTR and most
mixed RNA/DNA model setups, showing the four monophyletic
“superorders” Xenarthra, Afrotheria, Euarchontoglires and
Laurasiatheria. BS values taken form the GTR model based analyses.
(B) Tree derived from the RNA6A, RNA16 and RNA16B model setups,
showing paraphyletic Rodentia as first splits within Eutheria and
Xenarthra + Afrotheria as sistergroup to Laurasiatheria. BS values
taken form the RNA16 model based analyses.
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substitution saturation in the loop partitions. The satura-
tion test results of the loop and stem partitions were
additionally compared to the saturation test results of the
combined data sets of the groups exhibiting saturation in
the loop regions. As displayed in Table 2 saturation
vanishes in all of the combined data sets.
Subsequently, ML tree reconstructions were con-

ducted on the separated loop and stem partitions, using
a DNA model setup. To characterise the phylogenetic
signal in both partitions, we checked whether the trees
from the paired or the unpaired partition were more
congruent to the combined data results. Trees resulting
from all three setups (combined, paired, unpaired) were

compared with the Robinson-Foulds [58] (RF) distance
score, which accounts for topology differences. This
indicates a closer similarity of trees based on combined
and unpaired data. Comparisons between the combined
data set, analysed under different mixed model schemes,
usually strengthen this effect. With the exception of
Chilopda and Hexapoda, most RF distances between the
combined data and the unpaired data diminished,
whereas RF distances between the combined data and
the paired data often increased (cf. Figure 6 and Addi-
tional file 3 Table S4 and S5).

Discussion
Relative homoplasy and RNA modelling
To our knowledge, this is the first work on a separate
characterization of homoplasy in paired and unpaired
regions of rRNA sequences. We examined relative homo-
plasy separately, as due to their distinct physiological

Table 1 Data set characteristics

Taxon Gene(s) Species Alignment length* Partition Saturatio Iss n Iss.c S P Iss.c A P

Chilopoda 18S 61 2576 (1822) stems 0.062 0.715 0.000 0.398 0.000

loops 0.806 0.710 0.426 0.390 0.001

Hexapoda 18S+28S 94 9217 (4413) stems 0.181 0.765 0.000 0.476 0.000

loops 0.549 0.758 0.000 0.465 0.101

Echinodermata 18S 144 2045 (1706) stems 0.129 0.721 0.000 0.406 0.000

loops 0.457 0.722 0.000 0.408 0.418

Heterobranchia 28S 50 3609 (2388) stems 0.033 0.652 0.000 0.302 0.000

loops 0.473 0.649 0.491 0.297 0.492

Tunicata 18S 88 1990 (1960) stems 0.239 0.729 0.000 0.419 0.000

loops 0.444 0.741 0.000 0.438 0.898

Primates 12S+16S 54 1788 (1362) stems 0.115 0.743 0.000 0.441 0.000

loops 0.327 0.762 0.000 0.471 0.000

Mammalia 12S+16S 126 3102 (1875) stems 0.168 0.775 0.000 0.492 0.000

loops 0.393 0.764 0.000 0.474 0.027

Anisoptera 12S+16S+28S 108 5968 (5239) stems 0.043 0.756 0.000 0.460 0.000

loops 0.059 0.733 0.000 0.425 0.000

Characteristics of the applied test data sets including the results of the test for substitution saturation in loop and stem partitions. Iss: estimated index of
substitution saturation for the data set. Iss.c S and Iss.c A: critical values for the index of substitution saturation (ISS) if the true tree is symmetrical (S) or
asymmetrical (A). Iss > Iss.c indicates saturation.

*original (ambiguous positions excluded).

sat GTR 6A 6B 6C 6D 7A 7B 7C 7D 7E 7F 16 16A 16B

Chi y

Hex y

Ech y

Het y

Pri n

Mam n

Ani n

Figure 5 Summary of all tree reconstruction results. The matrix
summarises all results of the tree reconstructions in context of
substitution saturation (sat: y = yes, n = no). White boxes indicate a
potentially correct tree hypotheses, whereas black boxes indicate
probably wrong tree hypotheses. The results of the tunicate data
set are not shown, as they could not been construed unequivocally.
Abbreviations: Chilopoda: Chi, Hexapoda: Hex, Echinodermata: Ech,
Tunicata: Tun: Heterobranchia: Het, Primates: Pri, Mammalia: Mam,
Anisoptera: Ani.

