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Abstract

of HME and HAE1 systems in the Burkholderia genus.

antimicrobial therapy against Burkholderia species.

Background: The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains,
whose increasing global resistance to antibiotics has become a public health problem. In this context a major role
could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which
allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i)
identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic
distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try
tracing the evolutionary history of some of these genes in Burkholderia.

Results: BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB
sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a
dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of
several independent events of gene loss and duplication across the different lineages of the genus Burkholderia,
leading to notable differences in the number of paralogs between different genomes. A putative substrate
[antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No
correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type
of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we
observed that only HAET proteins are mainly responsible for the different number of proteins observed in strains of
the same species. Data concerning both the distribution and the phylogenetic analysis of the HAET and HME in
the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading

Conclusion: A complete knowledge of the presence and distribution of RND proteins in Burkholderia species was
obtained and an evolutionary model was depicted. Data presented in this work may serve as a basis for future
experimental tests, focused especially on HAE1 proteins, aimed at the identification of novel targets in

Background

The genus Burkholderia is an interesting and complex
bacterial taxonomic unit that includes a variety of spe-
cies inhabiting different ecological niches [[1] and refer-
ences therein]. In recent years a growing number of
Burkholderia strains and species have been reported as
plant-associated bacteria. Indeed, Burkholderia spp. can
be free-living in the rhizosphere as well as epiphytic and
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endophytic, including obligate endosymbionts and phy-
topathogens. Several strains are known to enhance dis-
ease resistance in plants, contribute to better water
management, and improve nitrogen fixation and overall
host adaptation to environmental stresses [[1] and refer-
ences therein]. On the other side, some species/isolates
can be opportunistic or obligate pathogens causing
human, animal or plant disease. Interaction between
Burkholderia species and humans or animals are tradi-
tionally known for B. mallei and B. pseudomallei, that
are the aetiological agent of glanders and melioidosis,
respectively [2]. Lastly, several Burkholderia species have
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been demonstrated to be opportunistic pathogens in
humans. Although they are not considered pathogens
for the normal human population, some are serious
threats for specific patient groups. These species include
B. gladioli, B. fungorum and all B. cepacia complex
(BCC) bacteria [2]. The BCC is a group of genetically
distinct but phenotypically similar bacteria that up to
now comprises seventeen closely related bacterial spe-
cies [1,3,4], and they are important opportunistic patho-
gens that infect the airways of cystic fibrosis (CF)
patients [5].

Burkholderia human infections are usually treated
with antibiotics in order to improve disease control and
patient survival. The increasing bacterial resistance to
these molecules has become a public health problem. In
this context, it seems more and more evident that the
intrinsic resistance of many bacteria to antibiotics
depends on the constitutive or inducible expression of
active efflux systems [6,7]. This is particularly true for
multidrug efflux pumps allowing bacterial cells to
extrude a wide range of different substrates, including
antibiotics. In contrast with other bacterial genes,
encoding antibiotic resistance, acquired by horizontal
gene transfer (HGT) [8], genes coding for multidrug
efflux pumps are mainly harboured by the chromosome
(s) of living organisms. In addition, these genes are
highly conserved and their expression is tightly regu-
lated [8]. Taken together, these characteristics suggest
that the main function of these systems is likely not
conferring resistance to antibiotics (used in therapy) and
that they might play other roles relevant to the beha-
viour of bacteria in their natural ecosystems, as also
pointed out by Saier and co-workers [9]. According to
this idea, it has been recently propose, that MDR
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proteins might have possessed (and, in some cases,
might still possess) a role in preventing the build up of
excessive osmotic pressure within the cells, thus func-
tioning as safety valves for normal metabolised sub-
strates [10].

Among the other potential roles, it has been demon-
strated that efflux pumps are important for detoxifica-
tion processes of intracellular metabolites, bacterial
virulence in both animal and plant hosts, cell homeo-
stasis and intercellular signal trafficking [8].

This class of proteins includes an ubiquitous and very
interesting group, referred to as the RND (Resistance-
Nodulation-Cell-Division) superfamily, that is mainly
involved in drug resistance of Gram-negative bacteria
[11,12]. Functionally characterized members of this
superfamily fall into eight different families: four of
them are overall restricted to Gram-negative bacteria;
the other four families have a diverse phylogenetic dis-
tribution (Figure 1). Three of the families peculiar of
Gram-negative bacteria have a different substrate speci-
ficity, with one catalyzing the export of heavy metals
[Heavy Metal Efflux (HME)], one responsible for the
export of multiple drugs [Hydrophobe/Amphiphile
Efflux-1 (HAE-1)], and the last one likely catalyzing the
export of lipooligosaccharides concerned with plant
nodulation related to symbiotic nitrogen fixation [puta-
tive Nodulation Factor Exporter (NFE)] [13] (Figure 1).
The fourth Gram-negative family (APPE) has been only
recently identified [14]. It is very distantly related to the
other established members of the superfamily and its
representatives were shown to be a pigment exporter in
Xanthomonas oryzae [14].

