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Abstract
Background: Lake Tanganyika (LT) is the oldest of the African Rift Lakes and is one of the richest freshwater ecosystems 
on Earth, with high levels of faunal diversity and endemism. The endemic species flocks that occur in this lake, such as 
cichlid fishes, gastropods, catfish and crabs, provide unique comparative systems for the study of patterns and 
processes of speciation. Mastacembelid eels (Teleostei: Mastacembelidae) are a predominately riverine family of 
freshwater fish, occurring across Africa and Asia, but which also form a small species flock in LT.

Methods: Including 25 species across Africa, plus Asian representatives as outgroups, we present the first molecular 
phylogenetic analysis for the group, focusing particularly on the evolutionary history and biodiversity of LT 
mastacembelid eels. A combined matrix of nuclear and mitochondrial genes based on 3118 bp are analysed 
implementing different phylogenetic methods, including Bayesian inference and maximum likelihood.

Results: LT Mastacembelus are recovered as monophyletic, and analyses reveal the rapid diversification of five main LT 
lineages. Relaxed molecular clock dates provide age estimates for the LT flock at ~7-8 Myr, indicating intralacustrine 
diversification, with further speciation events coinciding with periods of lower lake level. Our analyses also reveal as yet 
undescribed diversity of lacustrine and riverine species. A Southern-Eastern African clade, that is younger than the LT 
flock, is also recovered, while West African taxa are basal members of the African mastacembelid clade.

Conclusions: That the LT species flock of mastacembelid eels appears to have colonised and immediately diversified 
soon after the formation of the lake, supports the view of LT as an evolutionary hotspot of diversification. We find 
evidence for biogeographic clades mirroring a similar pattern to other ichthyological faunas. In addition, our analyses 
also highlight a split of African and Asian mastacembelid eels at ~19 Myr that is considerably younger than the split 
between their associated continents, suggesting a dispersal scenario for their current distribution.

Background
The African Great lakes provide natural experimental
settings in which to better understand the processes that
underlie speciation. Lake Tanganyika (LT), the oldest
African rift lake (9-12 Myr) [1], is one of the world's rich-
est freshwater ecosystems (c. 2000 species) [2]. It har-
bours numerous different endemic faunas (c. 600 species)
[2], supporting more endemic non-cichlid species than
any of the other African Great Lakes, many of which form
evolutionary radiations, termed 'species flocks' [3]. The
most impressive of these are represented by cichlid fishes
[4]; however, unique to LT, and possibly a consequence of
its older geological history, are the multiple radiations,

that have evolved from a variety of taxonomic lineages,
e.g., gastropods, crabs, catfish, spiny-eels, sponges, atyid
prawns and ostracods. Molecular phylogenetics and
molecular dating techniques have enabled inferences to
be made of colonisation and diversification histories,
which have alternatively supported the perception of LT
as a hotspot of diversification [5-7], as well as an evolu-
tionary reservoir [8,9]. The existence of multiple radia-
tions of unrelated faunas within an island-like setting that
display differing life histories and ecologies, offers a
unique comparative opportunity to study the dynamics of
radiations and the importance of this lake as a cradle of
speciation. Through this system we can begin to ascertain
the relative importance of extrinsic versus intrinsic pro-
cesses in the context of adaptive radiation theory [10,11].

Species diversification within LT has manifested in the
form of large scale super-flocks such as the well-studied
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cichlid fishes containing ~200-250 species [12,13] as well
as the thiarid gastropods [14], containing ~70 species.
However, the majority of taxa form small-scale faunal
radiations at the generic level, containing between 10-15
species. Because of the high levels of interest in cichlid
fishes as model organisms in which to investigate specia-
tion processes, non-cichlid flocks have been largely over-
looked. Recently, however, different authors have begun
to address this from a molecular phylogenetic perspective
to determine timing of diversification, as well as colonisa-
tion history, e.g. Synodontis catfish [7,15,16], Platythel-
phusa crabs [6], and thiarid gastropods [9,14].

To-date, the evolutionary history of the LT species
flocks reveals both similarities and differences, although
inconsistencies as a consequence of molecular dating may
exacerbate these disparities. For example, LT cichlid
tribes (based on fossil calibrations [12]), Synodontis cat-
fish [7,15], Platythelphusa crabs [6] and Lavigeria gastro-
pods [9] all show within-lake diversification supporting
the notion of LT as a hotspot of diversification. In con-
trast, the majority of gastropod diversity found within LT
has evolved from lineages that predate its formation [9].
A similar pattern was also hypothesized for the LT cichlid
fish tribes, indicative of multiple independent colonisa-
tion events into LT [8,17]. This scenario is further sup-
ported if Gondwanan vicariance dates are enforced to
calibrate molecular time estimates [12,18]. However, that
colonisation history differs between faunal groups
appears largely to be a consequence of comparing differ-
ent taxonomic units. Platythelphusa crabs represent a
single colonisation event followed by subsequent diversi-
fication [6], while Synodontis also form a flock within LT,
but with the inclusion of a non-endemic species that
appears to represent evolution within the lake followed
by emigration [15]. That these unrelated groups exhibit
different evolutionary histories makes the analysis of
other taxonomic groups, using robust phylogenetic
methods important in furthering the understanding of
the role of LT as a potential diversification hotspot.

Mastacembelids or spiny-eels (Teleostei: Syn-
branchiformes) is a predominately riverine family [19],
with an Old World distribution throughout tropical
Africa and Asia (~78 species), although the majority of
species occur in Africa (68%). Based on morphology,
there is little evidence for the separation of mastacem-
belids into two subfamilies [20], or African species into
three genera [21-23] and therefore we refer to all African
species as Mastacembelus. Little is known about masta-
cembelids in terms of their phylogeny, ecology and life
history, and this is even more apparent in the species that
have formed a radiation within LT. This is, in part,
because of their cryptic and predominately rock-dwelling
nature making them difficult to study. Aside from the LT
radiation, the only other African region with a compara-

ble number of endemic sympatric species is in the lower
Congo River [24], making these species assemblages of
interest with regards to the factors promoting and main-
taining elevated levels of endemicity. Here we focus on
the LT species flock.

There are currently 13 described mastacembelid spe-
cies endemic to LT [25], as opposed to a single (possibly
two) endemic species within Lake Malawi [26,27]. This
asymmetry is also seen in other groups that form radia-
tions in Tanganyika but not Malawi (e.g. Synodontis cat-
fish), although notably Lake Malawi Bathyclarias catfish
form a small species flock [28]. Despite the age and size of
Lake Malawi, and the fact that, like LT, it supports a large-
scale radiation of cichlids [29], this asymmetry between
the two lakes in species diversity of Mastacembelus and
Synodontis is noteworthy. Potential factors, such as the
repeated periods of desiccation experienced in Lake
Malawi [30,31], or niche availability with the presence of
an extensive cichlid radiation, may have impinged on the
abilities of other faunas to diversify.