Table 2 ISS test for combined data sets

Subgroups Saturation test

Iss Iss.c S P Iss.c A P

Chilopoda 0.314 0.760 0.000 0.467 0.002

Hexapoda 0.392 0.799 0.000 0.533 0.000

Echinodermata 0.484 0.769 0.000 0.482 0.961

Heterobranchia 0.542 0.797 0.000 0.531 0.572

Tunicata 0.264 0.782 0.000 0.503 0.000

Results of the index of substitution saturation test for combined data sets,
where homoplasy due to multiple substitution had been previously been
detected in the loop partitions. Iss.c S and Iss.c A: critical values for the index
of substitution saturation (ISS) if the true tree is symmetrical (S) or
asymmetrical (A). Iss > Iss.c indicates saturation.
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function in protein biosynthesis, paired and unpaired
positions can be expected to evolve differentially and
might therefore also differ in their sensitivity to numer-
ous substitutions occurring at the same position, thus
hiding or completely erasing phylogenetic signal. Our
results indicate separate exploratory analyses of loops
and stems as crucial, because homoplasy due to multiple
substitutions in loop positions could not be detected if
the combined data sets (loops + stems) are tested for
excessive homoplasy (Table 2). Pooling loop portions
may be subject to the same kind of underestimation of
homoplasy, if rates among loop regions are highly hetero-
geneous, as is apparent in Van de Peer et al. [59]. Thus, it
may be advisable to estimate homoplasy in each loop
region separately. These homoplastic substitution pat-
terns have generally been addressed as “substitutional
saturation” [60,61]. However, “saturation” is a concept
that is only relevant to distance based analyses, where
“saturation” refers to saturation curves, in which increas-
ing phylogenetic depth does not increase pairwise dis-
tances. Phylogenies have nodes at many levels, from the
tips to the root, and character based analyses can insulate

homoplasy and mediate errors due to homoplastic sites
in ways that distance based analyses cannot [62,63], for
example by increasing the taxon sampling to break up
long branches [64-69]. In this context, it can further be
stated that “saturation” is not an inherent character of an
aligned sequence position in a given alignment, it rather
depends on the considered phylogenetic level. Additional
measurements of the ISS in the tunicate data set, applied
to the loop partitions of distinct monophyletic subgroups
within Tunicata, shows an ISS significantly smaller than
the ISSc for both symmetrical and asymmetrical topolo-
gies, thus indicating a decrease of homoplasy in these
groups (Table 3). The ISS method applied here accounts
for position specific nucleotide frequency pattern in a
given alignment, which are supposed to reflect the occur-
rence of multiple substitutions in the data set [57], thus
implying relative homoplasy. Therefore, the use of the
ISS might be a reasonable heuristic to estimate the level
of homoplasy according to the deep splits discussed in
the considered data sets.
As depicted in Figure 5, most of the RNA models only

lead to reasonable tree hypotheses, if the loop regions
are found to contain meaningful phylogenetic data. In
data sets identified as saturated, nearly all RNA models
failed to recover an expected hypothesis. In contrast, the
standard DNA model setup usually led to trees congru-
ent with recent views on the relationships in the accor-
dant groups. In this context, especially the results of the
hexapod data are interesting, as these analyses did not
provide superior trees by the DNA models setups,
although saturation is detected. In the case of hexapods,
no model setup led to the expected tree hypothesis.
This indicates a generally insufficient phylogenetic signal
of the 18S and 28S RNA data to resolve the shortest of
the internodes among the deep hexapod splits. However,
in [28], Bayesian inference analyses of the identical data
set led to wrong tree hypotheses in the mixed RNA/
DNA model setup, but not in the standard DNA model
setup. Kjer [11] found that topologies were virtually
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Figure 6 Summary of Robinson-Foulds distances. Robinson-
Foulds distance scores between the complete data sets and the
data sets restricted to (A) unpaired positions and (B) paired
positions. Black fields indicate an increased RF distance between the
combined data sets and the restricted data sets, under application
of a mixed model setup on the combined data set. Grey fields
indicate an decreased RF distance and white fields indicate no RF
distance between combined data sets and the restricted data sets.
Abbreviations correspond to Figure 5.