In Gram-negative bacteria RND transporters act as a
complex that can bind various structurally unrelated
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Figure 1 Schematic representation of the RND superfamily. APPE = Aryl Polyene Pigment Exporter; EST = Eukaryotic (putative) Sterol
transporter; HAET = Hydrophobe/Amphiphile Efflux-1; HAE2 = Hydrophobe/Amphiphile Efflux-2; HAE3 = Hydrophobe/Amphiphile Efflux-3; HME
= Heavy-Metal Efflux; NFE = putative Nodulation Factor Exporter; SecDF = Secretion system DF family.
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substrates from the periplasm and/or from the cytoplasm
and extrude them out directly into the external media
using proton-motive force. This complex is composed of a
RND protein, located in the cytoplasmic membrane, a
periplasmic-located membrane adaptor protein, belonging
to the membrane fusion protein family (MFP), and an
outer-membrane channel protein (OMP) [13]. Typically,
the encoding genes are organized in an operon and the
MEP and the RND are usually cotranscribed [15], whereas
in some systems and/or species, the OMP is not linked to
the other genes [16,17]. Most of the RND superfamily
transport systems consists of a polypeptide chain 700-
1300 amino acid residues long. These proteins possess a
single transmembrane spanner (TMS) at their N-terminus
followed by a large extracytoplasmic domain, six additional
TMSs, a second large extracytoplasmic domain, and five
final C-terminal TMSs. Most RND permeases consist of a
single polypeptide chain [13]. The first half of RND family
proteins is homologous to the second one, suggesting that
the coding gene is the outcome of an intragenic tandem
duplication event of an ancestral gene (i.e. a gene elonga-
tion event [18]) that occurred in the primordial system
prior to the divergence of the family members [19]. The
crystal structure of two tripartite efflux pump components,
i.e. the Escherichia coli AcrA-AcrB-TolC [20-22] and the
Pseudomonas aeruginosa MexA-MexB-OprM [23-25] has
been determined, whose analysis led to the proposal of a
mechanism of drug transport based on the transition
through three different conformations [26,27].

Very little is known about RND proteins in the genus
Burkholderia, whose representatives exhibit multiple anti-
biotic resistance [28-30]. Indeed, members of RND super-
family have been described for only two species: B.
cenocepacia and B. pseudomallei. In the B. cenocepacia
J2315 genome, 16 genes encoding putative RND efflux
pumps were discovered [31,32]. Two of them have been
shown to be associated with drug resistance: i)
BCAM2550, ceoB (CDS10), a component of a system
responsible for chloramphenicol, trimethoprim and cipro-
floxacin resistance [33,34]; and ii) BCAS0765 (CDS2) that
is associated with resistance to three antibiotics (fluoro-
quinolones, tetraphenylphosphonium, and streptomycin)
as well as to ethidium bromide [31]. In B. pseudomallei
96243 at least 10 operons that may code for RND efflux
pump components were disclosed [35]. Although differ-
ently annotated, these pumps are conserved in other
B. pseudomallei strains [35]. Three of these systems have
been characterized from a functional viewpoint: AmrAB-
OprA, BpeAB-OprB and BpeEF-OprC. AmrAB-OprA and
BpeAB-OprB are pumps that extrude aminoglycoside and
macrolide [36,37], while BpeEF-OprC was shown to efflux
trimethoprim and chloramphenicol in a surrogate P. aeru-
ginosa strain [38]. Interestingly, the secretion of acyl-
homoserine lactones, involved in quorum-sensing systems
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of B. pseudomallei, is absolutely dependent on the func-
tion of the BpeAB-OprB [39,40].

Hence, given the clinical/ecological importance of
Burkholderia representatives, and the importance of
RND proteins in antibiotic resistance of Gram-negative
bacteria, a large-scale bioinformatic analysis was per-
formed aiming to provide a deeper understanding of
RND proteins structure/function in Burkholderia genus.
The importance of comparative genomics in narrow
bacterial groups is an emerging issue [41-43], and it is
revealing as a promising approach to gain information
about the whole considered clade as well as about its
representatives. Such analysis, in fact, can lead to the
rapid identification of gene sets that are very likely
responsible for the emergence of certain specific pheno-
types in a given clade, such as virulence, symbiosis, and
SO on.

In particular the aims of this work were: 1) to analyze
the phylogenetic distribution of CeoB-like pumps in the
Burkholderia genus; 2) to define the function(s) they
perform within the Burkholderia genus and 3) to try tra-
cing the evolutionary history of these genes in
Burkholderia.

Results and Discussion

Analysis of the amino acid sequences of the 16 CeoB-like
proteins of B. cenocepacia J2315

The existence of 16 CeoB-like coding genes in the gen-
ome of B. cenocepacia J2315 was previously reported
[31,32]. However, a deep analysis of these 16 proteins
was not carried out until now. To this purpose, each
sequence was firstly scanned for the presence of the
four highly conserved motifs shared by RND proteins
[11,19], whose consensus sequences are shown in Table
1[44]. The analysis of the 16 B. cenocepacia J2315
CeoB-like amino acid sequences revealed the existence
of the motifs in each of them (see below).

In order to assess the conservation of RND proteins
structure of each of the 16 sequences, a hydropathy ana-
lysis, using the Kyte and Doolittle hydropathicity scale
[45] on ProtScale website http://www.expasy.ch/tools/
protscale.html[46] (see Material and Methods), was car-
ried out. The analysis of each of the 16 plots and a com-
parison with the experimentally determined secondary
structure of the E. coli AcrB and P. aeruginosa MexB
(not shown), allowed to identify all the 12 TMS and the
two large loops, that are characteristic of RND proteins.
An averaged plot of the 16 B. cenocepacia J2315 pro-
teins is reported in Figure 2.