Here, using a multigene dataset of mitochondrial
(mtDNA; Cytochrome b [Cyt b], Cytochrome c oxidase
sub-unit 1 [CO1]) and nuclear (ncDNA; ribosomal S7
introns 1 and 2 [S7]), and several methods of phyloge-
netic inference and relaxed-clock dating we present the
first molecular phylogenetic analysis of Mastacembelus
eels (Additional file 1, Table S1). We focus on LT species,
to investigate their diversity, monophyly and colonisation
history, in order to infer whether small-scale radiations
are more likely to diversify in intralacustrine conditions,
as opposed to having diversified outside of the lake basin,
and discuss our results in a comparative framework. As
such the majority of sampling is from LT (including 11 of
the 13 currently described species) and associated catch-
ments. In addition almost half of all described African
mastacembelid diversity is included, along with two
Asian mastacembelid species as outgroups, in order that
we can evaluate the LT species flock in the broader con-
text of mastacembelid biogeography and evolutionary
history.

Results and Discussion
Sequence analysis
The preferred evolutionary models, calculated using
Modeltest v3.7 [32], are GTR+I+Γ for the Cyt b datatset,
HKY+I+Γ for both S7 and CO1 datasets, and TrN+I+Γ
for the concatenated dataset. The nucleotide base com-
position (A: C: G: T) for each molecular marker is as fol-
lows: 27.5: 36.1: 11.6: 24.8% (Cyt b), 26.9: 18.4: 24.4: 30.3%
(S7), and 31.0: 30.3: 12.8: 25.9% (CO1). The bias against
guanine in Cyt b has also been reported in other fish taxa
[33]. The χ2 test of homogeneity demonstrated that there
was no significant difference in base frequencies between
ingroup taxa (χ2 values of 103.5, 39.1 and 40.8, with 231,
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210 and 240 degrees of freedom for Cyt b, S7 and CO1
respectively, p < 0.05). The data were combined in a total
evidence approach, with the total matrix consisting of
3118 bp [1206 bp from Cyt b (of which 70 bp from tRNA);
1129-1162 bp (1224 bp aligned) from S7 (1st intron 853-
906 bp, 2nd intron 233-263 bp); and 688 bp from CO1].
Data were missing for the 2nd intron of S7 for 12 speci-
mens.

Phylogenetic relationships and biodiversity
The Maximum-likelihood (ML) and Bayesian (BI) trees
generated from the concatenated dataset resolved virtu-
ally identical topologies, with neither tree being assigned
as a better fit to the data than the other (AU test, p =
0.500). The concatenated and single gene datasets also
yielded largely congruent tree topologies (see Additional
files 2, 3 and 4 for individual gene trees), although all
individual datasets demonstrated a significantly worse fit
to the data when compared to the concatenated dataset
(AU test, p = 0.008 for Cyt b, and p = 0.000 for both S7
and CO1 BI trees). CO1 performed well for species-level
identifications, but sister species and deeper-level rela-
tionships were poorly supported, making it of limited use
for phylogenetic analysis. In terms of the use of CO1 for
DNA taxonomy, it faired less well in terms of resolution
and support than Cyt b for Mastacembelus. This lack of
resolution between deeper nodes was also reported with
CO1 in LT thiarid gastropods, with this being attributable
to either the marker evolving too rapidly for resolving
deeper systematic levels, or the rapid simultaneous evolu-
tion of major clades resulting in similar levels of sequence
divergence [14].

Support for sister species relationships was also lower
in the ncDNA S7 than Cyt b single gene analyses. It is
possible that S7 could be evolving too slowly to resolve
the sister species relationships within LT. This is also the
case for Synodontis [15], despite this gene having proved
useful in elucidating cichlid relationships of a similar age
[34]. Combining the data into one concatenated dataset
improved support in all parts of the tree (Fig. 1).

Our analyses recover a well-supported LT Mastacem-
belus flock (node A, Fig. 1), composed of five main lin-
eages (nodes labelled B-F, Fig. 1). However, while
relationships within these lineages are well supported, the
relationships between them are poorly supported, result-
ing in a basal polytomy. The use of more rapidly evolving
markers (e.g. AFLPs) is likely to further elucidate the rela-
tionships between species within the LT radiation, as
demonstrated for rapidly speciating clades [35-38]. If,
however, the data do represent a true hard polytomy, we
interpret this result to suggest early rapid speciation of
this clade in to new available niches, indicative of an
adaptive radiation [10]. Short branches are also found
within the Platythelphusa crabs [6] and LT Synodontis

[7,15] also indicating a similar rapid diversification in
these clades.

Molecular phylogenetic analyses reveal greater diver-
sity of the spiny-eel species flock than morphological
studies, with 13 species recovered. Our analyses reveal
cryptic diversity within M. platysoma, forming two dis-
tinct clades, pertaining to specimens occurring in the
northern (M. platysoma; Kigoma, Tanzania) and south-
ern (M. aff. platysoma; Mpulungu, Zambia) basins, with
the type locality being in the northern basin (Luhanga,
Democratic Republic of Congo). These two putative spe-
cies exhibit high morphological similarity. An apparent
lack of morphological diversity could be attributable to
non-adaptive speciation, but morphometric work would
be required in order to quantify phenotypic diversity.
Despite this apparent conservatism in body plan, these
two M. platysoma clades have a relatively high genetic
distance, comparable to other LT Mastacembelus sister
species (Cyt b ML pairwise distances of 5.7%, compared
to the mean sister species distance of 5.1%), which is also
within the range recorded for other fish genera [33], e.g.
Lamprologus, Neolamprologus.

Recent morphological work [25] split M. albomacula-
tus into two species, describing M. reygeli as a distinct
species, whilst also suggesting the presence of intermedi-
ate populations, hypothesised to be a result of introgres-
sive hybridisation. These authors record both M.
albomaculatus and M. reygeli as being confined to the
central and northern parts of the lake, with their hypoth-
esised 'intermediate' occurring throughout the lake. The
seven M. albomaculatus (sensu lato) specimens from
southern LT included in our analyses would therefore
have to be representative of the putative intermediate
group sensu Vreven and Snoeks [25]. However, using
both mtDNA and ncDNA, we found no genetic differ-
ences between the southern 'intermediate' group, and the
M. albomaculatus from the northern part of the lake, and
therefore no evidence of support for the hybridisation
hypothesis of Vreven and Snoeks [25]. More extensive
molecular sampling would however be useful to address
the issue of hybridisation in LT mastacemblids, that has
also been proposed in non-LT mastacembelids [39] but
not tested. Notably, introgressive hybridisation is increas-
ingly well documented in LT cichlids [34,40-42].