Table 3 ISS test for several subgroups within Tunicata

Subgroups Saturation test

Iss Iss.c S P Iss.c A P

Phlebobranchia 0.584 0.747 0.031 0.536 0.524

+ Aplousobranchia

Phlebobranchia 0.533 0.755 0.001 0.556 0.726

Thaliacea 0.807 0.760 0.390 0.626 0.001

Mogulidae 0.251 0.752 0.000 0.593 0.000

Stylidae + Pyuridae 0.330 0.746 0.000 0.481 0.014

Stylidae 0.183 0.748 0.000 0.569 0.000

Results of the index of substitution saturation test for different tunicate
subgroups. Iss.c S and Iss.c A: critical values for the index of substitution
saturation (ISS) if the true tree is symmetrical (S) or asymmetrical (A). Iss > Iss.
c indicates saturation.
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identical between the standard and RNA models, but
support values varied: in some cases, expected nodes
were more strongly supported with GTR models
(Archaeognatha, Pterygota, Paraneoptera + Holometa-
bola, and Hymenoptera) other cases favoured the doub-
let model (Hexapoda, lestoids sister to other Zygoptera).
Similarly, support for a paraphyletic Anisoptera (pre-
sumably incorrect) went down with the doublet model.
Nevertheless it is noteworthy, that mixed RNA/DNA
model setups frequently led to an increased support for
probably correct clades in data sets without homoplastic
loops (Mammalia and Primates), thus supporting pre-
vious studies on RNA models in phylogenetics
[14,19,23].
Our analyses setup also allows comparisons between

the different RNA model setups. Current RNA substitu-
tion models can be divided into two distinct classes,
rooted in population genetics [5,10]. Models of the first
class assume a one-step process of compensatory substi-
tution in paired positions, thus allowing double substitu-
tions (e.g. AU ↔ GC): a mutation in a base pair (AU ®
GU) may led to slightly deleterious UG or GU pairs. If
selection against these intermediates is strong, these are
kept in low frequency in the population. If a second
mutation occurs at the corresponding site (GU ® GC),
drift in gene frequency may lead to a domination of this
new base pairing in the population (RNA6A-D, RNA7A-
B, D and RNA16A). In contrast, models of the second
class assume a two-step process of compensatory substi-
tution in paired positions, considering one substitution
in base-pairs, with a probability of zero for all double
substitutions. This approach considers a fixation of
intermediate states in the population at a high fre-
quency, after a mutation in a base pair and before a sec-
ond mutation at the corresponding site (RNA7C, F and
RNA16, B). RNA models can be further discriminated
by their treatment of mismatches: 6-state models com-
pletely ignore these pairings, 7-state models lump all
mismatches in one category, whereas 16-state models
apply distinct frequency and substitution rate para-
meters to the individual mismatches.
Previous studies on RNA models in phylogenetics

have predicted the superiority of models allowing double
substitutions and the superiority of the most general
models (RNA6A, RNA7A) [5,10,70]. The latter is corro-
borated by the AICc modeltest of the present analyses,
which frequently show higher likelihoods and AICc
values for the most general models (see Additional file 3
Table S2 and S3). Furthermore, the RNA6A model led
to the expected topologies in two data sets (Echinoder-
mata and Chilopoda) showing relative homoplasy in
loop partitions, whereas all other RNA models fail to
display presumably correct trees, if significant homo-
plasy was identified (Figure 5). In this context, the

RNA6D and RNA16B models are performing worst, as
both are only able to display one potentially correct tree
hypotheses. Additionally, congruencies between the per-
formance of RNA models and the results of the AICc
modeltest can be drawn from our results. According to
the AICc modeltest, in the class of the RNA6 models,
the most general RNA6A model is always superior to all
other RNA6 models (see Additional file 3 Table S2 and
S3), which is further congruent to its performance in
tree reconstruction analyses. This is not reflected by the
RNA7 and RNA16 models, where the models with the
highest AICc scores (RN7A-B and RNA16 did not per-
form best (cf. Figure 5).