Organization and phylogenetic analysis of rnd genes in

B. cenocepacia J2315

The analysis of the organization of the 16 B. cenocepacia
J2315 rnd genes (Figure 3) revealed that in most cases
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Table 1 Consensus sequences of RND proteins according to Putman at al. (2000) [44]

MOTIF CONSENSUS SEQUENCES
A Old CGxsxVvVTVvxFxxgtDxxxAgqvgVagnkLgxAxpxLPxxVgxggxxvxk
Proposed GXxaxiltxtFxxgtdxdxAXXXVgXXXXXaXXXLPXXVXXPXXXXXX
B old alvlsaVF1lPmaffgGxtGxiyrgfsiTxvsAmalSvxvaltltPAlcA
Proposed tlvlxaVFvPxafxxGxxGxlfrxfAxtxaxaxxxSxxxaltLxPalLca
C old xxxGkxlxeAxxxaaxxXxRLRPILMTsLafilGv1lPlaiatGxAGa
Proposed XXXGxXxpxxAxxeAaxlRIRPIIMTx1Axx1GxxPLaxxxG-aGs
D old SiNtlTlfglvlaiGLl1vDDAIVvVVENveRvlae
Proposed siNx1sLxglvLAiGilVDDAIVVVENVeRXXXE

Table reported the previously individuated and the new proposed consensus sequence. X indicates any amino acid, capital letters show amino acids most
frequently observed in a given position in more than 70% of the transport proteins, and lowercase letters represent amino acid occurring in at least than 40% of
RND amino acid sequences.
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Figure 2 Averaged hydropathy plot [45] of B. cenocepacia J2315 proteins. X axis, position on amino acid sequence; y-axis, hydropathy
index. Red arrows shows the twelve putative TMS and green bracket the two putative periplasmic loops.

the three genes are organized in a putative operon with iii) lastly, in the third one, ceoB is located upstream
three different gene arrays: of the other two genes.

i) in the first one, shared by CDSs 1-4, 8-10 and 13, Besides, in one case (CDS5), the ceoB-like sequence is
the ceoB gene is located in between two genes not embedded in a cluster including the other two

encoding MFP and OMP; genes; in another case (CDS6-7), two ceoB-like redun-
ii) in the second array, shared by CDS11 and 12, the  dant copies were tandemly arranged.
ceoB gene is located downstream from the other two In order to analyse the phylogenetic relationships

genes; among the 16 CeoB-like proteins their amino acid
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Figure 3 Schematic representations of the organization of the 16 gene clusters encoding CeoB-like efflux pumps in B. cenocepacia
J2315 genome. The organization of the genes identified in B. cenocepacia 12315 genome was retrieved from NCBI website http://www.ncbi.
nlm.nih.gov/genomes/Iproks.cgi. RND transporter-encoding genes are depicted as yellow arrows (CDS1-16), outer-membrane protein-encoding
genes as green arrows, periplasmatic membrane fusion protein-encoding genes as pale blue, and putative regulatory genes (physically linked) as
pink arrows. llpe gene present only in CeoB operon (CDS10) is depicted as orange arrows. Abbrevations: CDS1 (BCAS0592, gi:197295433), CDS2
(BCAS0765, gi:197265565); CDS3 (BCAL1675, gi:206560037); CDS4 (BCAL2821, gi:206561158); CDS5 (BCAL1778, gi:206560142); CDS6 (BCAL1079,
gi206559466)/CDS7 (BCAL1080, gi:206559467); CDS8 (BCAMO0926, gi:206562781); CDS9 (BCAM1946, gi:206563791); CDS10 (BCAM2550,
gi:206564391);, CDS11 (BCAMO713, gi:206562573); CDS12 (BCAMO0435, gi:206562298); CDS13 (BCAL1812, gi:206560174); CDS14 (BCAS0582,
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sequences were aligned using the program ClustalW [47]
and the multialignments obtained were used to construct
the phylogenetic tree shown in Figure 4a. The topology
of the tree, which is supported in most cases by very high
bootstrap values, revealed that the 16 sequences can be
split into five clusters (A, B, C, D, and E).

It is worth noting that the overall different gene orga-
nization of CeoB, MFP and OMP coding genes is con-
sistent with the subdivisions in the phylogenetic tree in
Figure 4a.

A similar phylogenetic analysis was also performed
using the aminoacid sequence of MFP and OMP pro-
teins encoded by genes embedding each operon. Data
obtained revealed that the five clusters (A, B, C, D, and
E) can be easily recognized in the MFP tree (even
though the branching order is different) (Figure 4b).
This is in agreement with the notion that the two pro-
teins have to interact and often belong to the same tran-
scriptional unit. The topology of OMP tree is slightly
different from the other two, in that some of the
sequences of cluster A are intermixed with those of
cluster C (Figure 4c). This finding might suggest that
this gene could have followed a (partially) independent
evolutionary pathway, which is also in agreement with

the fact that in some cases it is missing in the RND
operons.

Identification and distribution of ceoB-like genes in the
genus Burkholderia

In order to check the distribution of the CeoB-like pro-
teins in the entire genus Burkholderia, the B. cenocepa-
cia J2315 CeoB amino acid sequence (gi:206564391) was
used as a query to probe the 21 completely sequenced
genomes of strains belonging to Burkholderia genus
available at NCBI database http://www.ncbi.nlm.nih.gov
(1/05/2009), using default parameters. In this way, a
total of 254 sequences homologous to B. cenocepacia
]2315 CeoB were retrieved.

Each sequence was analyzed for the presence of the
four highly conserved motifs shared by RND proteins
[11,19]. Data obtained (not reported) revealed the exis-
tence of the four motifs in all the 254 Burkholderia
sequences, supporting the idea that they actually are
members of RND superfamily. The relative frequency
of each amino acid in each position was checked using
the WebLogo application (see Material and Methods)
(Figure 5). In some cases this frequency differed from
the consensus sequence(s) previously suggested [44].
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gi:206561158); CDS5 (BCAL1778, gi:206560142); CDS6 (BCAL1079, gi:206559466)/CDS7 (BCAL1080, gi:206559467); CDS8 (BCAMO0926, gi:206562781);
CDS9 (BCAM1946, gi:206563791); CDS10 (BCAM2550, gi:206564391); CDS11 (BCAMO0713, gi:206562573); CDS12 (BCAMO0435, gi:206562298); CDS13
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gi:197295427); CDS15 (BCAM1419, gi:206563271); CDS16 (BCAL2136, gi:206560499).
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This is due to the fact that our dataset includes a larger
number of sequences in respect to the previous ones
[11,19,48]. Hence, we suggested new possible consensus
motifs for these sequences (Table 1).