Colonisation history of the LT mastacembelid flock
Irrespective of dating method we find that the mastacem-
belid eels colonised LT ~ 7-8 Myr (BEAST analysis, 7.9
Myr, 95% HPD [highest posterior distribution]: 5.5-10.6
Myr; r8s analysis, 7.3 Myr, 95% HPD: 4.61-12.9 Myr). As
the results using the two methods of dating are largely
congruent, we present results from the BEAST analysis
(Fig. 2). If the median dates of our estimate are correct,
then Mastacembelus colonised and diversified in the LT
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Figure 1 Phylogenetic relationships of African mastacembelid eels inferred from the concatenated mtDNA and ncDNA datasets. A) The con-
sensus of the ML and BI trees, with support from bootstrap generated from ML and Bayesian posterior probability (BPP), above and below branches 
respectively (shown for nodes with greater than 50% support only). Key nodes are labelled A-G, with the blue box highlighting LT species. B) Phylo-
gram based on Bayesian analysis of concatenated data set (mtDNA and ncDNA) to depict branch lengths. M., Mastacembelus; Mg., Macrognathus. Ge-
neric classification following Travers [21,23] represent Aethiomastacembelus (*) and Caecomastacembelus (^). Pictures are reproduced from Eccles [96].
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Figure 2 Chronogram inferred from Bayesian dating analysis (BEAST) of the concatenated (mtDNA and ncDNA) data. Grey node bars repre-
sent 95% confidence intervals (HPD: highest posterior distributions), the green bar represents the calibrated node. Key nodes are labelled A-H, with 
the blue box highlighting the LT species. Time is in millions of years (Myr).
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basin after its formation (9-12 Myr) [1], but prior to full
lacustrine conditions (5-6 Myr) [43], although the lower
dating estimate occurs post deep-water conditions, cor-
roborating the hypothesis that LT is a diversification
hotspot. Our results imply that the LT Mastacembelus
radiation pre-dates both Synodontis catfish 4.0-7.3 Myr
[7,15] and Platythelphusa crabs ~2.5-3.3 Myr [6]. Dating
cichlid radiations is problematic and has led to two diver-
gent timescales, based on either a vicariance calibration
linked to the breakup of Gondwana, or a calibration
based on the cichlid fossil record [18], placing the cichlid
diversification at 28 Myr and 12 Myr respectively. These
timescales either favour a scenario in which the majority
of cichlid tribes were diversifying prior to the formation
of LT, or that the tribes diversified in lacustrine condi-
tions respectively [12,41]. Although the Lavigeria gastro-
pod lineage predates the formation of the LT basin [9],
this genus appears to have radiated in a similar time win-
dow as LT Mastacembelus i.e. after the formation of the
LT basin, but before full lacustrine conditions.

Diversification of the main Mastacembelus lineages
occurred contemporaneously at ~6.2-7.2 Myr, soon after
their initial seeding of the lake. This initial diversification
upon colonising LT is also apparent in Tropheus cichlids
[44], and represents a short lag time, or phylogenetic 'tail'
[45]. Following the initial post-colonisation divergence,
there are further contemporaneous speciation events 3-4
Myr. The split of M. platysoma and M. aff. platysoma
occurs around 3.5 Myr, coinciding with the estimated for-
mation of the southern basin of LT ~2-4 Myr [1], and a
period of lower lake-levels, caused by an episode of aridi-
fication [46]. The clades (M. micropectus, M. sp. nov. 1)
and (M. ellipsifer (M. flavidus (M. zebratus, M. plagiosto-
mus))) also arose during this time of lake-level change, as
do internal lineages within LT Synodontis [7,15] and
Platythelphusa [6] radiations. The coinciding of specia-
tion events in unrelated taxa with an extrinsic event, indi-
cates that this period of lower lake-level is likely to have
been a key factor responsible for promoting speciation
conditions; for example, repeated segmentation and
recombination of habitats along the rocky shorelines,
caused by these fluctuations in water level, is likely to
have resulted in the allopatric speciation of these LT radi-
ations.

Non-endemics
As with Synodontis catfish that form a LT species flock of
10 endemic plus one non-endemic species, the LT Masta-
cembelus flock is also purported to consist of endemic,
plus one non-endemic species [47]. However, no speci-
mens of the non-endemic M. frenatus collected from LT
were available for inclusion in our analysis. The type
locality of this species is the north of LT [48] and it has
been recorded to occur in the catchment basin of LT,

Lake Victoria and throughout the Upper Zambezi and
Okavango River basins [49]. However, more recent work
suggests that M. frenatus is not part of the LT ichthyo-
fauna, and may not occur in the lake itself [50]. M. frena-
tus specimens from both the Malagarasi and Idete rivers
in Tanzania differ markedly, and are not included within
the LT flock. It therefore seems unlikely that M. frenatus
evolved within LT and subsequently emigrated, as has
been demonstrated to be the case with the non-endemic
S. victoriae, a member of the Synodontis flock [7,15]. It
could be reasonable to assume instead that M. frenatus
(sensu stricto) as described from LT [48] may either have
independently colonised the lake, or, if present in the lake
at all, M. frenatus could represent further cryptic diver-
sity, with the LT species being distinct from that in the
surrounding rivers. Further morphological and molecular
work is required in order to ascertain the diversity and
taxonomy of this species complex, and its correct posi-
tioning within the group.

African Biogeography
Analogous to Vreven [20], we found no evidence to sup-
port the genera proposed by Travers [21,23], with neither
Aeithomastacembelus nor Caecomastacembelus forming
monophyletic groupings (illustrated by symbols on Fig.
1). As such these names should be placed in synonymy
with Mastacembelus. However, there is evidence for bio-
geographic clades. Mastacembelids have a similar distri-
bution to other ichthyological groups, such as
Synondontis catfish and cichlid fishes [19]. The Southern
and Eastern African Mastacembelus species form a
monophyletic group (node G on Fig. 1 and 2), consisting
of three distinct biogeographic regions; i) Lake Malawi
(M. shiranus), ii) East Africa (M. frenatus [Tanzania]); iii)
Southern Africa (M. vanderwaali and M. sp. nov. 3
[Namibia], M. cf. frenatus [DR Congo and Namibia], M.
stappersii [Zambia]). M. signatus, however, despite
occurring in the Chambeshi River and Lake Bangwelu
(both in Zambia), is resolved outside of the Southern and
Eastern African clade, nesting with West African species
(e.g. Cameroon, Sierra Leone). Unlike the species in the
Southern-Eastern clade, M. signatus is not endemic to
Southern/Eastern Africa, but has a distribution that
extends from the Congo basin, which would therefore
explain its West African affinities. It appears that Masta-
cembelus display a similar biogeographic pattern to Syno-
dontis, which also form a Southern African clade [15].
Further comparative work would highlight patterns of
speciation that are common to these two species-rich
genera.

The ancestor to the Southern-Eastern clade appeared at
~11.9 Myr (8.7-15.9 Myr), but did not diversify until ~5
Myr (3.2-7.8 Myr) after a relatively long lag-time, which is
younger than the LT flock. This could be due to incom-
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plete taxonomic sampling, although this pattern is again
evident in Synodontis [15], which also demonstrate a long
lag-time leading to the rapid speciation within Southern
Africa. This may suggest a common vicariance cause,
such as changes in drainage basin structure and patterns
of flow, but could be further addressed with more exten-
sive sampling from this region. The Lake Malawi
endemic, M. shiranus, colonised at ~3.9 Myr, post deep
water conditions (4.5 Myr) [30,51]. In our analysis, West
African species are recovered as basal and are paraphyl-
etic. The non-monophyly of West African taxa may how-
ever be a consequence of our limited taxonomic sampling
in this region, particularly of the lower Congo River,
which has a high level of sympatric diversity, again high-
lighting a need for further work to more completely
address the issue of regional biogeographic clades within
the African Mastacembelus.