Potential pitfalls of RNA modelling
Consequences of different evolutionary constraints in
stem and loop regions of rRNA sequences for phyloge-
netic analyses has long been suspected and led to differ-
ent recommendations for weighting stem positions in
parsimony analyses [2,7,8]. Beside suggestions for simple
one-half weighting of paired positions [7], empirical
investigation of compensatory substitution rates in stem
positions [8] reveals a rate of about 40% of that
expected under a hypothesis of perfect compensation.
Therefore, the weighting of stem characters is suggested
to be reduced by no more than 20%. Consequently, in
model based tree reconstruction methods, like Bayesian
inference and Maximum Likelihood, it should be rea-
sonable to use specific RNA models (which can be seen
as an algorithmic equivalent to weighting stem positions
in Maximum Parsimony) as simply applying a standard
DNA model to data from one part of the helical regions.
Application of these RNA models has frequently been
justified by a consistent phylogenetic signal of coevolved
paired sites, decreasing the information content in the
data [5,18]. Analyses ignoring this interdependence
should tend to overestimate the support for dubious or
even wrong nodes in a tree [13]. Due to a reduced num-
ber of effective sites, the application of specific RNA
models, which take interdependencies into account,
reduces tree confidence, but is more reliable in the light
of the information content in the data [12,16].
Our results actually imply a reduced impact of stem

positions in the combined data set, if mixed RNA/DNA
model setup are used. This is depicted by the tree dis-
tance results of the separate analyses of the stem and
loop partitions. In most data sets, the distances between
the trees based on only the loop partition and the com-
bined data are reduced, if RNA models are applied for
the combined data, whereas the distances between the
stem partition and the combined data are mostly
enlarged (Figure 2). This could have been expected, if
coevolution in paired sites is assumed and thus these
positions do not provide independent phylogenetic
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information. However, for several of the currently tested
data sets, the substitution saturation test reveals that the
unpaired positions clearly experience excessive homo-
plasy, which indicates a loss of phylogenetic information,
as these positions are no longer informative [71]. In this
context, stem positions in the current data sets should
contain more reliable signal, compared to loop regions,
as they exhibit a much lesser grade of homoplasy due to
multiple substitutions. Consequently, the application of
RNA models increases the relative impact of noisy posi-
tions in the data set and reduces the influence of more
informative portions. Thus, the results of the current
analyses corroborate the hypothesis proposed by Letsch
et al. [28].
RNA models doubtlessly provide a better depiction of

the phylogenetic information content of rRNA data sets,
but this might be a trap, if homoplasy is far greater in
loop positions. In this case, the informative phylogenetic
content is obscured by noise. The situation might prob-
ably be depicted best, if we thought of a weighting
scheme for rRNA data sets: in standard DNA model
setup, the signal of paired positions is virtually weighted
twice, as both positions are linked and signal of pairs
can be seen redundant. As outlined above, previous stu-
dies have mostly targeted this as a problem
[5,10,12,13,18,19], but the current analyses showed rela-
tive homoplasy as delimiting the confidence of the phy-
logenetic signal provided by loop regions, revealing a
more or less hidden coherence between two factors -
covariation and homoplasy - contributing to the phylo-
genetic signal of the rRNA data sets. For this scenario it
can be stated, that in contrast to a previously proposed
overestimation of wrong support by ignoring site inter-
dependencies [13], the application of RNA models will
tend to overestimate the support for dubious or wrong
nodes in a tree.
As depicted above, loops and stems can be expected

to experience different selectional regimes, which has
resulted in the development of the specific RNA models.
Nevertheless, it has been noted as early as 1991 [72]
that substitution rates do not fit neatly into stem-loop
partitions, and thus weighting according to stems vs.
loops might be problematic, which was later demon-
strated by Van de Peer [59]. Consequently, selectional
constraints on rRNA may not only differ between paired
and unpaired regions, but also among the individual
loop or stem regions, which would depend on the indi-
vidual function and their relative location in the 3D
rRNA molecule. Binding sites of ribosomal proteins, for
example protein L11-binding domain (L11-BD) within
the LSU rRNA domain II and the sarcin-ricin loop
within domain VI, constituting the GTPase-associated
center [73] or the LSU rRNA domain V, which contains
the peptidyl transferase center (PTC) [74], are highly

