
van Hooft et al. BMC Evolutionary Biology 2010, 10:106
http://www.biomedcentral.com/1471-2148/10/106

Open AccessR E S E A R C H  A R T I C L E
Research articleRainfall-driven sex-ratio genes in African buffalo 
suggested by correlations between 
Y-chromosomal haplotype frequencies and foetal 
sex ratio
Pim van Hooft*1,2, Herbert HT Prins1, Wayne M Getz2,3, Anna E Jolles4, Sipke E van Wieren1, Barend J Greyling2,5, 
Paul D van Helden6 and Armanda DS Bastos2

Abstract
Background: The Y-chromosomal diversity in the African buffalo (Syncerus caffer) population of Kruger National Park 
(KNP) is characterized by rainfall-driven haplotype frequency shifts between year cohorts. Stable Y-chromosomal 
polymorphism is difficult to reconcile with haplotype frequency variations without assuming frequency-dependent 
selection or specific interactions in the population dynamics of X- and Y-chromosomal genes, since otherwise the 
fittest haplotype would inevitably sweep to fixation. Stable Y-chromosomal polymorphism due one of these factors 
only seems possible when there are Y-chromosomal distorters of an equal sex ratio, which act by negatively affecting 
X-gametes, or Y-chromosomal suppressors of a female-biased sex ratio. These sex-ratio (SR) genes modify (suppress) 
gamete transmission in their own favour at a fitness cost, allowing for stable polymorphism.

Results: Here we show temporal correlations between Y-chromosomal haplotype frequencies and foetal sex ratios in 
the KNP buffalo population, suggesting SR genes. Frequencies varied by a factor of five; too high to be alternatively 
explained by Y-chromosomal effects on pregnancy loss. Sex ratios were male-biased during wet and female-biased 
during dry periods (male proportion: 0.47-0.53), seasonally and annually. Both wet and dry periods were associated 
with a specific haplotype indicating a SR distorter and SR suppressor, respectively.

Conclusions: The distinctive properties suggested for explaining Y-chromosomal polymorphism in African buffalo 
may not be restricted to this species alone. SR genes may play a broader and largely overlooked role in mammalian sex-
ratio variation.

Background
Sex-ratio (SR) distorters are genes that cause an unequal
representation of the sex chromosomes among the off-
spring through differences in number, quality or function
of X- and Y-bearing spermatozoa. These SR distorters are
typically located on one of the sex chromosomes. They
act during spermatogenesis by distorting the meiosis in
their own favour (meiotic drive) or by impairing the func-
tion or increasing the mortality of the opposite-sex gam-
etes, which gives the SR distorters a selective advantage
[1-3]. Because of this selective advantage, newly mutated

SR distorters can quickly invade a population. In princi-
pal, SR distorters may exert their effect not only during
spermatogenesis but also post-copulation in the female
genital tract, by influencing sperm transport, sperm sur-
vival or fertilization capability. SR distorters are assumed
to be selfish and non-adaptive for their carriers [1,4,5].

SR distorters exert strong selection pressure for sup-
pressors of the distortion, which are genes occurring on
the opposite sex chromosome or on one of the autosomal
chromosomes, that neutralize the action of the distorter
and often lead to a genetic arms race between the two
types of SR genes [6]. A stable gene polymorphism is pos-
sible when SR-distorter carriers have a lower fitness,
thereby preventing the driving distorter alleles from
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going to fixation [6]. (A SR suppressor does not prevent
SR-distorter fixation since the SR distorter still has a
selective advantage compared to the wild-type allele,
given that it is only being neutralized when co-occurring
with a SR suppressor in the same individual.) Most exam-
ples of SR distorters are found in Drosophila spp. [7].
Their discovery required sophisticated crossing schemes,
often between individuals from different populations or
incipient species [7]. Although sex chromosomes with SR
distorting elements are known in Drosophila spp. since
1925, the identity of causal genes remained unknown
until the late 1990s because the SR distorting elements
are usually associated with complex chromosome inver-
sions, impeding their genetic mapping [7-12]. Neverthe-
less, SR distorters are thought to be relatively common,
even in mammals, but are rarely observed, probably
because of rapid gene fixation and SR suppressors that
mask their activities [4,5]. (When a SR distorter and SR
suppressor are co-occurring in a population both will go
to fixation, unless they have a lowered fitness.)