Africa-Asia biogeography
The African-Asia distribution demonstrated by masta-
cembelid eels is a biogeographic pattern that is only
observed in a few freshwater fish families, e.g. Anabanti-
dae [52], Bagridae and Clariidae catfish [19], with the
vicariance of Gondwana suggested as one possible expla-
nation for this type of current-day distribution. However,
use of this vicariance date (121-165 Myr) [53] often gen-
erates much older dates than either palaeontological or
molecular data supports [e.g. [18]], and alternative
hypotheses have been suggested. The African mastacem-
belids are monophyletic with respect to the two Asian
species included, with the most recent common ancestor
of the African mastacembelids dating back to ~19 Myr
(13.5-27.3 Myr; Fig. 2 node H), long after the Gondwana
continental break up. The median of this range estimate
coincides with the closure of the Tethys Sea c. 18-20 Myr
in the Early Miocene, which has been suggested as an
alternative hypothesis explaining the distributions of
other, albeit terrestrial, taxa [e.g. proboscideans, [54]].
The current distribution of mastacembelid eels encom-
passes the Middle East [19], and could be indicative of
support for this hypothesis, although no samples from
this region were available for inclusion in our analyses,
highlighting a need for further testing in the future.

Conclusions
The endemic LT Mastacembelus eel radiation is an
important assemblage for studying comparative lacus-
trine systems, as it is divergent in life history to those
already studied within the Great Lakes. The use of molec-
ular phylogenetic techniques has revealed as yet unde-
scribed diversity, with our data providing evidence for
two potentially new LT species (M. aff. platysoma and M.
sp. nov. 1). The LT Mastacembelus demonstrates both
similarities and differences in patterns of speciation when

compared to other LT radiations. For example, the origi-
nation of LT Mastacembelus via a single colonisation
event is also demonstrated by Platythelphusa crabs [6]
and Cyprichromis cichlids [12]. Using fossil calibrations
from a related family, our results indicate Mastacembelus
colonised the lake ~7.9 Myr, and is therefore an older
radiation than Synodontis catfish, Platythelphusa crabs,
and many cichlid tribes (e.g. Cyprichromini, Tropheini,
Ectodini) if fossil dates are assumed [12]. This puts the
origin of LT Mastacembelus within the age of the LT
basin, but prior to the onset of full lacustrine conditions.
Their radiation within lacustrine conditions does how-
ever further demonstrate LT as a hotspot of diversifica-
tion, as opposed to an 'ancient evolutionary reservoir.' As
demonstrated by other ichthyological faunas with lacus-
trine and fluviatile distributions (e.g. Synodontis catfish
and cichlid fishes), our data also highlights evidence of
distinct biogeographic clades. At a deeper phylogenetic
level, we find evidence for an Africa-Asia split of masta-
cembelid eels (~19 Myr) occurring long after the diver-
gence of the associated continents (121-165 Myr). This
divergence coincides with the closure of the Tethys Sea
and we therefore suggest a dispersal scenario for this
group, which should be validated in the future with
increased taxon sampling.

Methods
Taxonomic sampling
To maximise species coverage and to test species validity,
samples were collected from 16 LT localities, encompass-
ing both the southern and northern basins, resulting in
49 samples from 11 out of the 13 currently described
endemic species. No DNA samples were available for M.
polli and the newly described M. reygeli [25]. In order to
test monophyly of the LT species flock and biogeographic
scenarios a further 31 samples, from 14 non-LT African
species were also included in the analyses, representing
48% of the currently described African species [19]. Two
Asian mastacembelid species were included as outgroup
taxa. Specimens were collected from rivers and lakes
using a variety of methods, including fyke nets, scuba-
diving, electro-fishing, and rotenone [55]. The latter
method is particularly effective for collecting mastacem-
belid eels from crevices and rocky habitats (pers. obs.).
Voucher numbers, collection localities, and GenBank
accession numbers are listed in Additional file 1, Table S1.

DNA extraction, PCR and sequencing
DNA was extracted from fin clips or white muscle tissue
using DNeasy Blood and Tissue kit (Qiagen, UK). The use
of more than one independent marker is important in
order to resolve different levels of the phylogeny and pro-
vide a more complete evolutionary picture of species
relationships [56,57]. Here, we sequence three molecular
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markers, including both mitochondrial and nuclear data:
the mitochondrial genes Cyt b and CO1, and two introns
of the ribosomal nuclear marker S7.

Cyt b has proved useful for elucidating both relatively
deep-level and shallow time relationships in other
teleosts [58], including percids [59] anabantoids [52], as
well as other Lake Tanganyika species flocks [7]. It was
shown to be a more informative marker for evaluating
relationships of Tanganyikan Synodontis catfish [15] as
opposed to ND2 and control region [16], although Cyt b
can also be problematic in its use as a phylogenetic
marker, e.g. in terms of saturation in the third codon
position [60]. Nuclear genes are generally more slowly
evolving, although the ribosomal gene S7 has been used
in studies of other LT fishes, e.g. Synodontis catfish [15]
and cichlids [34]. It has also been demonstrated to be use-
ful at the sub-familial level, such as for the Mormyridae
electric fishes [61]. The bar-coding gene CO1 [62-64],
was also sequenced in order to ascertain whether Masta-
cembelus species could be delineated by this ~650 base
pair mitochondrial fragment.

Published primers were used to amplify introns 1 and 2
of S7 (1224 bp aligned) [65], and the barcoding region of
the CO1 gene (688 bp) [66] using annealing temperatures
of 55 and 52°C respectively. Cyt b (1206 bp) was amplified
using the primers MNCN-Glu F [67] and MNCN-Fish
Pro R (5'-AGT TTA ATT TAG AAT YTT RGC TTT GG-
3'; R Zardoya and L Rüber) using an annealing tempera-
ture of 48°C. PCR products were cleaned, and sequenced
with an ABI 3730 sequencer (Applied Biosystems, UK).
All sequences are deposited in GenBank, and accession
numbers are given in Additional file 1, Table S1.

Phylogenetic Analyses
The S7 sequence data were aligned in Clustal W [68]
using default parameters, and indel regions were finished
by eye in Se-Al [69]. Cyt b and CO1 sequences were
aligned by eye using Se-Al.

Analyses were performed on individual gene datasets
and a concatenated Cyt b, S7 and CO1 matrix in a total
evidence approach [70]. MODELTEST v 3.7 [32] was
used to ascertain the best model of molecular evolution
for each dataset, selected under Akaike Information Cri-
terion [71,72]. Variation in base composition between the
taxa was assessed using the χ2 test of homogeneity, imple-
mented in PAUP* [73].