conserved throughout metazoa. Furthermore, many of
the rRNA regions of domain IV that are involved in
tRNA and inter-subunit interactions are also preserved
[74,75]. In contrast, the domain I of the mt LSU is
highly variable on sequence level and until now, no con-
served secondary structures could be detected [4,73].
Consequently, the partitioning into loops and stems
must be seen as only an relative coarse approximation
to model rRNA sequences. In future phylogenetic stu-
dies on rRNA, more sophisticated partitioning schemes,
depending on the function, base composition and rela-
tive location of rRNA regions, would be able to enhance
model based tree reconstruction analyses

Conclusions
The results of the present study can be interpreted as a
trade-off between using specific RNA models for a
hopefully more accurate estimation of covariation in
paired sites and the risk of augmenting relatively homo-
plastic unpaired positions in the tree reconstruction. For
future phylogenetic studies based on rRNA sequences,
we would therefore highly recommend a separate test
for saturation of substitution in loop and stem partitions
of the aligned data set. The use of a mixed RNA/DNA
model setup should be avoided if saturation occurs in
the loop partitions, as otherwise the valuable phyloge-
netic signal of the stem partitions might be masked by
potentially noisy signal provided by the loops. In con-
trast, if no substantial homoplasy is detected in the data,
the use of mixed RNA/DNA models can be highly
recommend, as these lead to an increased support to
probably correct clades.
Based on the presents results, we cannot advocate an

general exclusion of the potentially noisy loop positions:
First, noise is not an inherent character of a certain
nucleotide position, but depends on the considered phy-
logenetic level. And second, differences among loop (or
stem) regions can be expected and excluding these
regions as a whole reduces the phylogenetic signal of
the data set. Consequently, we rather recommend to
think about enhanced partitioning strategies, which
would allow a more careful modelling of rRNA
sequences and provide a first approach to detect noisy
signal among loop (or stem) partitions.
However, covariation and substitution saturation are

only two parameters of the evolutionary inherent pat-
tern displayed (or hidden) in the data. Other phenom-
ena, like non-stationarity of substitution rates across
sites and branches as well as base composition heteroge-
neity, might also maul the signal content of the data set.
A previous study [26] based on nuclear rRNA genes,
identified deviation of base composition in certain clades
as probably misleading tree reconstruction analyses,
rather than the covariation pattern in stem regions. A
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sophisticated estimation of evolutionary pattern in rRNA
sequence data is therefore principally desirable and
newly developed methods should be applied, which are
able to consider background knowledge as covariation,
non-stationary processes or heterogeneity in the data
[26,76].

Methods
Compilation of data sets
As exemplary data sets to test the performance of we
chose Echinodermata (18S), Tunicata (18S), Heterobran-
chia (18S) Chilopoda (18S), Hexapoda (18S + 28S),
Mammalia (12S + 16S), Primates (12S + 16S) and Ani-
soptera (12S + 16S + 28S). All sequences were down-
loaded from NCBI Genbank (Additional file 4 provides
complete taxon tables, including Genbank accession
numbers). To apply mixed RNA/DNA models in the
tree reconstruction, we had to infer reliable individual
secondary structures. Consequently, we only considered
18S sequences with at least 1700 bp and 28S sequences
with at least 3000 bp. 12S and 16S rRNA sequences in
the primate and mammalian data sets were taken from
entire mitochondrial genomes and therefore span the
entire rRNA locus. In Anisoptera, the 12S and 16S
rRNA sequences have minimum lengths of 500 bp and
1250 bp respectively. For the combined data sets, we
only considered taxa that were represented by all genes.