Figure 5 and Table 1 show that Motif A and Motif D
represent the least and the most conserved ones, respec-
tively. This is in agreement with the notion that Motif A
is located on the first periplasmatic loop; many studies
demonstrated that periplasmatic regions of RND pro-
teins are involved in substrate recognition [49-54]. Thus,
a higher sequence variability of Motif A among various
proteins is consistent with the possible recognition of
different substrates. On the other hand, part of Motif D
coincides with TMS4, which is involved in proton trans-
location [55,56], a function common to all RND pro-
teins. Thus, as expected, this region should exhibit a
high degree of conservation among proteins transporting
different substrates.

As shown in Table 2, a highly variable number of
CeoB-like proteins, ranging from 6 (in B. mallei
NCTC10247, NCTC10229 and SAVP1) to 18 (in B. cen-
ocepacia H12424 and MCO0-3) was found.

The 254 Burkholderia amino acid sequences retrieved
were then aligned using the Muscle program (see Mate-
rial and Methods); the obtained multialignment was
then used to construct the phylogenetic tree schemati-
cally reported in Figure 6 (the entire tree is available in
Additional File 1). In the same Figure residues charac-
terising each group of sequences are also reported (see
following sections). The analysis of phylogenetic tree
revealed that the majority of sequences form clusters
including one of the B. cenocepacia J2315 sequences
(Figure 6, black triangles), while other sequences form
clusters that do not comprise any B. cenocepacia J2315
sequence. In particular, two of these clusters contain
sequences from only B. mallei, B. pseudomallei and
B. thailandiensis (highlighted with red triangles in
Figure 6). However, in the whole phylogenetic tree, the
sequences can be easily subdivided into the five clusters
(A, B, C, D, and E) corresponding to the previously
identified ones (Figure 3a) (although embedding a vari-
able number of sequences).

Functional assignment of the 254 Burkholderia CeoB-like
sequences

A preliminary analysis, performed by aligning all the 254
Burkholderia sequences with the sequences representa-
tive of the five RND families identified in Gram-negative
bacteria and experimentally characterized retrieved from
Transport Classification Database (TCDB, http://www.
tcdb.org) [57], revealed that most of these sequences
could be unambiguously assigned to only two RND
families: HAE1 and HME. Indeed, only sequences
belonging to these two families shared a significant
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degree of similarity with the Burkholderia sequences,
whereas those representative of the other three families
(NEE, APPE, SEC DF) resulted highly divergent from
the Burkholderia ones and could not be reliably aligned
(the average degree of identity between the 254 Burkhol-
deria sequences and those representative of these
families are: 23% for NFE proteins, 11% for APPE family
and 9% for SecDF family).

To confirm this preliminary assignment and try to
determine the substrate of each pump, three different
analyses were performed:

i) comparison of the 254 CeoB-like sequences with

the amino acid sequence of HAE1 and HME experi-

mentally characterized proteins, belonging to other

microorganisms;

ii) analysis of highly conserved amino acid residues,

essential for proton translocation;

iii) analysis of residues involved in substrate

recognition.
Comparison with HAE1 and HME experimentally
characterized proteins belonging to other microorganisms
A set of 62 sequences representative of HAE1 and HME
families was retrieved from both TCDB and literature
(all proteins and their relative substrate are reported in
Additional File 2) and aligned with the 254 Burkholderia
sequences. The multialignment was used to build the
phylogenetic tree reported in Additional File 3, and a
phylogenetic tree including a subset of these is shown in
Figure 7, where the five major clusters (A, B, C, D, E) of
Figures 3 and 6 were easily recognized. Three of these
clusters (A, D and E, red branches) included character-
ized proteins belonging to HAE1 family that are known
to be involved in antibiotic(s) resistance.
Another cluster (in blue) comprised HME proteins
(Cluster B in Figure 6), involved in heavy metal efflux.

Lastly, none of the characterized proteins showed
similarity with those grouped in cluster C (pink
branches). Indeed, no function could be assigned to
these proteins, although they appear to be closer to
HME than HAE1 sequences.

The analysis of substrate specificity of each character-
ized protein revealed that HME proteins, transporting
different metals, form two distinct clusters. The first
one, contained the protein gi:206562298 from B. cenoce-
pacia J2315 (CDS 12), which transports monovalent
cations (Cu® and Ag"), the other one, included the
sequence gi:206562573 from B. cenocepacia 2315
(CDS11), transporting divalent cations (Zn**, Co**, Cd**
and Ni**).

Analysis of highly conserved amino acid residues essential
for proton translocation

It has been proposed that some charged residues in
TMS 4 and TMS 10 sequences are essential for proton
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Table 2 Total number of RND proteins and number of RND proteins of each type present in each family of the

21 Burkholderia analysed genomes

Number of
Species CeoB-like HAE1 HAE1 HAE1 tot CDS 11 CDS 12 tot CDS14 CDS15 (CDS16 tot NC
Proteins (A) (D) (E) HAE1 (B) (B) HME Q) (Q) (Q) UF
B. ambifaria Il 3 2 2 7 - 1 1 1 1 1 3 -
13 4 2 3 9 - 1 1 1 1 1 3 -
B. 18 9 2 2 13 1 1 2 1 1 1 3
cenocepacia
17 8 2 2 12 1 1 2 1 1 1 3 -
16 8 2 1 M 1 1 2 1 1 1 3
18 9 2 2 13 1 1 2 1 1 1 3
B. lata 13 8 2 1 Il 1 - 1 - 1 - 1 -
B. mallei 6 3 1 - 4 1 1 2 - - - - -
6 3 1 - 4 1 1 2 - - - - -
6 3 1 - 4 1 1 2 - - - -
7 3 1 1 5 1 1 2 - - -
B. 12 5 2 1 8 1 2 3 1 - 1
multivorans
B. 16 7 4 3 14 - - - 1 1 - 2
phymatum
B. 16 7 4 1 12 - - - 2 1 - 3 1
phytofirmans
B. 10 4 3 1 8 1 1 2 - - - - -
pseudomallei
10 4 3 1 8 1 1 2 - - - - -
10 4 3 1 8 1 1 2 - - - - -
10 4 3 1 8 1 1 2 - - -
B. " 4 3 1 8 1 - 1 - - - - 2
thailandensis
B. 11 5 2 1 8 - 1 1 1 1 - 2
vietnamiensis
B. 17 6 4 1 11 1 - 1 2 1 2 5