Different methods of phylogenetic reconstruction were
performed in order to assess congruence between phy-
logenies produced by alternative methods, for both the
concatenated and individual gene datasets. Maximum
Likelihood (ML) analyses were performed using GARLI
(Genetic Algorithm for Rapid Likelihood Inference) v0.96
[74], with model substitution rates from Modeltest
applied. Bayesian Inference (BI) analyses were imple-

mented in Mr Bayes [75], with partitions defined accord-
ing to codons and genes, run for 2,000,000 generations
and sampling every 100 generations, with an initial burn-
in set to 5000 (chain temperature 0.2, four chains). Con-
vergence of Metropolis-coupled Markov Chain Monte
Carlo (MCMC) runs was assessed graphically using
TRACER [76], and any remaining burn-in chains [77]
were discarded prior to tree construction, resulting in
7500 post burn-in trees. Nodal support was ascertained
with bootstrapping (BS) [78] for ML trees (1000 repli-
cates), and Bayesian Posterior Probabilities (BPP) for the
BI trees. The Approximately Unbiased (AU) [79] test as
implemented in CONSEL [80] was used to test alterna-
tive topologies generated by different methods of phylo-
genetic inference.

Estimation of Divergence Times
The Synbranchiformes have no fossil record that can be
used in molecular dating analyses. Here, we use sequence
and fossil data from a hypothesised sister group to the
Synbranchiformes to provide a calibration for our study.
Following Chen et al. [81], the Synbranchiformes are
closely related to the Channoidei (Snakeheads) and Ana-
bantoidae (labyrinth fishes) (Order Perciformes). The fos-
sil record of Channoidei in Africa (genus Parachanna)
dates back to the late Eocene [82], approximately 35-33
Myr, and this date was used to constrain the Parachanna
node. As the fossil Parachanna could not be reliably
assigned to any of the extant species of Parachanna, the
calibration was placed on the stem group, rather than the
crown group [83,84]. Use of a single calibration is
regarded as a limitation in molecular dating [85,86], par-
ticularly when calibrations involve outgroup taxa that are
some distance from the nodes of interest [87,88]. How-
ever, for studies focused at lower taxonomic levels (i.e.
genus or family) where fossil data is highly limited, multi-
ple calibrations are unrealistic. While some authors [18]
have utilised vicariance dates to obtain dates of lineage
divergences, such calibrations (along with lake ages)
within this study would not provide an independent
means of testing age of colonisation nor biogeographic
scenarios. Cyt b sequence data from Channa and
Parachanna species (Channoidei: Teleostei) were down-
loaded from Genbank (Additional file 1, Table S1).

The Likelihood Ratio Test [89], implemented in PAUP*
with and without the molecular clock enforced, demon-
strates heterogeneity in the rates of evolution across the
Mastacembelidae (-ln likelihood of 21202.3 and 21077.2
respectively, ratio = 250.2, d.f. = 86, p < 0.05), and the use
of non-clock-like settings (relaxed molecular clock in
BEAST [90], penalised likelihood (PL) [91] method in r8s
[92]) was appropriate for use in the dating analyses to
convert relative molecular divergence to absolute ages.
Analyses in BEAST used an uncorrelated log-normal
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relaxed molecular clock [93], Yule speciation prior,
GTR+I+Γ model, and were run for 100,000,000 genera-
tions, with every 10,000 parameters logged. To ascertain
the effect of using different priors, the analyses were
repeated with the fossil constraint set to both uniform
and normal distribution, and with and without partition-
ing the third codon. To check for the amount of burn-in,
run convergence, and that the effective sample size
exceed 200 for each statistic, each run was assessed
graphically in Tracer v. 1.4.1 [76]. Analyses run using the
uniform distribution prior on the calibrated node exhib-
ited better stabilisation and convergence than those run
with a normal distribution prior, so we present the former
results. In order to compare the effects of different meth-
ods of estimating divergence times, the analysis was also
run using r8s, using PL method [91,94]. The optimal
smoothing parameter for the PL analysis was calculated
in r8s by cross-validation and assessing the resulting χ2

error. 95% confidence intervals in r8s were obtained by
generating 100 bootstrap replicates and converting the
topologically constrained phylograms in to penalised
likelihood trees [92,95].

Additional material

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
JJD, LR and KJB designed the study. All authors collected samples, with RB col-
lecting a substantial number of specimens used in the analyses. KJB generated
molecular data and undertook the analyses. All authors read and approved the
manuscript.

Acknowledgements
We thank John Friel and Pete McIntyre (Cornell University), Denis Tweddle 
(South African Institute of Aquatic Biodiversity), Timo Moritz and Ralf Britz (The 
Natural History Museum, London) and Heinz Büscher, for providing tissue sam-
ples to include in our analyses. We also thank Jackie Mackenzie-Dodds, Julia 
Llewellyn-Hughes, Claire Griffin and Fiona Allen at the Molecular Biology 
Sequencing Unit (The Natural History Museum, London) for sequencing facili-
ties and trouble-shooting advice. Simon Ho (Australian National University) is 
thanked for technical advice on BEAST. We acknowledge the Food and Agricul-
ture Organization of the United Nations, for allowing the reproduction of 
images used in Fig. 1[96]. We would also like to thank two anonymous referees 
for comments on the manuscript. JJD, LR and KJB acknowledge the support of 
NERC NE/F016174/1 and the Centre for Ecology and Evolution (CEE) Research 

Fund. JJD also acknowledges NERC NE/F000782/1 and Dorothy Hodgkin Royal 
Society Fellowship.

Author Details
1Department of Genetics, Evolution & Environment, University College London, 
Wolfson House, 4, Stephenson Way, London NW1 2HE, UK, 2Department of 
Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 
and 3South African Institute for Aquatic Biodiversity, Grahamstown, South 
Africa

References
1. Cohen AS, Soreghan MJ, Scholtz CA: Estimating the age of formation of 

lakes: An example from Lake Tanganyika, East African Rift System.  
Geology 1993, 21(6):511-514.

2. Coulter JW: Lake Tanganyika and its Life.  Oxford University Press, Oxford, 
UK; 1991. 

3. Greenwood PH: What is a species flock?  In Evolution of Fish Species Flocks 
Edited by: Eschelle AA, Kornfield I. University of Maine, Orono Press; 1984. 

4. Fryer G, Iles TD: The Cichlid Fishes of the Great Lakes of Africa. Their 
Biology and Evolution.  Oliver & Boyd, Edinburgh, UK; 1972. 

5. Lowe-McConnell RH: Recent research in the African Great Lakes: 
fisheries, biodiversity and cichlid evolution.  Freshwater Forum 2003, 
20:1-64.

6. Marijnissen SAE, Michel E, Daniels SR, Erpenbeck D, Menken SBJ, Schram 
FR: Molecular evidence for recent divergence of Lake Tanganyika 
endemic crabs (Decapoda: Platythelphusidae).  Molecular Phylogenetics 
and Evolution 2006, 40(2):628-634.