Stable presence of multiple alleles (per locus) or haplo-
types (combinations of alleles at different loci along a
chromosome inherited en block) on the haploid Y-chro-
mosome in the absence of population subdivision or
metapopulation structure only seems possible with nega-
tive frequency-dependent selection, since otherwise the
fittest allele or haplotype would inevitably sweep to fixa-
tion [1,13-15]. SR distorters generally reduce the fitness
of their bearer by a reduction of the sperm count making
negative frequency-dependent selection possible through
associations between mating rate and polygamy on one
hand and sperm depletion and sperm competition on the
other [1,5,7,16,17]. In this scenario increased SR distorter
frequencies result in an increasingly biased population
sex ratio and in a decrease of the average semen quality,
which can cause an increase in the female or male mating
rate. An increased mating rate benefits wild-type alleles
at the expense of SR distorters as their carriers perform
better in sperm competition (with increased female mat-
ing rate) and show less decrease in fertility after repeated
matings due to sperm depletion (with increased male
mating rate). Also SR suppressors are hypothesised to
have a fitness cost considering that they are polymorphic
in Drosophila spp. [18]. A fitness cost is necessary to pre-
vent gene fixation in view of their selective advantage
against wild-type alleles. (Wild-type alleles have a low
transmission rate when co-occurring with a SR distorter.)
Alternatively, stable gene polymorphism at the Y chro-
mosome may result from interactions in the population
dynamics of SR distorters and SR suppressors as indi-
cated in simulation studies, albeit in a small fraction of
parameter space [13,19-21].

The African buffalo (Syncerus caffer) population of the
Kruger National Park (KNP, South Africa, 22°-25° S, 31°-

32° E, 20,000 km2) consists of some 30,000 individuals
[22,23]. The population was completely fenced from
neighbouring populations in Zimbabwe and Mozam-
bique between 1976 and 2004. The KNP buffalo are
polygamous and live in both small bachelor herds and
mixed-sex herds of a few dozen to over 1,000 individuals
[24,25]. Reproduction is strongly related to the availabil-
ity and seasonality of resources with around 75% of all
births occurring late in the wet season, from January to
March [26]. The foetal sex ratio for the population as a
whole does not differ significantly from equality across
decades (1969-1998: Pexact = 0.52, sex ratio (male propor-
tion) = 0.506, 95% CI = 0.487-0.526, n = 2626) in agree-
ment with "Fisher's Principle", which predicts the
evolution of an equal birth sex ratio, assuming equal cost
of daughters and sons [27,28].

High Y-chromosomal microsatellite polymorphism,
characterized by rainfall-correlated haplotype-frequency
shifts between year cohorts, has been observed not only
in the KNP population but also in the Hluhluwe-iMfolozi
Park (HiP) population located some 300 km farther south
(gene diversity H, probability of randomly sampling two
different alleles or haplotypes; H = 0.48 and 0.74 in HiP
and KNP respectively; haplotype number = 5 and 15 in
HiP and KNP, respectively) [29]. The gene diversity in the
KNP population is similar to that recently observed in
Eurasian cattle (all breeds combined: H = 0.82; mean of
the individual breeds: H = 0.63), although the estimate for
cattle is positively biased due to a larger number of mic-
rosatellites (five vs. three in African buffalo) [30]. When
looking at the individual microsatellites, gene diversity
and allelic diversity are higher in the single African buf-
falo population of KNP than in all Eurasian cattle breeds
combined (African buffalo: H = 0.60, 0.66, and 0.67 with
5, 7 and 9 alleles for microsatellites UM1113, UM0304
and INRA189, respectively; cattle: H = 0.05, 0.04, 0.36,
0.47 and 0.52 with 2, 3, 4, 4, and 8 alleles for microsatel-
lites INRA124, BM861, BYM1, DYZ1 and INRA189,
respectively; supplementary info in [30]).