xenovorans

Abbreviations: HAE1: Hydrophobe/Ampbhiphile Efflux-1, HME: Heavy-Metal Efflux, UF: Uncertain Function, NC: Not Classified

translocation and pumping function of RND proteins
[55,56,58]. Some of these residues are highly conserved
in all RND proteins, while others are characteristic of
HAE1 and HME families.

The multiple alignment of the amino acid sequences
of 39 proteins, belonging to HAE1 and HME families,
revealed that the motif G403XXXD407XXXXXXE414
(position referred to P. aeruginosa MexB) in TMS 4 is
highly conserved in both HAE1 and HME [56]. This
suggests that these residues may play an important role
in proton translocation, a feature shared by all the
representatives of the families [56]. We checked for the
presence of such residues in the 254 Burkholderia
sequences and all of them were found in each sequence
(yellow residues in Figure 8a). This finding confirms
that these residues are very likely essential for the role
performed by these proteins.

Five residues were conserved in the HAE1 family
[56,58]. Two of them, D407-D408 (position referred to

E. coli AcrB), are located in TMS 4; the other three resi-
dues, K940, R971 and T978 (position referred to E. coli
AcrB), are within or close to TMS 10. As shown in
Figure 8b, R971 and T978 are conserved in all
sequences, suggesting that they may play an important
role for both HAE1 and HME proteins. D407 and D408
are conserved, with the exception of four sequences, in
all the proteins that, on the basis of phylogenetic tree,
were assigned to the HAE1 family. K940 is conserved in
all putative HAE1 sequences, with the exception of one
cluster (containing CDS 13 from B.cenocepacia ]2315),
where Lysine is replaced by Arginine. However, muta-
tion study in E. coli [56] suggested that in this particular
position the side-chain length is not important, and a
positive charge is “simply” required.

HME proteins, transporting divalent cations, e.g. Ral-
stonia metallidurans CzcA, possess an Aspartic acid
residue at position 402 in TMS 4 (position referred to
CzcA of R. metallidurans), in addition to previously
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Figure 8 Essential residues for proton translocation in RND proteins. Only some representative proteins for each category were reported.
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identified D407 (that, in this kind of proteins, is located
at position 408). HME proteins that transport monova-
lent cations, e.g. E. coli CusA, present only D408 and
miss D402, which may be explained by a 1H"/Ag" ratio
of transport by this system in contrast with a ratio of 2
H*/1 Zn** for CzcA-like proteins [55]. Figure 8c shows
that proteins previously identified as divalent cation
transporters, harbour both Aspartic acid residues,
whereas proteins identified as monovalent cations trans-
porters, contain only one Aspartic acid (D408).

Lastly, the sequences with unknown function, present
the same residues of HAE1 proteins in TMS 4, but miss
K940 that is conserved in all HAE1 proteins (Figure 8d).

Thus, the analysis of functional residues of RND pro-
teins confirms that sequences identified in Burkholderia
spp- are RND proteins, and this is in agreement with
phylogenetic analysis data. Indeed, putative HAE1 and
HME proteins present residues characteristic of each
family, and proteins with uncertain function confirm
their apparent ambiguous collocation.

Analysis of residues involved in substrate recognition

The analysis of the amino acid sequences of E. coli AcrB
(HAE1) and its homologs allowed to identify conserved
residues at their N-terminus, including two Phenylala-
nine residues (FF, positions 4-5 of E. coli AcrB) exposed
to the cytoplasm [59]. Since Phenylalanine residues
located elsewhere in the protein sequence have been
postulated to be involved in ligand binding, Das et al.
suggested that these conserved residues might be
involved in cytoplasmic substrate recognition [59].

The analysis of the residues located at these positions
in the 254 Burkholderia sequences revealed that differ-
ent clusters exhibited different residues (Figure 6):

« a large cluster of proteins (Cluster A) shows (with
the exceptions of some sequences) two Phenylala-
nines (FF) at both positions;

« another cluster (Cluster D), previously identified as
HAE]1, presents a hydrophobic amino acid at the
first position and a Phenylalanine at the second one
(XF);

« the third HAEL1 cluster (Cluster E) exhibits a Tryp-
tophan and an Alanine (WA);

+ a putative HME cluster for divalent cations
(CDS11) (Cluster B) presents a Tryptophan and a
Serine (WS);

+ a putative HME cluster for monovalent cations
(CDS12) (Cluster B) possesses a Phenylalanine and
an Alanine (FA);

« the sequence cluster with uncertain function (Clus-
ter C) presents a hydrophobic amino acid at the first
position and an Alanine at the second position (XA).

Hence, the whole body of data presented strongly
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suggests that the 254 Burkholderia sequences are repre-
sentative of HAE1 and HME families. In particular,
HAE1 proteins can be split into three different groups
that likely transport different substrates. HME proteins
are divided into two different clusters, one for monova-
lent and one for divalent cation export, respectively. The
third protein cluster cannot be assigned to any of the
two families.