7. Day JJ, Wilkinson M: On the origin of the Synodontis catfish species flock 
from Lake Tanganyika.  Biology Letters 2006, 2(4):548-552.

8. Nishida M: Lake Tanganyika as an evolutionary reservoir of old lineages 
of East African cichlid fishes: inferences from allozyme data.  Experientia 
1991, 47:974-979.

9. Wilson AB, Glaubrecht M, Meyer A: Ancient lakes as evolutionary 
reservoirs: evidence from the thalassoid gastropods of Lake 
Tanganyika.  Proceedings of the Royal Society, B 2004, 271:529-536.

10. Schluter D: The Ecology of Adaptive Radiation.  Oxford, Oxford 
University Press; 2000. 

11. Sanderson MJ, Thorne JL, Wikström N, Bremer K: Molecular evidence on 
plant divergence times.  American Journal of Botany 2004, 
91(10):1656-1665.

12. Day JJ, Cotton JA, Barraclough TG: Tempo and Mode of Diversification of 
Lake Tanganyika Cichlid Fishes.  PLoS ONE 2008, 3(3):e1730.

13. Kornfield I, Smith PF: African Cichlid Fishes: Model Systems for 
Evolutionary Biology.  Annual Review of Ecological Systematics 2000, 
31:163-196.

14. West K, Michel E: The dynamics of endemic diversification: molecular 
phylogeny suggests an explosive origin of the thiarid gastropods of 
Lake Tanganyika.  Advances in Ecological Research 2000, 31:331-354.

15. Day JJ, Bills R, Friel JP: Lacustrine radiations in African Synodontis catfish.  
Journal of Evolutionary Biology 2009, 22(4):805-817.

16. Koblmüller S, Sturmbauer C, Verheyen E, Meyer A, Salzburger W: 
Mitochondrial phylogeny and phylogeography of East African 
squeaker catfishes (Siluriformes: Synodontis).  BMC Evolutionary Biology 
2006, 6(49):. doi:10.1186/1471-2148-1186-1149

17. Salzburger W, Baric S, Sturmbauer C: Speciation via introgressive 
hybridization in East African cichlids?  Molecular Ecology 2002, 
11:619-625.

18. Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, 
Turner GF: Age of cichlids: new dates for ancient lake fish radiations.  
Molecular Biology and Evolution 2007, 24(5):1269-1282.

19. Nelson JS: Fishes of the World.  Forth edition. New Jersey: John Wiley & 
Sons, Inc; 2006. 

20. Vreven EJ: Mastacembelidae (Teleostei; Synbranchiformes) subfamily 
division and African generic division: an evaluation.  Journal of Natural 
History 2005, 39(4):351-370.

21. Travers RA: Diagnosis of a new African mastacembelid spiny-eel genus 
Aethiomastacembelus gen. nov. (Mastacembeloidei: 
Synbranchiformes).  Cybium 1988, 12(3):255-257.

Additional file 1 Table S1. Species, collection data and GenBank 
accession numbers for samples used in phylogenetic analyses.
Additional file 2 Phylogenetic relationships of African mastacem-
belid eels inferred from the Cytochrome b (Cyt b) dataset, generated 
using Bayesian inference. Bayesian posterior probability values (BPP) are 
shown above the branch where support is >0.5.
Additional file 3 Phylogenetic relationships of African mastacem-
belid eels inferred from the Cytochrome c oxidase subunit 1 (CO1) 
dataset, generated using Bayesian inference. Bayesian posterior proba-
bility values (BPP) are shown above the branch where support is >0.5.
Additional file 4 Phylogenetic relationships of African mastacem-
belid eels inferred from two introns of ribosomal S7, generated using 
Bayesian inference. Bayesian posterior probability values (BPP) are shown 
above the branch where support is >0.5.

Received: 15 December 2009 Accepted: 19 June 2010 
Published: 19 June 2010
This article is available from: http://www.biomedcentral.com/1471-2148/10/188© 2010 Brown et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Evolutionary Biology 2010, 10:188

http://www.biomedcentral.com/content/supplementary/1471-2148-10-188-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-188-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-188-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-188-S4.PDF
http://www.biomedcentral.com/1471-2148/10/188
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16647274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18320049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19226415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11918795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17369195


Brown et al. BMC Evolutionary Biology 2010, 10:188
http://www.biomedcentral.com/1471-2148/10/188

Page 10 of 11
22. Travers RA: A review of the Mastacembeloidei, a suborder of 
synbranchiform teleost fishes. Part I: Anatomical descriptions.  Bulletin 
of the British Museum of Natural History (Zoology) 1984, 46(1):1-133.

23. Travers RA: A review of the Mastacembeloidei, a suborder of 
synbranchiform teleost fishes. Part II: Phylogenetic analysis.  Bulletin of 
the British Museum of Natural History (Zoology) 1984, 47(2):83-150.

24. Vreven EJ, Stiassny MLJ: Mastacembelus simbi, a new dwarf spiny eel 
(Synbranchiformes: Mastacembelidae) from the lower Congo River.  
Ichthyological Exploration of Freshwaters 2009, 20(3):213-222.

25. Vreven EJ, Snoeks J: A new mastacembelid species from Lake 
Tanganyika: a case of complex evolutionary history.  Journal of Fish 
Biology 2009, 75:1018-1047.

26. Snoeks J: The non-cichlid fishes of the Lake Malawi system: a 
compilation.  In The cichlid diversity of Lake Malawi/Nyasa/Niassa: 
Identification, distribution and taxonomy Edited by: Snoeks J. El Paso, Texas: 
Cichlid Press; 2004. 

27. Konings A: Koning's Book of Cichlids and all the other fishes of Lake 
Malwai.  Neptune City, New Jersey: TFH Publications, Inc; 1990. 

28. Agnèse JF, Teugels GG: The Bathyclarias-Clarias species flock. A new 
model to understand rapid speciation in African Great lakes.  Life 
Sciences 2001, 324:683-688.

29. Genner MJ, Turner GF: The mbuna cichlids of Lake Malawi: a model for 
rapid speciation and adaptive radiation.  Fish and Fisheries 2005, 6:1-34.

30. Delvaux D: Age of Lake Malawi (Nyasa) and water level fluctuations.  
Musée royal del l'Afrique Centrale (Tervuren) Départment de Géologie et 
Minéralogie 1995:99-108. Rapport Annuel 1993-1994

31. Scholtz CA, Johnson TC, Cohen AS, King JW, Peck JA, Overpeck JT, Talbot 
MR, Brown ET, Kalinderkafe L, Amoako P, Y O, et al.: East African 
megadroughts between 135 and 75 thousand years ago and bearing 
on early-modern human origins.  PNAS 2007, 104(42):16416-16421.