The observation of high genetic diversity despite yearly
haplotype frequency fluctuations was surprising as the
latter is expected to quickly result in gene fixation [29].
The presence of multiple haplotypes cannot be attributed
to population subdivision. There is no significant genetic
differentiation between Gonarezhou NP (Zimbabwe),
northern KNP and southern KNP indicating extensive
(historical) gene flow (autosomal microsatellites: 95% CI
FST = -0.017 - 0.031) [31]. This is supported by radio-
tracking data of over 130 individual KNP buffalo that
show all sex and age groups move between mixed-sex
herds, with monthly emigration rates of 9-26% for adult
males and 2% for females and subadults [32]. The high
haplotype diversity also cannot be explained by recent
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mutations as three of the five major haplotypes in KNP
(112, 557 and 436; total frequency = 74%) differ by at least
seven mutational events (Figure 1 in [29]). The presence
of multiple haplotypes therefore indicates some kind of
balancing selection. Balancing selection is expected to
result in an increased gene diversity relative to haplotype
(allele) diversity because of a relatively even haplotype
(allele) frequency distribution. This is supported by the
observation that Y-chromosomal gene diversity is higher
in African buffalo than in Eurasian cattle when compar-
ing microsatellites with a similar number of alleles (H =
0.66-0.67 with 5-7 alleles in the KNP buffalo vs. H = 0.52
with 8 alleles in cattle; H = 0.46 with 2 and 3 alleles for
microsatellites UM1113 and UM0304, respectively, in the
HiP buffalo vs. H = 0.04-0.05 with 2 alleles in cattle).

We hypothesise that the frequency shifts in Y-chromo-
somal haplotypes between year cohorts in the African
buffalo population of KNP are indicative of SR genes.
Accordingly, we expected to find temporal correlations
between Y-chromosomal haplotype frequencies and sex
ratios of foetuses and calves (even though the foetal sex
ratio for the population as a whole does not differ signifi-
cantly from equality).

Results
A temporal genetic analysis of genetic differentiation in
calves using Y-chromosomal microsatellite data demon-
strated highly significant (Prandomisation-based = 0.00089, n =
74) differences between male calves conceived during a
dry season (age cohorts from 1998: 0-6 months, 1-1.5
years) and those conceived during a wet season (age
cohorts from 1998: 6-12 months, 1.5-2 years). This was
mainly due to an opposite (negative) correlation between
haplotypes 112 and 557 (Figure 1). Haplotype 557 was
observed only among males conceived during the
observed dry seasons, whilst haplotype 112 was observed
only among males conceived during the observed wet
seasons. A negative (112 and 557 in different cohorts) or
positive (112 and 557 in the same cohort) correlation of
this magnitude by chance for these two haplotypes, either
between seasons (wet vs. dry) or years (0-year vs. 1-year
old calves), is highly unlikely (Pexact = 0.00022, sum of all
four possibilities, n = 74).

If haplotypes 112 and 557 are linked to SR distorters or
SR suppressors then one would expect an alternating sea-
sonal pattern with sex ratios (male proportion) as well,
which was indeed observed (Figure 2). In the same age
cohorts as were used in the genetic analyses the sex ratio

Figure 1 Seasonal variation in Y-chromosomal haplotype frequencies among calves in relation to period of conception. Green bars: haplo-
type 112, Yellow bars: haplotype 557, Upward hatched bars: haplotype 436, Downward hatched bars: other haplotypes. The '0' denotes the absence 
of haplotype 112 or 557 as applicable. Sample size is given in brackets.
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was higher among individuals conceived during the wet
seasons than among those conceived during the dry sea-
sons (Pexact = 0.096, n = 291; calves culled in 1998 plus
foetuses collected in 1996). There was an identical pat-
tern in earlier age cohorts. Among 0-4 months old calves
culled between June 1982 and February 1983, the sex
ratio was only 0.27 (8/30) among those conceived in the
dry season of 1981 (culled in June-November) but as high
as 0.69 (9/13) among those conceived in the subsequent
wet season (culled in January-February) (Pexact = 0.016)
[33]. Most importantly, a significant seasonal difference
in sex ratio, with an effect size of 0.045 (absolute differ-
ence between two sex ratios), was observed among the
foetuses collected between 1978 and 1998 (Figure 3 and
Table 1; Pexact = 0.025; data pooled across years). The sex
ratio was female-biased during the dry season (PWilsonscore
= 0.049, one-sided) and male-biased during the wet sea-
son (PWilsonscore = 0.056, one-sided). The largest difference
was observed at the change of seasons between March
and April. The seasonal difference in sex ratio was already
present among foetuses ≤ 4 months old (Table 1; Pexact =
0.035; data pooled across years), ruling out late-term foe-
tal loss as an explanation.