Interrelationships between number and/or type of CeoB-
like proteins and genome size, lifestyle, pathogenicity
and taxonomic position

The number of CeoB-like proteins of each Burkholderia
strain was correlated to the genome size, the lifestyle,
the pathogenicity and the taxonomic position in order
to assess the presence of some (possible) interrelation-
ships. Data of genome size, lifestyle and pathogenicity
were retrieved from NCBI website http://www.ncbi.nlm.
nih.gov/genomes/Iproks.cgi, (Table 3).

Three different categories were considered for lifestyle:
strains that live predominantly either in environment
(water, soil, rhizosphere etc.), or in a host (plants, ani-
mals, humans) and strains that can be found in both
environment and host. The average number of proteins
in each category is very similar, and standard deviation
is very high (2.40 for the first category, 4.93 for the sec-
ond one and 2.97 for the third one) (Additional File 4).
Thus, no apparent relationship between bacterial life-
style and RND protein number was detected. The same
result was obtained considering the number of each
type of CeoB-like proteins (HAE1, HME and uncertain
function) (Additional File 4).

The relationship with pathogenicity (strains pathogens
for plants, animals or humans) was also analysed. Also
in this case, no apparent relationship exists with protein
number (Additional File 4). The same result was
obtained considering the number of each type of CeoB-
like proteins (HAE1, HME and uncertain function)
(Additional File 4).

In spite of the fact that previous studies suggested
that the number of multidrug efflux pumps is propor-
tional to the genome size of a given organism [60],
data reported in Figure 9a revealed that in Burkhol-
deria genomes only a low correlation between the two
parameters exists (R? = 0.6091). However, when
the CeoB-like proteins were split into the three cate-
gories, the analysis revealed that the number of HME
proteins (blue line, R* = 0.3787) and of proteins with
uncertain function (pink line, R* = 0.4579), is relatively
constant, while the number of HAE1 proteins (red
line, R* = 0.6323) increases in strains with a larger
genome (Figure 9b).

In order to assess relationships with taxonomy, the
phylogenetic tree reported in Figure 9c was constructed
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Table 3 Genome, genome size, habitat and pathogenicity of the 21 Burkholderia analysed genomes

Species Strain Habitat Pathogenicity Genome size (Mpb) Chromosomes Plasmids
B. ambifaria AMMD E/H NP 757 3 1
MC40-6 E/H p 7,60 3 1
B. cenocepacia HI2424 E/H p 7,76 3 1
AU 1054 H p 7,28 3 -
J2315 E/H p 8,07 3 1
MCO-3 E/H P 7,90 3 -
B. lata 383 E/H p 8,69 3 -
B. mallei NCTC 10247 H p 5,90 2 -
NCTC 10229 H p 5,80 2 -
SAVP 1 H P 5,20 2 -
ATCC 23344 H p 583 2 -
B. multivorans ATCC 17616 H P 6,99 3 1
B. phymatum STM815 H NP 8,70 2 2
B. phytofirmans PsIN E NP 822 2 1
B. pseudomallei 1106a E p 7,10 2 -
668 E p 7,00 2 -
1710b E p 7,31 2 -
K96243 E p 7,30 2 -
B. thailandensis E264 E NP 6,72 2 -
B. viethamiensis G4 E/H p 8,40 3 5
B. xenovorans .B400 E/H NP 9,80 3 -

Abbreviations: E: environmental; H: host; P: pathogen; NP: Not Pathogen; Mbp: Mega base pair.

using the 16S rRNA gene sequences of each strain; in
this tree, the number of proteins for each strain is also
reported. A relationship between number of proteins
and taxonomy can be found. Indeed strains of the same
species and/or strains of related species, possess an
identical or very similar number of RND proteins. Thus,
the distribution of CeoB-like proteins belonging to the
three identified categories [antibiotic transport (HAE1L),
heavy metal transport (HME) and uncertain function],
coded for by each of the 21 Burkholderia genomes, was
also analyzed.

Data obtained are summarized in Table 2 and Figure
9c and showing that:

i) proteins with uncertain function are not present in
B. mallei, B. pseudomallei and B. thailandiensis
strains;

ii) proteins belonging to HME family are not present
in B. phymatum and B. phytofirmans;

iii) when different strains belonging to the same spe-
cies possess a different number of RND proteins,
this is due to the different number of HAE1 pro-
teins, while proteins with uncertain function and
HME maintain the same number in all strains of the
same species;

iv) HAE1 proteins are the most abundant in all ana-
lyzed strains.