32. Posada D, Crandall KA: MODELTEST: testing the model of DNA 
substitution.  Bioinformatics 1998, 14(9):817-818.

33. Johns GC, Avise JC: A comparative summary of genetic distances in the 
vertebrates from the mitochondrial cytochrome b gene.  Molecular 
Biology and Evolution 1998, 15(11):1481-1490.

34. Schelly R, Salzburger W, Koblmüller S, Duftner N, Sturmbauer C: 
Phylogenetic relationships of the lamprologine cichlid genus 
Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial 
and nuclear sequences, suggesting introgressive hybridization.  
Molecular Phylogenetics and Evolution 2006, 38(2):426-438.

35. Sullivan JP, Lavoué S, Arnegard ME, Hopkins CD: AFLPs resolve 
phylogeny and reveal mitochondrial introgression within a species 
flock of African electric fish (Mormyroidea: Teleostei).  Evolution 2004, 
58(4):825-841.

36. Seehausen O, Koetsier E, Schneider MV, Chapman LJ, Chapman CA, 
Knight ME, Turner GF, van Alphen JJM, Bills R: Nuclear markers reveal 
unexpected genetic variation and a Congolese-Nilotic origin of the 
Lake Victoria cichlid species flock.  Proceedings of the Royal Society of 
London, B 2003, 270:129-137.

37. Allender CJ, Seehausen O, Knight M, Turner GF, Maclean N: Divergent 
selection during speciation of Lake Malawi cichlid fishes inferred from 
parallel radiations in nuptial coloration.  Proceedings of the National 
Academy of Sciences of the United States of America 2003, 
100(24):14074-14079.

38. Mendelson TC, Shaw KL: Rapid speciation in an arthropod.  Nature 2005, 
433:375-376. 27 January 2005

39. Roberts TR, Stewart DJ: An ecological and systematic survey of fishes in 
the rapids of the Lower Zaïre or Congo River.  Bulletin of the Museum of 
Comparative Zoology 1976, 147(6):239-317.

40. Rüber L, Meyer A, Sturmbauer C, Verheyen E: Population structure in two 
sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: 
evidence for introgression.  Molecular Ecology 2001, 10:1207-1225.

41. Koblmüller S, Sefc KM, Sturmbauer C: The Lake Tanganyika cichlid 
species assemblage: recent advances in molecular phylogenetics.  
Hydrobiologia 2008, 615:5-20.

42. Nevado B, Koblmüller S, Sturmbauer C, Snoeks J, Usano-Alemany J, 
Verheyen E: Complete mitochondrial DNA replacement in a Lake 
Tanganyika cichlid fish.  Molecular Ecology 2009, 18:4240-4255.

43. Cohen AS, Lezzar KE, Tiercelin JJ, Soreghan M: New palaeogeographic 
and lake-level reconstructions of Lake Tanganyika: implications for 
tectonic, climatic and biological evolution in a rift lake.  Basin Research 
1997, 9:107-132.

44. Baric S, Salzburger W, Sturmbauer C: Phylogeography and evolution of 
the Tanganyikan cichlid genus Tropheus based upon mitochondrial 
DNA sequences.  Journal of Molecular Evolution 2003, 56:54-68.

45. Cooper A, Fortey R: Evolutionary explosions and the phylogenetic fuse.  
Trends in Ecology and Evolution 1998, 13(4):151-156.

46. Cane MA, Molnar P: Closing of the Indonesian seaway as a precursor to 
east African aridification around 3-4 million years ago.  Nature 2001, 
411:157-162.

47. de Vos L, Snoeks J: The non-cichlid fishes of the Lake Tanganyika basin.  
Arch Hydrobiol Beih Ergebn Limol 1994, 44:391-405.

48. Boulenger GA: Diagnoses of new fishes discovered by Mr. J. E. S. Moore 
in lakes Tanganyika and Kivu.  Annals and Magazine of Natural History 
(Series 7) 1901, 7(37):1-6.

49. Travers RA, Eynikel G, Thys van den Audenaerde DFE: Mastacembelidae.  
In Check-list of the freshwater fishes of Africa Volume 2. Edited by: Daget J, 
Gosse J-P, Thys van den Audenaerde DFE. ISBN, Brussels; MRAC, Tervuren; 
OSTROM, Paris: CLOFFA; 1986:415-427. 

50. Vreven EJ: Redescription of Mastacembelus ophidium Gunther, 1893 
(Synbranchiformes: Mastacembelidae) and description of a new spiny 
eel from Lake Tanganyika.  Journal of Natural History 2005, 
39(18):1539-1560.

51. Ebinger CJ, Deino AL, Tesha AL, Becker T, Ring U: Tectonic controls on rift 
basin morphology: Evolution of the Northern Malawi (Nyasa) Rift.  
Journal of Geophysical Research 1993, 98(B10):17821-17836.

52. Rüber L, Britz R, Zardoya R: Molecular Phylogenetics and Evolutionary 
Diversification of Labyrinth Fishes (Perciformes: Anabantoidei).  
Systematic Biology 2006, 55(3):374-397.

53. Rabinowitz PD, Coffin MF, Falvey D: The separation of Madagascar and 
Africa.  Science 1983, 220(4592):67-69.

54. Sanders WJ, Miller ER: New proboscideans from the Early Miocene of 
Wadi Moghara, Egypt.  Journal of Vertebrate Paleontology 2002, 
22(2):388-404.

55. Robertson DR, Smith-Vaniz WF: Rotenone: An essential but demonized 
tool for assessing marine fish diversity.  BioScience 2008, 58(2):165-170.

56. Rüber L, Britz R, Kullander SO, Zardoya R: Evolutionary and 
biogeographic patterns of the Badidae (Teleostei: Perciformes) inferred 
from mitochondrial and nuclear DNA sequence data.  Molecular 
Phylogenetics and Evolution 2004, 32:1010-1022.

57. Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to 
resolving incongruence in molecular phylogenies.  Nature 2003, 
425:798-804.

58. Lydeard C, Roe KJ: The phylogenetic utility of the mitochondrial 
cytochrome b gene for inferring interrelationships of actinopterygian 
fishes.  In Molecular Systematics of Fishes Edited by: Stepian CA, Kocher TD. 
San Diego: Academic Press; 1997:285-303. 

59. Song CB, Near TJ, Page LM: Phylogenetic relationships among percid 
fishes as inferred from mitochondrial cytochrome b sequence data.  
Molecular Phylogenetics and Evolution 1998, 10:343-353.

60. Farias I, Orti G, Sampaio I, Schneider H, Meyer A: The Cytochrome b Gene 
as a Phylogenetic Marker: The Limits of Resolution for Analyzing 
Relationships Among Cichlid Fishes.  Journal of Molecular Evolution 2001, 
53:89-103.

61. Lavoué S, Sullivan JP, Hopkins CD: Phylogenetic utility of the first two 
introns of the S7 ribosomal protein gene in African electric fishes 
(Mormyroidea: Teleostei) and congruence with other molecular 
markers.  Biological Journal of the Linnean Society 2003, 78:273-292.