It was previously noted that the frequency of haplotype
557 per year cohort is correlated with the mean annual

rainfall in the three years before birth, showing high fre-
quencies after dry years (Plogisticregression < 0.0001, years
running from Sept. till Aug., n = 201) [29]. Additional
analyses show that the same is true for haplotype 112,
showing high frequencies after wet years (Plogisticregression =
0.044, years running from Sept. till Aug., n = 201). Thus
haplotypes 557 and 112 show an opposite correlation not
only across seasons, but also across years (Figure 4).
Again, this pattern is associated with sex-ratio variation.
There was a positive correlation between the annual foe-
tal sex ratio (years running from Nov. till Oct.) and the
mean annual rainfall in the previous two or three years,
including or excluding part of the wet season of the focal
year (previous two years: Pspearman = 0.0065-0.059, n = 14;
for each of the four 2-year periods starting at Nov., Dec.,
Jan. or Feb.; previous three years: Pspearman = 0.037-0.088,
n = 14; for each of the six 3-year periods starting at Nov.,
Dec., Jan., Feb. Mar. or Apr.). With a rainfall period of
three years including the complete wet season of the focal
year (years running from Apr. till Mar.), the effect size of
the sex ratio variation between dry and wet periods was
0.047 (Figure 4; Pspearman = 0.041, n = 14), which is similar
to that between seasons (rainfall > 520 mm: sex ratio =
0.531, 95% CI = 0.503-0.560, n = 1178; rainfall ≤ 520 mm:
sex ratio = 0.484, 95% CI = 0.461-0.508, n = 1767). The

Figure 2 Seasonal variation in sex ratio among foetuses and calves in relation to period of conception. Green bars: wet season, Yellow bars: 
dry season, Dark bars: calves, Light bars: foetuses, Error bars: 90% CI. The age cohorts are the same as those used with the genetic analyses (Figure 1).
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foetal sex ratio was significantly female-biased in 1990
(PWilsonscore = 0.0005, n = 332, one-sided) but significantly
male-biased in 1998 (PWilsonscore = 0.046, n = 114, one-
sided). The average foetal sex ratio across years did not
deviate from equality (Pexact = 0.65, sex ratio = 0.504, 95%
CI = 0.486-0.522, n = 2953; data pooled across years) as
has also been observed in an earlier study [27].

The frequency of haplotype 557 was ≤ 0.08 (Pexact =
0.90, n = 28, one-sided) among males conceived during
the wet seasons of 1996 and 1997, but it was ≥ 0.40 (PWil-

sonscore = 0.90, n = 38, one-sided) among those conceived
between 1992 and 1994 following the severe drought of
1992 (rainfall: 243 mm vs. long-term average of 542 mm
in the period 1961-2004, years running from Sept. till

Aug.). This constitutes a difference of at least a factor of
five in half a generation (assuming a generation time of
7.5 years [34]).

The conception peak occurred between February and
April, corresponding to 67.6% (95% CI = 65.9-69.1%, n =
3298) of all conceptions. It differs by one month com-
pared to the birth peak as the gestation period is around
11 months. No more than 33.7% (95% CI = 32.1-35.3%, n
= 3298) of the conceptions occurred during the dry sea-
son (Apr.-Oct.). There was a negative correlation
between the annual pregnancy rate among ≥ 2-year old
females (at the moment of sampling) and the annual rain-
fall (Pspearman ≤ 0.021, n = 15; for each of five 1-year peri-
ods spanning previous and focal year and starting at May,

Figure 3 Mean monthly foetal sex ratios. Green bars: wet season, Yellow bars: dry season, Error bars: 90% CI. Sample size is given in brackets. Month-
ly data are pooled across years (1978-1998).
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Table 1: Association between foetal age and seasonal foetal sex ratio (male proportion)

Foetal age 
(mth)