Evolution of rnd encoding genes in Burkholderia genus

The analysis of the distribution of HME and HAE1 like
coding sequences in the genus Burkholderia revealed a
high variability in the copy number among the different
species (Table 2). Interestingly, all the species branching
at the root of the Burkholderia reference tree (as
assessed by 16S rRNA coding sequences), possess a high
number of HME/HAEI1-like coding sequences (16 in B.
phymatum and B. phytofirmans, 17 in B. xenovorans).
Conversely, B. mallei, B. pseudomallei and B. thailan-
diensis strains possess a lower HAE1/HME copy
number, ranging from 6 to 11 in B. mallei and B. thai-
landiensis species, respectively. Lastly, the species
belonging to the BCC complex and embedded in the
upper monophyletic cluster of Figure 9c, possess a num-
ber of HME/HAE] copies ranging from 11, in B. vietna-
miensis G4 and B. ambifaria AMMD, to 18 in
B. cenocepacia representatives. In addition to these data,
the phylogenetic tree constructed with all the 254
retrieved sequences of the Burkholderia genus (Figure 7
and Additional File 3) revealed that the Burkholderia
species are distributed all over the tree and that the
monophyly of the main Burkholderia clade (according
to the reference phylogeny of Figure 9c) is overall
respected, suggesting that the ceoB-like sequences did
not undergo massive HGT events between different Bur-
kholderia species or, if this occurred, it happened in the
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ancestor of Burkholderia. However, the possibility that
some of these genes might have been exchanged
between strains belonging to the same or different Bur-
kholderia species and/or between different DNA mole-
cules within the same cytoplasm cannot be a priori
excluded. Indeed, it is known that bacteria belonging to
this genus harbour two-three different chromosomes
and some of them are among the largest genome-sized
and most versatile bacteria known. Besides, these gen-
omes harbour a relevant number of genes coding for
transposases and integrases, (the percentage content of
transposases per genome and integrases per genome
ranged from 2.09 in B. lata sp.383 to 4.06 in B. thailan-
diensis E264 and from 0.08 in B. ambifaria MC40-6 to
0.31 in B. multivorans ATCC 17616, respectively) sug-
gesting that they might frequently undergo DNA rear-
rangements that, in turn, might alter their gene
structure and/or organization [[61] and references
therein]. In addition to this, some of the 21 Burkhol-
deria strains harbour one or more large plasmids, which
possess genes coding for genetic mobile elements. These
elements are responsible for the flow of genes between
plasmids and chromosomes inhabiting the same cyto-
plasm. At the same time, plasmids may also permit the
spreading of metabolic traits between cells of the same
or different species. Indeed, it has been recognized that
HGT is one of the major forces driving the evolution of
genes and genomes [62,63]. The analysis of the genomic
localization of the 254 ceoB-like genes revealed that six
of them are located in four different large plasmid mole-
cules harboured by three different strains (Table 4).
Three of these genes (two from B. multivorans and one
from B. vietnamiensis) fell in Cluster B (corresponding
to HME proteins). In the case of B. multivorans one of
the two plasmid encoded sequences (gi: 161506614,
Table 4) has a paralog in the chromosome. This finding
opens the possibility that the two copies (the chromo-
some one and the plasmid one) might be the result of
an internal rearrangement. However, the degree of

Table 4 Burkholderia plasmids harbouring ceoB-like
genes

Plasmid
Strain Protein Name Dimension RND
(bp) Cluster
B. multivorans gi:161506614 pBMULO1 167422 DS 12
ATTC17616
gi:161506504 CDS 1
B. vietnamiensis G4  gi:134287672  pBVIEO2 2656616 CDS 12
B. phymatum gi:186471278 pBPHYO1 1904893 CDS 15
STM815
gi:186471940 CDS 14
gi:186474676 pBPHY02 595102 -
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sequence identity between them is identical (96-97%) to
the one shared with the B. vietnamiensis plasmids
encoded sequence (gi: 134287672, Table 4). So, it cannot
be a priori excluded the possibility that the two B. mul-
tivorans and B. vietnamiensis plasmid-borne genes
might have been exchanged between the two strains
through plasmid-mediated HGT event(s) occurring
recently during evolution. A preliminary comparative
analysis of the sequences of these two plasmids revealed
that very likely they could have exchanged some regions
between each other (Maida et al, manuscript in prepara-
tion). The other three sequences are harboured by two
B. phymatum plasmids. Two of them (both from plas-
mid pBPHYO01) code for proteins (Table 4) falling in the
group of sequences with uncertain function (Additional
File 1) and they do not have any counterpart in the host
chromosomes; thus, it is possible that these two
sequences might have been moved from the chromo-
some to pBPHYO01. The third one belongs to the HAE1
family and with its closest paralog in the chromosome
[share a degree of sequence identity of 94%].

The whole body of data presented here suggests a
likely evolutionary model accounting for the evolution
of the HME and HAEL1 systems in Burkholderia genus.
According to this model, the ancestor of all the extant
Burkholderia already possessed a high number of HME/
HAE1-like gene copies. Although it is not possible to
infer the exact copy number of CeoB coding genes in
the genome of the Burkholderia ancestor, it is possible
that this number might have been close to the one
exhibited by the species embedded in the cluster at the
root of the Burkholderia reference tree in Figure 9c.

The high degree of sequence similarity shared by these
different copies strongly suggests that they belong to a
paralogous gene family, originated from an ancestral
ceoB-like sequence that underwent many duplication
events and existing long before the appearance of the
ancestor of Burkholderia. On the basis of the available
data, it is not possible to infer whether this ancestor
gene was organized in operon with an OMP and/or
MEP coding gene. However, the finding that most of the
ceoB-like genes are organized into operons and that (at
least) three different operon structures exist in B. ceno-
cepacia J2315 genome, might suggest the existence of
three different operon organizations in the genome of
the Burkholderia ancestor. The possible number of each
operon is still unknown and their study is beyond the
scope of this work. A preliminary analysis performed on
other PB-proteobacterial subdivision revealed a similar
pattern of both RND copy number and operon structure
(data not shown). If this idea is correct, then, starting
from this ancestral gene pool, multiple events of gene
duplication and gene loss would have led to the copy
number patterns of the extant Burkholderia
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representatives. Accordingly, those species possessing
the lowest number of HME/HAE]1 related sequences
(B. mallei and B. pseudomallei strains) are those for
which massive genome reduction (and consequently
gene loss) has been documented [64]. Regarding the
function of ancestral HME/HAEI-like proteins, it is not
possible, standing to data presented in this work, to
infer whether they were already specialized in recogniz-
ing a specific substrate or not. However, it can be men-
tioned the hypothesis that these ancestral efflux pumps
might have been able to recognize different substrates,
hence exhibiting low substrate specificity. This is in
agreement with the notion that some of the efflux
pumps are able to interact with different substrates.
This latter observation fits quite well with a recently
proposed idea [10] according to which MDR proteins
(hence including HME/HAEI1-like systems) might be
involved in extruding structurally related (non metabo-
lised) substrates out of the cell, thus functioning as
safety valves. Duplication events, followed by evolution-
ary divergence might have concurred in refining their
substrate specificity, allowing them to selectively extrude
out of the cell a given chemical compound (antibiotics
or heavy-metals). This idea represents a further valida-
tion (and an extension) of the “patchwork” hypothesis,
originally proposed by Jensen [65], to explain the origin
and evolution of enzymes involved in metabolic path-
ways [18,66].