Alignment procedures
Alignment was done with the RNASALSA software [30],
which aligns ribosomal RNA sequences by utilising exist-
ing hypotheses of structural patterns, in order to con-
strain thermodynamic folding algorithms and favour the
alignment of sites that contain compensatory substitu-
tions. In three steps, RNASALSA accumulates structure
information, until each sequence receives its individual
secondary structure string. In the first steps, conserved
structure features are recognized via primary sequence
conservation and consistent and/or compensatory substi-
tution, which provides a structure skeleton for the next
step, where the more variable regions gain structures by
thermodynamic folding. Finally, the combined sequence
and structure strings are simultaneously aligned, where
sequence and structure information come into account.
The program uses structural constraints as an input file,
and our constraints of nuclear and mitochondrial SSU/
LSU genes (see Supplement S1), were originally retrieved
from the European Ribosomal Database (ERDB) [77-79].
The structures of these sources are coded in the proprie-
tary DCSE format and were recoded into the required
dot-bracket format with the program extractfromdcse of
the PHASE software package [18,80]. The ERDB home-
page is offline now, but readily recoded constraint struc-
ture files (representing various metazoan groups), as well

as tools to divide loop and stem partitions, are available
at the RNAsalsa homepage http://rnasalsa.zfmk.de. RNA-
SALSA also requires a “pre-alignment” input file, which
was obtained from the E-INS-i algorithm of the MAFFT
alignment package [81], using default settings. The strin-
gency settings for adoption of secondary structures in dif-
ferent alignment steps was relaxed (0.51), as we wanted
to retain as much structure information as possible (see
[30] for a detailed description of the RNASALSA
method). Subsequent evaluation of the alignments was
done with ALISCORE[82], which identifies ambiguously
aligned regions in multiple sequence alignments. For gap
treatment (g), window size (ws) and random pairwise
comparisons (pc), the following settings were used (g:
gaps as ambiguous characters; ws: four positions; pc:
taxa2).

Maximum Likelihood analyses
Maximum Likelihood analyses were conducted with
RAxML v7.2.6 [31-33], which is an enhanced program
for computing phylogenetic trees based on Maximum
likelihood inference that includes RNA substitution
models (RNA6A-D, RNA7A-F, RNA16, RNA16A and
RNA16B, for a detailed description of the RNA models,
please refer to the manual of the PHASE software pack-
age [80]). To define paired an unpaired partitions, the
consensus structures in dot bracket format were used,
obtained from the RNAsalsa alignments. In the standard
DNA setup, the GTR model was used with all model
parameters estimated from the data, with among site
rate variation modelled with gamma distributed rates
across sites with four discrete rate categories. Addition-
ally, model parameters were optimised for different par-
titions, representing SSU and LSU rRNA sequences
respectively. In the RNA model setups, a third partition
is defined, according to the consensus secondary struc-
ture of the whole alignment and all paired position are
extracted and pooled in third partition. The consensus
structure provided by RNAsalsa Model fitting in both
single nucleotide partitions is applied as in the standard
model setup and the in paired nucleotide partition a
specific RNA model is used. Within each class of RNA-
models, the best model is evaluated by an Akaike Infor-
mation criterion (AICc) test.

Test for homoplasy
Relative homoplasy was examined between loop and
stem regions. For this purpose, the aligned data sets
were divided into paired and unpaired partitions,
according to the consensus structures, provided by the
RNASALSA alignments. Subsequently, each partitions
was compared for the level of homoplasy in the data,
using the substitution saturation test of the program
package DAMBE v5.2.9 [56,57], which estimates an
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“index of substitution saturation”, based on the notion
of entropy in information theory. Prior to the saturation
test, we accounted for invariant sites, which provides a
more reasonable estimation of potential saturation in
the data sets [57].

Additional material

Additional file 1: Additional tree reconstruction results. Detailed
discussion on the results of tree reconstruction of Chilopoda, Hexapoda,
Anisoptera, Primates and Heterobranchia.

Additional file 2: Tree reconstruction results. All trees (Newick le
format) provided by the DNA model setups the and mixed RNA/DNA
model setups of all applied data sets.

Additional file 3: Tables. Tables providing the Genbank accession
numbers of constraint sequences used for the RNASALSA alignment, the
detailed results of the AICc test and the detailed results of the Robinson-
Foulds distance measurements.

Additional file 4: Taxa list. A list of all applied sequence data with
according Genbank accession numbers.
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