Dry seasons Wet seasons Pexact-value
dry vs. wet

Mean 95% CI n Mean 95% CI n

2-12 0.472 0.438-0.505 844 0.517 0.496-0.539 2109 0.025

2-4 0.439 0.389-0.492 335 0.514 0.470-0.557 504 0.035

5-12 0.493 0.450-0.536 509 0.518 0.494-0.543 1605 0.33
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Jun., Jul, Aug. or Sept.; Figure 5 with 1-year period Sept.-
Aug., Pspearman = 0.011). The mean pregnancy rate was
51.6% (95% CI = 50.4-52.9%, n = 6439), with the yearly
rate varying between 19% (1992, the driest year in the
period 1961-2004) and 68% (1986, 1995, 1996). The mean
adult pregnancy rate (≥ 6-year old) was as high as 69.8%
(95% CI = 68.3-71.2%, n = 3821).

Discussion
A plausible explanation for the associations between Y-
chromosomal haplotype frequencies and foetal sex ratio
is that haplotypes 112 and 557 are linked to SR genes.
Haplotype 112 would be linked to a Y-chromosomal SR
distorter, resulting in high population sex ratios during
wet periods, and haplotype 557 to a Y-chromosomal SR
suppressor, causing this haplotype to increase its fre-
quency during dry periods when population sex ratios are
low (schematic overview of the proposed mechanism in
Table 2). The low sex ratios cannot be explained by mere
inactivation of the SR distorter considering that they were
significantly female-biased in 1990 and during the dry

seasons. The SR-suppressor carrying males produce
equal numbers of sons and daughters during dry periods
(in dry seasons and after dry years), considering the high
frequency of haplotype 557 while the sex ratio is low, but
very few offspring during wet periods (in wet seasons and
after wet years), as the then high sex ratio precludes a low
frequency due to female-biased conception. On the other
hand, SR-distorter carrying males produce substantially
more sons than daughters during wet periods considering
the then high frequency of haplotype 112. In turn, we
argue that they produce very few offspring during dry
periods considering the low frequency of haplotype 112
at those times. Although the frequency of haplotype 112
is low (0.11 after wet years and 0.18 during wet seasons),
it is high enough to explain sex ratios as high as 0.53-0.55
during wet periods, assuming a frequency of 0.08-0.10
among fathers and 95% male progeny (a frequency of
0.08-0.10 among fathers results in a frequency of 0.11-
0.18 among sons).

In the scenario described above, the fitness cost of tem-
porarily reduced fertility prevents the SR distorter and SR

Figure 4 Correlations of annual foetal sex ratio and Y-chromosomal haplotype frequencies per year cohort with rainfall. Black diamonds: sex 
ratio, Green circles: haplotype 112, Yellow circles: haplotype 557, Error bars: 90% CI. Y-chromosomal haplotype frequencies: weighted average across 
several years for both haplotype frequencies and annual rainfall. Annual foetal sex ratios: years running from Nov. till Oct. (starting at wet season; Pspear-

man = 0.041, R2 = 0.15, linear relationship). Haplotype 112 was not observed when mean rainfall < 450 mm (n = 38). Here the error bar represents the 
frequencies for which the chance of not sampling haplotype 112 is larger than 10%. Three-year rainfall periods running from Sept. till Aug. in the case 
of Y-chromosomal haplotype frequencies [29]. Three-year rainfall periods running from Apr. till Mar. in the case of foetal sex ratios (in the latter case 
including the wet season of the focal year).
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suppressor from going to fixation. Our failure to observe
haplotype 112 and 557 in dry and wet season cohorts,
respectively, may even indicate a temporal reduction in
fertility that nears sterility. A strong temporal reduction
in fertility co-occurring with SR distortion is not implau-
sible considering that reductions of more than 50% and

even sterility have been observed with SR distorters in
Drosophila spp., with the latter being caused by a single
gene [5,11].