Conclusion

In this work we have performed a comprehensive com-
parative analysis of the HME and HAE1 efflux systems
in Burkholderia genus. A total of 254 coding sequences
were retrieved from the available Burkholderia
sequenced genomes and analyzed at different levels,
adopting different bioinformatic tools. A deep phyloge-
netic analysis, in which experimentally characterized
sequences were also included, permitted to assign a
putative function (i.e. antibiotic resistance, heavy metal
efflux) to (up to now) uncharacterized Burkholderia
sequences. Furthermore, the analysis of conserved resi-
dues involved in different functions (substrate recogni-
tion, proton translocation) of HME and HAE1
sequences allowed refining motifs previously identified
on the basis of a smaller protein dataset. Given the high
variability in the number of HAE1 and HME coding
sequences found in extant Burkholderia species, we
tried to correlate both the number and the types (i.e.
the transported substrate) with the different characteris-
tics observed in the Burkholderia strains (pathogenic
lifestyle, genome size, colonized habitat). However, no
apparent correlation emerged, suggesting that other
forces might be responsible in determining the types
and the copy number of HME/HAEI sequences in the
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Burkholderia genus. Remarkably, we observed that only
HAEL] proteins are mainly responsible for the different
number of proteins observed in strains of the same spe-
cies. By assuming that the physiological role of these
proteins is resistance to one or more antibiotics, this
finding, in turn, may suggest that the acquisition of anti-
biotic resistance might be the main selective pressure
driving the expansion of this protein family. On the
other hand, these proteins might play other roles rele-
vant to the behaviour of bacteria in their natural ecosys-
tems, so other selective pressure might drive the
evolution of this protein family. Data concerning both
the distribution and the phylogenetic analysis of the
HAE1 and HME in the genus Burkholderia allowed
depicting a likely evolutionary model accounting for the
evolution and spreading of HME and HAE1 systems in
Burkholderia genus. The occurrence of several species-
specific duplication and gene and/or operon loss events
finally led to the extant pattern of copy number/type
observed in modern-day Burkholderia.

It would be interesting to individuate specific residues
directly involved in substrate binding. Some data con-
cerning this issue have been obtained studying E. coli
AcrB protein [26,67-71]. However, these experiments
revealed the existence of a set of residues possibly
involved in substrate binding, but none of them
appeared to be per se essential for substrate binding
[26,67-71]. A preliminary analysis of the overall Burkhol-
deria sequences dataset did not reveal a strong conser-
vation of the same key residues found in the E. coli
AcrB sequences (data not shown). At least two different
explanations can be proposed for this scenario: i) the
first refers to the fact that the differences observed
within E. coli AcrB and Burkholderia AcrB-like
sequences might be due to the phylogenetic distance
existing between them, thus not reflecting differences in
the mechanism of substrate binding/recognition of the
corresponding transporters. The availability of similar
experimental data in a Burkholderia cellular background
will provide important insights about this issue; ii) the
second one takes into account the possibility that the
correct substrate binding might rely on a set of (inter-
changeable) residues rather than on single specific
position.

Lastly, the whole data presented in this work may
serve as a basis for future experimental tests, focused
especially on HAE1 proteins, aimed at the identification
of novel targets in antimicrobial therapy against Bur-
kholderia species.

Methods

Sequence retrieval

Amino acid sequences from the 21 completely
sequenced genomes of strains belonging to the genus
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Burkholderia, available on 1% May 2009, were retrieved
from GenBank database http://www.ncbi.nlm.nih.gov
(Table 3). BLAST [72] probing of database was per-
formed with the BLASTP option of this program using
default parameters. Only those sequences retrieved at an
E-value below the 0.05 threshold were taken into
account. 16S rRNA gene nucleotide sequences were
retrieved from Ribosomal Database Project http://rdp.
cme.msu.edu/[73].

Sequence alignment

The ClustalW [47] program in the BioEdit [74] package
and the Muscle program [75] were used to perform
pairwise and multiple amino acid sequence alignments.
Alignments were manually checked and mis-aligned
regions were removed.

Phylogenetic analysis

Neighbor-Joining (NJ) phylogenetic trees were obtained
with Mega 4 software [76], complete deletion option
and 1000 bootstraps replicates. Maximum Likelihood
phylogenetics trees were constructed using Phyml [77],
with a WAG model of amino acid substitution, includ-
ing a gamma function with 6 categories to take into
account differences in evolutionary rates at sites. Statis-
tical support at nodes was obtained by non-parametric
bootstrapping on 1000 re-sampled datasets by using
Phyml.

Hydropathy plot

Hydropathy plots were obtained on Protscale website
http://www.expasy.ch/tools/protscale.html[46] using
Kyte and Doolittle scale [45].

Residues conservation

Analyisis of conservation of amino acid residues was
performed using the Weblogo application http://
weblogo.berkeley.edu/ using default parameters [78].

Additional File 1: Phylogenetic tree. Phylogenetic tree constructed
using the 254 Burkholderia CeoB-like sequences

Additional File 2: Table of characterized RND proteins. Table of 62
characterized RND proteins and their relative substrate

Additional File 3: Phylogenetic tree. Phylogenetic tree constructed
using the 254 Burkholderia CeoB-like sequences plus sequences of
characterized proteins.

Additional File 4: Relationship between RND proteins and lifestyle

and pathogenicity. Relationship between RND proteins and lifestyle and
pathogenicity
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