62. Hebert PDN, Ratnasingham S, deWaard JR: Barcoding animal life: 
cytochrome c oxidase subunit 1 divergences among closely related 
species.  Proceedings of the Royal Society of London, B 2003, 
270(Suppl):S96-S99.

63. Vogler AP, Monaghan MT: Recent Advances in DNA Taxonomy.  Journal 
of Zoological Systematics and Evolutionary Research 2006, 45(1):1-10.

64. Hebert PDN, Cywinska A, Ball SL, deWaard JR: Biological identifications 
through DNA barcodes.  Proceedings of the Royal Society of London, B 
2003, 270:313-321.

65. Chow S, Hazama K: Universal PCR primers for S7 ribosomal protein gene 
introns in fish.  Molecular Ecology 1998, 7:1255-1256.

66. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN: DNA barcoding 
Australia's fish species.  Philosophical Transactions of the Royal Society of 
London B 2005, 360:1847-1857.

67. San Mauro D, Gower D, Oommen OV, Wilkinson M, Zardoya R: Phylogeny 
of caecilian amphibians (Gymophiona) based on complete 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11510413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17785420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12572611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15154558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15674280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11380878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19780975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12569423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11346785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16861206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17736163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15354300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14574403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11479680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9734083


Brown et al. BMC Evolutionary Biology 2010, 10:188
http://www.biomedcentral.com/1471-2148/10/188

Page 11 of 11
mitochondrial genomes and nuclear RAG1.  Molecular Phylogenetics and 
Evolution 2004, 33:413-427.

68. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the 
sensitivity of progressive multiple sequence alignment through 
sequence weighting, position specific gap penalties and weight matrix 
choice.  Nucleic Acids Research 1994, 22:4673-4680.

69. Rambaut A: Se-Al Carbon v2.0a11. Sequence Alignment Editor.  Oxford: 
University of Oxford; 2002. 

70. Huelsenbeck JP, Bull JJ, Cunningham CW: Combining data in 
phylogenetic analysis.  Trends in Ecology and Evolution 1996, 
11(4):152-158.

71. Akaike K: A new look at the statistical model identification.  IEE Trans 
Autom Contra 1974, 19:716-723.

72. Seo TK, Kishino H: Statistical comparison of nucleotide, amino acid, and 
codon substitution models for evolutionary analysis of protein-coding 
sequences.  Systematic Biology 2009, 58(2):199-210.

73. Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and 
Other Methods).  Version 4, Sinauer Associates, Sunderland, 
Massachusetts; 2002. 

74. Zwickl D: Genetic algorithm approaches for the phylogenetic analysis 
of large biological sequence datasets under the maximum likelihood 
criterion.  In PhD. PhD Thesis University of Texas at Austin, Texas; 2006. 

75. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of 
phylogenetic trees.  Bioinformatics 2001, 17(8):754-755.

76. Rambaut A, Drummond AJ: Tracer v1.3. MCMC Trace File Analyser.  
Oxford: University of Oxford; 2005. 

77. Mau B, Newton MA, Larget B: Bayesian phylogenetic inference via 
Markov chain Monte Carlo methods.  Biometrics 1999, 55:1-12.

78. Felsenstein J: Confidence limits on the phylogenies: an approach using 
the bootstrap.  Evolution 1985, 39(4):783-791.

79. Shimodaira H: An approximately unbiased test of phylogenetic tree 
selection.  Systematic Biology 2002, 51(3):492-508.

80. Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of 
phylogenetic tree selection.  Bioinformatics 2001, 17(12):1246-1247.

81. Chen WJ, Bonillo C, Lecointre G: Repeatability of clades as a criterion of 
reliability: a case study for molecular phylogeny of Acanthomorpha 
(Teleostei) with larger number of taxa.  Molecular Phylogenetics and 
Evolution 2003, 26:262-288.

82. Murray AM: A new channid (Teleostei: Channiformes) from the Eocene 
and Oligocene of Egypt.  Journal of Paleontology 2006, 80(6):1172-1178.

83. Benton MJ, Donoghue PCJ: Paleontological Evidence to Date the Tree of 
Life.  Molecular Biology and Evolution 2007, 24(1):26-53.

84. Magallón S, Sanderson MJ: Absolute diversification rates in angiosperm 
clades.  Evolution 2001, 55(9):1762-1780.

85. Ho SYW, Phillips MJ: Accounting for calibration uncertainty in 
phylogenetic estimation of evolutionary divergence times.  Systematic 
Biology 2009, 58(3):367-380.

86. Hedges SB, Kumar S: Genomic clocks and evolutionary timescales.  
Trends in Genetics 2003, 19(4):200-206.

87. Rutschmann F, Eriksson T, Abu Salim K, Conti E: Assessing calibration 
uncertainty in molecular dating: the assignment of fossils to 
alternative calibration points.  Systematic Biology 2007, 56(4):591-608.

88. Reisz RR, Müller J: Molecular timescales and the fossil record: a 
paleontological perspective.  Trends in Genetics 2004, 20(5):237-241.

89. Huelsenbeck JP, Crandall KA: Phylogeny estimation and hypothesis 
testing using maximum likelihood.  Annual Review of Ecological 
Systematics 1997, 28:437-466.

90. Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by 
sampling trees.  BMC Evolutionary Biology 2007, 7:214.

91. Sanderson MJ: Estimating absolute rates of molecular evolution and 
divergence times: a penalised likelihood approach.  Molecular Biology 
and Evolution 2002, 19:101-109.

92. Sanderson MJ: r8s: inferring absolute rates of molecular evolution and 
divergence times in the absence of a molecular clock.  Bioinformatics 
2003, 19(2):301-302.

93. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics 
and dating with confidence.  PloS Biology 2006, 4(5):e88.

94. Near TJ, Sanderson MJ: Assessing the quality of molecular divergence 
time estimates by fossil calibrations and fossil-based model selection.  
Philosophical Transactions of the Royal Society of London B 2004, 
359:1477-1483.

95. Britz R, Conway KW, Rüber L: Spectacular morphological novelty in a 
minature cyprinid fish, Danionella dracula n. sp.  Proceedings of the Royal 
Society, B 2009, 276:2179-2186.

96. Eccles DH: FAO Species identification sheets for fishery purposes. Field 
guide to the freshwater fishes of Tanzania.  FAO, Rome; 1992. 

doi: 10.1186/1471-2148-10-188
Cite this article as: Brown et al., Mastacembelid eels support Lake Tang-
anyika as an evolutionary hotspot of diversification BMC Evolutionary Biology 
2010, 10:188

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15336675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20525578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12504223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11318142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12565036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11681732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20525591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12683973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17654364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17996036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16683862

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results and Discussion
	Sequence analysis
	Phylogenetic relationships and biodiversity
	Colonisation history of the LT mastacembelid flock
	Non-endemics
	African Biogeography
	Africa-Asia biogeography

	Conclusions
	Methods
	Taxonomic sampling
	DNA extraction, PCR and sequencing
	Phylogenetic Analyses
	Estimation of Divergence Times

	Additional material
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