Female-biased sex ratios and the presence of a Y-chro-
mosomal SR suppressor during dry periods indicate that
an X-chromosomal SR distorter may also be present in

Figure 5 Correlation between annual pregnancy rate and rainfall in focal year. Error bars: 90% CI, Pspearman = 0.011, R2 = 0.51 (logarithmic rela-
tionship). Years run from Sept. till Aug.
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Table 2: Schematic overview of the effects of SR genes at conception

Wet periods (cohorts) Dry periods (cohorts)

Body condition and semen quality 
(population mean)

High Low

SR-distorter carrier (112) SR distorter activity
�-biased sex ratio

Low fertility

SR-suppressor carrier (557) Low fertility SR suppressor activity
1:1 sex ratio1

Wild-type (not 112 or 557) 1:1 sex ratio �-biased sex ratio2

Frequency haplotype 112  (SR distorter activity)  (low fertility 112-carriers)

Frequency haplotype 557  (low fertility 557-carriers)  (SR suppressor activity)

Frequency other haplotypes

Population sex ratio �-biased �-biased

1: Suppressing a hypothesised X-chromosomal SR distorter
2: �-biased due to a hypothesised X-chromosomal SR distorter

: Increasing haplotype frequency
: Decreasing haplotype frequency

: Stable haplotype frequency
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KNP buffalo (Table 2). The two SR distorters and the SR
suppressor may have a common origin, as it has recently
been shown that a SR suppressor (Nmy) in Drosophila
simulans has originated as a retro-transposed duplication
of a SR distorter (Dox) [7,8,12]. However, we cannot
exclude the possibility that the female-biased sex ratios
are not due to an X-chromosomal SR distorter but
instead are the result of an inherent property of Y-bearing
spermatozoa making them relatively vulnerable to stress
and aging [35-38]. The Y-chromosomal SR suppressor in
such a case would act by making the X-bearing spermato-
zoa equally vulnerable to stress and aging.

The SR distorter and SR suppressor are likely to exert
their effect during spermatogenesis, which is supported
by two observations. Firstly, many Y-chromosomal genes
are known to be involved in spermatogenesis [39-43].
They may act by influencing the transcription of various
genes through epigenetic and epistatic mechanisms
[7,39,44]. It is also possible that the SR distorter and SR
suppressor exert their main effect post-copulation in the
female genital tract by influencing sperm transport,
sperm survival or fertilization capability. Secondly, in our
study population it was shown that ejaculate volume,
sperm motility and proportion of morphologically nor-
mal spermatozoa decrease significantly during the dry
season (April-May vs. October-November) [45]. Studies
on cattle (Bos Taurus), red deer (Cervus elaphus), guinea
pig (Cavia porcellus), mice (Mus musculus) and humans
have shown correlations between semen quality parame-
ters on one hand and spermatozoal sex ratio, foetal sex
ratio, offspring sex ratio and sex-differential fertilizing
capability of spermatozoa on the other [37,38,46-50].

In the aforementioned mammals a low semen quality is
associated with a low sex ratio, which also is the case for
the African buffalo (i.e. low foetal sex ratio in dry season
when semen quality is low). These observations may
point towards a general mechanism in mammals whereby
semen-quality related sex-ratio variation is driven by SR
genes (distorters and suppressors). A possible explana-
tion is that a positive association evolves more readily as
males with high-quality semen may benefit from produc-
ing sons, who can inherit their father's semen quality,
while males with low-quality semen benefit from produc-
ing daughters [51]. This would increase the transmission
rate of newly mutated SR genes, which can be important
for their invasion success as stochastic events increase
the risk of establishment failure [5].

In African buffalo the association between SR genes
and semen quality may have set in motion the co-evolu-
tion of Y-chromosomal and X-chromosomal SR distort-
ers and their suppressors whose temporal variation of
activity (distortion/suppression in one season, low fertil-
ity in the other) is indirectly triggered by the amount of
rainfall. Here we have shown that Y-chromosomal haplo-

type frequencies, foetal sex ratios and pregnancy rates
(indicator of female body condition) are all associated
with rainfall. The decrease in semen quality in the Afri-
can buffalo during the dry season is likely due to decreas-
ing availability and quality of food resources, which are
directly related to the amount of rainfall [52]. Rainfall is
one of the most critical environmental factors affecting
resource availability in savannah ecosystems [26,53]. In
other African bovids sperm production is reduced by 30-
90% during the non-breeding season [45].

The characteristics of the SR genes in African buffalo
are different from those described in other species to
date. The SR distorter and SR suppressor occur on a sin-
gle sex chromosome and show a temporal and opposite
variation in gene activity. Furthermore, there are indica-
tions that both an X-chromosomal and Y-chromosomal
SR distorter are present in the population. Another
unique feature is that female buffaloes in KNP are also
able to influence the foetal sex in relation to body condi-
tion (in males semen quality, which likely correlates with
male body condition). The effect is opposite to that of
males, with females in above average body condition
(although population average may be low) investing in
daughters and those in below average body condition
investing in sons [27].

Constant fitness models show that the co-occurrence of
an X- and Y-chromosomal SR distorter can result in a sta-
ble gene polymorphism at the Y chromosome [13].
Although this only seems possible in 2% of the parameter
space, extra stability may be provided by additional fac-
tors not included in the models. Such factors may be
presence of a Y-chromosomal suppressor, opposite
effects of the two parents on foetal sex ratio and fre-
quency-dependent selection through an association
between mating rate and sperm quality (depletion and
competition). Furthermore, the constant fitness models
show cycling of allele (haplotype) frequencies, which in
our study population is observed in relation to rainfall.

We consider it unlikely that the postulated Y-chromo-
somal SR-correlated genes are associated with male mat-
ing success or semen quality (fertilization success) as
such since these cannot explain sex-ratio variation. That
the postulated genes exert their main effect post-concep-
tion by influencing pregnancy loss (embryonic and foetal
mortality) seems equally unlikely. To prevent gene fixa-
tion, pregnancy losses with wild-type haplotypes should
be similar to those with haplotypes 112 and 557, which
would have to be considerable (at least 50%) to explain
the large haplotype frequency variations (up to a factor of
five). Moreover, additional losses of female embryos and
foetuses must be assumed to explain the male-biased sex
ratios. However, high pregnancy losses are difficult to
reconcile with adult pregnancy rates of 70%. Further-
more, this scenario would imply that haplotype 557 is
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associated with below average pregnancy loss during dry
periods while the opposite is true for the remaining hap-
lotypes, as indicated by the then low pregnancy rates and
conception numbers for the population as a whole. It is
difficult to envisage a physiological mechanism capable of
making haplotype 557 so successful under stressful con-
ditions (dry periods), yet so unsuccessful under beneficial
conditions (wet periods). Cryptic female choice at least
seems unlikely since this would imply a positive adaptive
value of choosing male offspring on the basis of just a sin-
gle Y-chromosomal haplotype, unlinked to the autosomal
genome. Furthermore, haplotype-specific pregnancy loss
is difficult to relate to frequency-dependent selection.
This would require that the physiological mechanism by
which the haplotypes are associated with pregnancy loss
in individual females is modulated, directly or indirectly,
by their frequency in the population at large. A final alter-
native explanation would be a co-occurrence of two inde-
pendent mechanisms: rainfall-dependent and haplotype-
specific mating or fertilization success in the fathers on
one hand and rainfall-dependent and sex-specific preg-
nancy loss in the mothers on the other. Again, this sce-
nario is difficult to relate to frequency-dependent
selection while it also requires a mechanism that causes
haplotype 557 to be most successful under stressful con-
ditions but least successful under beneficial conditions.

Although we consider the alternative explanations for
the correlations between Y-chromosomal haplotype fre-
quencies and foetal sex ratio unlikely, and propose the
presence of SR genes as the most plausible explanation,
this will need direct confirmation in a future studies. This
may be done by analyzing associations between semen
quality and spermatozoal sex ratio in individual bulls with
known Y-chromosomal genotype.

Conclusions
Polymorphic active SR genes in natural populations of
mammals have rarely been observed but may be more
common than previously thought. We suggest that in
many mammals semen-quality related primary sex-ratio
variation is influenced by SR genes. Stable gene polymor-
phism may be maintained with relative ease when SR
genes fulfil one or more of the specific characteristics
observed in African buffalo.

Methods
Sample data
From 1969 onwards, culling of African buffalo has been
used in KNP as a population management and disease
monitoring tool [27,54]. The data are from 3184 foetuses
and their mothers collected during culling events in 1978
and between 1984 and 1996 (data from SANParks Scien-
tific Services Department), mostly between May and
November (99.4%), from 218 0-1 year-old calves and

from 114 foetuses and their mothers culled from 32 herds
between September and November 1998, and from pub-
lished data from 43 0-4 month-old calves culled between
June 1982 and February 1983 [27,33,54].

The foetuses from 1998 are the same as those reported
previously [27]. Foetus sex was determined using external
genitalia characteristics. Sexed foetuses ≤ 18 g (age ± 70
days, n = 150) were excluded from the data analyses
because they appeared to be outliers, considering that
they were predominantly diagnosed as male, irrespective
of season or year (76% males, 114/150; 95% CI: 69-82%).
This is most likely to be attributed to sexing errors and
ascertainment bias. In the closely related Asian buffalo
(Bubalus bubalis) reliable foetal sex differentiation is pos-
sible no sooner than the 56th day of pregnancy with mac-
roscopic diagnosis and the 70th day of pregnancy with
ultrasonographic diagnosis, with external genitalia occur-
ring sooner in males than in females [55,56]. Further-
more, 195 foetuses from 1978-1996 > 18 g were of
unknown sex, leaving 2839 foetuses from 1978-1996 and
114 foetuses from 1998 for sex-ratio analyses. The sex
ratio of these foetuses did not significantly deviate from
equality (see Results section) indicating that there was no
systematic bias in foetus sexing. Conception dates were
assigned using a weight-at-age regression (8.57*weight
(g)1/3 + 48.5) [57].

The age of the animals was estimated in years on the
basis of dental wear patterns, number of erupted incisor
teeth, body size, and horn development [27]. The age of
the calves from 1998 was estimated in 3-month and half-
year cohorts (age categories: 0-3 months, n = 5; 3-6
months, n = 63; 6-9 months, n = 43; 9-12 months, n = 5;
1-1.5 year, n = 73; 1.5-2 year, n = 29). Conception dates of
the calves were estimated on the basis of the midpoint
age per age cohort (i.e. 1.5, 4.5, 7.5, 10.5, 15 and 21
months for the 1998 data and 2 months for the 1982-1983
data), assuming a gestation period of 340-343 days
[25,58].

Genetic analyses
Y-chromosomal microsatellite marker data were available
from the males culled in 1998, consisting of 74 0-1 year-
old calves and 127 subadults and adults (≥ 2 years old). In
an earlier study, which gives detailed information on the
molecular analyses, these data were used to assess the
genetic diversity per year cohort [29]. Three microsatel-
lites were analyzed whose combination of alleles consti-
tute a haplotype, since the Y chromosome is a single,
haploid non-recombining unit (except for a small pseudo-
autosomal region). A 3-number code was assigned to
each haplotype, with each number corresponding to a
microsatellite allele. Fifteen haplotypes were observed in
total. No foetus samples were available for DNA analyses
since they were not stored after analysis in the field. Here
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we used the microsatellite data to test for genetic differ-
entiation among season cohorts in calves (Figure 1). Ran-
domisation-based tests for genetic differentiation with
100,000 repetitions and no pooling of haplotypes were
performed using FSTAT 2.9.3.2 [59,60]. The program
generates contingency tables of haplotypes by samples
(age cohorts) and the statistic that is used to classify them
is the log-likelihood statistic G.

Statistical analyses
Effect sizes were estimated as the absolute difference
between sex ratios, which is defined as the proportion of
males. Confidence intervals of the sex ratios were esti-
mated using the Wilson score formula [61]. The signifi-
cance level of differences between two sex ratios or
haplotype frequencies was estimated with the Fisher's
exact test. Haplotype frequencies were regressed against
rainfall in forward and backward stepwise (conditional)
logistic regression models using SPSS 15.0.1.1. Correla-
tions were analysed using the Spearman rank test. All sig-
nificance tests in this study were performed two-sided,
unless otherwise indicated.

Precipitation
Monthly rainfall data for September 1960 to December
2004 were averaged across 13 South African Weather
Service (SAWS) rainfall stations in KNP. The body condi-
tion of adult female buffalo in KNP coincides with
monthly Normalized Difference Vegetation Index
(NDVI) values, which lags the rainfall by one month and
which is a proxy for vegetation productivity [26]. NDVI
values tend to increase sharply in November and reach
their peak in February-March [26]. The wet season was
therefore defined as the period from November to
March. During this period 78% of the rainfall occurs,
which is five times higher on a monthly basis than in the
dry season.

The raw data used in this study are available in an addi-
tional file (Additional file 1).
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